Machine Learning Approaches for Biomarker Discovery Using Gene Expression Data
Main Article Content
ABSTRACT
Biomarkers are of great importance in many fields, such as cancer research, toxicology, diagnosis and treatment of diseases, and to better understand biological response mechanisms to internal or external intervention. High-throughput gene expression profiling technologies, such as DNA microarrays and RNA sequencing, provide large gene expression data sets which enable data-driven biomarker discovery. Traditional statistical tests have been the mainstream for identifying differentially expressed genes as biomarkers. In recent years, machine learning techniques such as feature selection have gained more popularity. Given many options, picking the most appropriate method for a particular data becomes essential. Different evaluation metrics have therefore been proposed. Being evaluated on different aspects, a method’s varied performance across different datasets leads to the idea of integrating multiple methods. Many integration strategies are proposed and have shown great potential. This chapter gives an overview of the current research advances and existing issues in biomarker discovery using machine learning approaches on gene expression data.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright of individual chapters belongs to the respective authors. The authors grant unrestricted publishing and distribution rights to the publisher. The electronic versions of the chapters are published under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Users are allowed to share and adapt the chapters for any non-commercial purposes as long as the authors and the publisher are explicitly identified and properly acknowledged as the original source. The books in their entirety are subject to copyright by the publisher. The reproduction, modification, republication and display of the books in their entirety, in any form, by anyone, for commercial purposes are strictly prohibited without the written consent of the publisher.