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Abstract: Secondary acute myeloid leukemia includes acute myeloid leukemia 
that arises either from a previous myeloid hematologic disease such as myelodys-
plastic syndrome, chronic myeloproliferative syndrome, or myelodysplastic/
myeloproliferative overlap syndromes or from a previous chemotherapy or radio-
therapy performed for another disease. Secondary acute myeloid leukemia is 
characterized by a worse prognosis than its de novo counterparts, with a 5-year 
overall survival of <30% despite an advanced insight into pathogenesis and new 
available treatments. The best therapeutic strategy is to achieve complete remis-
sion with a negative minimal residual disease followed by hematopoietic stem 
cell transplantation; however, advanced age of patients at diagnosis, multiple 
comorbidities, and lower rate of complete remission makes these approaches 
available only for a small fraction of secondary acute myeloid leukemia patients. 
In this chapter, we discuss the epidemiology, pathogenesis, and prognostic 
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factors of secondary acute myeloid leukemia. Also, we discuss the main treat-
ments currently available for eligible patients (fit patients) and non-eligible 
patients (unfit patients) for intensive chemotherapy and future treatment 
perspectives. 

Keywords: acute myeloid leukemia; secondary acute myeloid leukemia; acute 
myeloid leukemia with myelodysplastic-related changes; therapy-related acute 
myeloid leukemia. 

INTRODUCTION

Acute myeloid leukemia (AML) with myelodysplastic related changes (MRC) 
are diagnosed based on clinical, cytogenetic, and morphologic criteria, reviewed 
in the 2008 WHO classification as those with a previous history of myelodys-
plastic syndrome (MDS), or myeloproliferative neoplasia (MPN) with specific 
cytogenetic alterations, or myelodysplastic changes in more than 50% of two or 
more cell lineages (1). The updated 2016 WHO classification excludes AML 
with dysplastic changes with NPM1 and CEBPA biallelic mutations or del(9q) 
from the MRC subgroup (2, 3). Next generation sequencing helped the compre-
hension of the pathogenesis of these entities, identifying mutations of RUNX1, 
TP53, SETBP1, epigenetic regulators, and spliceosome genes as those charac-
terizing MRC-AML (4). Methylation of transcription factors, bone marrow 
microenvironment alterations such as neo angiogenesis, pro-inflammatory 
changes, and fibrosis acquisition, characterize the evolution of MDS into AML 
(5, 6). The most accepted model of leukemic evolution of MDS is the “two-hit” 
model with sequential blockade of genes regulating cell differentiation, such as 
TET2 or RUNX1, followed by alteration of genes regulating cell proliferation 
and survival (FLT3, NPM1, IDH1) (7, 8). Increased expression of the altered 
anti-apoptotic protein bcl-2 results in further stimulation of expansion of the 
dysplastic clone, which acquires a survival advantage over normal hematopoi-
etic cells (8).

Secondary AMLs include both MRC and therapy-related AML (t-AML). This 
latter entity is defined as AML arising after exposure to chemotherapy or radio-
therapy for previous cancer or autoimmune diseases and was first recognized by 
the 2008 WHO classification (1). Latency between primary disease and t-AML 
depends on age at diagnosis of the primary malignancy, type of cytotoxic treat-
ment, cumulative dose, and dose intensity and its development might be influ-
enced by genetic predisposition. Current ELN 2022 guidelines for diagnosis and 
cure of the disease removed t-AML and AML evolving from previous MDS or 
MDS/MPN, considering them only as diagnostic qualifiers (9). AML with myelo-
dysplasia-related gene mutations (ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, 
STAG2, U2AF1, and/or ZRSR2) and those with myelodysplasia-related cytoge-
netic abnormalities took the place of t-AML and MRC-AML, as the new entities of 
secondary AML, underlying the prognostic significance of molecular and cytoge-
netic features. Secondary AMLs are indeed characterized by an extremely poor 
prognosis and still represent a challenge for cure.
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PATHOGENESIS

Chen et al. have shown that MDS is a disease characterized by several subclones 
with mutations in TET2, U2AF1 and TP53 genes which might acquire additional 
mutations, such as NOTCH2 and KMT2C, or later mutations associated with leu-
kemic transformation such as RUNX1, NRAS and NTRK3. These complex sub-
clonal mutations occur in stem cells determining MDS expansion or evolution into 
AML via variable mechanisms. Sequential single cell analysis technique may help 
the comprehension of these complex transformation mechanisms better than new 
generation sequencing (10). Lindsely et al. (11) analyzed mutations in 194 patients 
with secondary AML or t-AML (therapy-related acute myeloid leukemia) and in 
105 de novo AML patients, identifying four different groups of mutations:

(i)	� Secondary type mutations specific to secondary AML: SRSF2, SF3B1, U2AF1, 
ZRSR2, ASXL1, EZH2, BCOR and STAG2 capable of sustaining ineffec-
tive hematopoiesis, already at the diagnosis of MDS, without leading to 
the development of leukemia, which persist even after treatment, at 
clonal remission.

(ii)	� De novo mutations: NPM1, present in 5.4% of secondary AML, MLL/11q23 
rearrangements, and CBF. 

(iii)	� Mutations in the TP53 gene (15.1% of secondary AML): Acquired early in 
small subclones, less frequently expressing other mutations, but often 
associated with complex karyotype (12), expressed in 21.4% of de novo 
forms, characterized by poor prognosis.

(iv)	� Pan-AML: Mutations such as those of myeloid transcription factors 
(RUNX1, CEBPA, GATA2) and signal transduction proteins (FLT3 or RAS 
pathway), present in 78% of secondary AML, expressed equally in 
secondary and de-novo AML, absent in MDS, are responsible for leukemic 
evolution and disappear at remission.

Finally, the authors suggested three distinct ontogenetic patterns of AML MRC: 
the first is characterized by the presence of secondary type mutations, causing 
ineffective hematopoiesis, associated with a greater number of driver mutations, 
driving the evolution into AML; the second having de novo or pan-AML muta-
tions, driving the evolution into AML themselves; and the third having TP53 
mutations, acquired early, and associated with a lower number of driver muta-
tions in comparison with the first group.

Lindsley et al. observed that similar genetic data were found in de-novo and 
t-AML patients, suggesting that these mechanisms are also applicable in t-AML 
pathogenesis and that the analysis of mutations might help to recognize MRC-AML 
in elderly de-novo AML patients, when secondary and TP53 mutations were 
observed (11). Another scenario characterizes MRC-AML secondary to MPN. 
Twenty-five per cent of MPN evolves in MRC-AML (13). Epigenetic regulators and 
mRNA splicing factors mutations, and primary “triple negative” myelofibrosis are 
more likely to undergo leukemic transformation. Mutations in splicing factor 
genes are associated with progression to secondary myelofibrosis and essential 
thrombocythemia (ET); TP53 mutations predict the risk of leukemic 
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transformation, and IDH1/2 mutations increase from 1–4% of chronic phase to 
22% in blast-phase MPN (14).

Therapy-related AML

The WHO 2016 defines t-AML as those forms of AML that arise following expo-
sure to chemo and/or radiotherapy for a previous neoplastic or not neoplastic 
disease. Breast cancer, non-Hodgkin lymphomas, and Hodgkin lymphomas are 
the three primary malignancies most frequently associated with the development 
of t-AML (15). Data from the Surveillance Epidemiology and End Result (SEER) 
register show that the incidence of t-AML increased from 0.04/100,000 people in 
the period 2001–2007 to 0.2/100,000 people in the period 2008–2014 (16). 
t-AML accounts for about 8% of all AML diagnoses with median age of diagnosis 
depending on the primary tumor, ranging between 40–66 years, which is reported 
to be 57.8 years in a retrospective analysis of 6 prospective multicenter trials of 
the German-Austrian AML Study Group (AMLSG) (15). It is associated with a 
poor prognosis, with a lower overall survival compared to de novo AML 
(15, 17, 18). The pathogenesis of t-AML is complex and still not fully known. 
To date, the most accredited theories include: (i) direct damage to the hematopoi-
etic stem cells and the bone-marrow microenvironment mediated by chemo and 
radiotherapy; and (ii) pre-existing clonal hematopoiesis (19, 20).

The two classes of drugs that are associated with the development of t-AML are 
alkylating agents and topoisomerase II inhibitors (TOPII inhibitors). They generate 
double-stranded DNA breaks (DSBs) leading to growth arrest and cell apoptosis. 
If DSBs are not repaired, they can generate chromosomal alterations and genomic 
instability characteristic of these drugs (20, 21) (21–23). Radiotherapy determines 
either direct damage to the DNA, which can cause single or DSB, or an indirect 
damage to DNA through the generation of reactive oxygen species that can inter-
act with DNA or nuclear proteins leading to modifications of DNA bases and/or 
DSBs (24, 25). Alkylating agents and radiotherapy often result in chromosome 5 
and chromosome 7 abnormalities, complex karyotype, and TP53 mutation. AML 
occurs with a latency of 5–7 years and is often preceded by MDS. TopII inhibitors 
cause chromosomal translocations that most often involve the KMT2A genes on 
chromosome 11q23, RUNX1 on 21q22 and PML/RARA. The development of leu-
kemia has a shorter period ranging from 1 to 3 years and is almost never preceded 
by a MDS (20, 26–28).

Bone marrow microenvironment, consisting of pluripotent mesenchymal cells 
and their descendants, endothelium of bone marrow sinusoids, fibroblasts, reticu-
lar cells, adipocytes, and catecholaminergic fibers, among others, regulate almost 
all functions of hematopoietic stem cells (HSC); it is therefore not surprising that 
the altered functions of these cells, caused by therapy, can contribute to the patho-
genesis of t-AML (29–31). Cytotoxic agents cause the release of numerous pro-
inflammatory cytokines (TNF alpha, IL-6, TGF beta) and the generation of free 
radicals that damage both the mesenchymal cells and the autonomous nerve 
fibers of the niche. Their altered functions, in several mouse models, have been 
shown to be sufficient for the onset of AML (32, 33).

Another pathogenetic mechanism hypothesizes that the presence of a clonal 
hematopoiesis of uncertain significance (CHIP) which, under the selective 
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pressure of chemo and radiotherapy, gain a proliferative advantage over the nor-
mal counterpart (34). This is supported by a case-control study where up to 71% 
of patients with a primary neoplasia had a contemporary CHIP; in these patients, 
TP53 mutation was present in 16% of cases. The cumulative incidence of t-AML 
was 30% in patients with a concomitant CHIP vs only 7% in those who did not 
have CHIP (35, 36). Furthermore, patients with t-AML present mutations on 
TP53 gene more frequently than patients with de-novo AML (33% vs 5–10% 
respectively) and these mutations are found, albeit with very low frequencies, in 
the bone marrow cells of those same individuals even before chemotherapy (37–41). 

The development of t-AML is also a multistep process in which numerous 
somatic mutations accumulate, resulting in a progressive proliferative advantage 
and the arrest of differentiation in the pre-leukemic clone. The most frequently 
mutated genes in t-AML grouped into several functional groups are: (i) epigenetic 
regulators (TET2, DNMT3A, IDH1/IDH2, EZH2, ASXL1); (ii) regulators of the 
RNA spliceosome machinery (SRSF2, SF3B1, U2AF1); (iii) regulators of tran-
scription (TP53, RUNX1); (iv) regulators of signaling pathways (FLT3) (37–39).

The t-AMLs are associated with poor prognosis with an estimated overall sur-
vival of 7–10 months (40), complete response (CR) rates of about 28–30% (41), 
and a shorter duration of response than de novo forms even after consolidation (42). 
The poor prognosis of these neoplasms depends on both patient-related factors 
and AML-related factors. Patient-related factors include older age at diagnosis, 
reduced bone marrow reserve from previous therapy as well as damage to the 
microenvironment, altered function of other organs as a complication of previous 
therapy, the need for prolonged immunosuppressive therapy due to a previous 
solid organ transplant, and the presence of the previous neoplasm still active. 
AML-related factors include TP53 mutation, and complex or monosomic karyo-
type, which are much more frequent in t-AML than de novo AML (43). However, 
the diagnosis of t-AML per se, does not contraindicate eligibility for intensive 
chemotherapy as some disease subgroups, such as those associated with the 
t(8;21), inv(16)(p13q22)/t(16;16)(p13;q22) or the t(15;17), have high CR rates 
(above 70%) and a 2-year overall survival of about 50% with this therapeutic 
approach, albeit still lower than the de novo counterpart (44, 45).

DEFINITION OF FITNESS TO INTENSIVE AND 
NON-INTENSIVE CHEMOTHERAPY

Scoring systems capable of predicting early mortality after intensive chemother-
apy have not shown sufficient accuracy and reproducibility to ensure objective 
selection of patients fit for intensive chemotherapy. Rather, a recent work (46) has 
validated the ‘Ferrara’ criteria, selected by a group of experts from the Italian 
Society of Hematology (SIE), the Italian Society of Experimental Hematology 
(SIES), and the Italian Group for Bone Marrow Transplantation (GITMO), as a 
model capable of distinguishing patients fit for intensive chemotherapy, fit for 
non-intensive chemotherapy, or unfit for non-intensive chemotherapy (47). A list 
of 24 conceptual criteria was selected using a analytic hierarchy process-based 
consensus process, and on the basis of the pairwise comparisons of these 
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criteria, the members of the panel proposed the definition of unfitness to intensive 
chemotherapy as the presence of at least one of the following nine criteria: (i) age 
older than 75 years; (ii) congestive heart failure or documented cardiomyopathy 
with an EF ≤50%; (iii) documented pulmonary disease with DLCO ≤65% or 
FEV1 ≤65%, or dyspnea at rest or requiring oxygen, or any pleural neoplasm or 
uncontrolled lung neoplasm; (iv) dialysis and age older than 60 years or uncon-
trolled renal carcinoma; (v) liver cirrhosis Child B or C, or documented liver dis-
ease with marked elevation of transaminases (>3 times normal values) and an age 
older than 60 years, or any biliary tree carcinoma or uncontrolled liver carcinoma 
or acute viral hepatitis; (vi) active infection resistant to anti-infective therapy; (vii) 
current mental illness requiring psychiatric hospitalization, institutionalization or 
intensive outpatient management, current cognitive status that produces depen-
dence (as confirmed by the specialist) not controlled by the caregiver; (viii) ECOG 
performance status ≥3 not related to leukemia; and (ix) any other comorbidity 
that the physician judges to be incompatible with conventional intensive 
chemotherapy). Patients fit for intensive chemotherapy are therefore those lacking 
all these clinical conditions.

The unfitness to non-intensive chemotherapy was defined as the fulfillment of 
at least one of the following six criteria: (i) refractory congestive heart failure; (ii) 
documented pulmonary disease with DLCO ≤65% or FEV1 ≤65%, or dyspnea at 
rest or requiring oxygen, or any pleural neoplasm or uncontrolled lung neoplasm; 
(iii) liver cirrhosis Child B or C or acute viral hepatitis; (iv) active infection resis-
tant to anti-infective therapy; (v) current mental illness requiring psychiatric hos-
pitalization, institutionalization or intensive outpatient management, or current 
cognitive status that produces dependence (as confirmed by the specialist) not 
controlled by the caregiver; and (vi) uncontrolled neoplasia. Patients fit for non-
intensive chemotherapy do not fulfill any of these clinical conditions. 

Obviously, these criteria did not take into account mortality rates related to 
newer low-intensity therapies, such as Venetoclax, IDH, and FLT3 inhibitors, 
associated or not with low-intensity chemotherapy or hypomethylating agents, 
where their accuracy has yet to be validated and explored, but they remain, at 
present, the best available clinical instrument for defining fitness to non-intensive 
chemotherapy.

TREATMENT OF PATIENTS FIT FOR INTENSIVE 
CHEMOTHERAPY 

The current standard therapy for patients fit for chemotherapy is CPX-351, a lipo-
somal formulation of cytarabine and daunorubicin in a fixed 5:1 molar ratio, 
approved by FDA in 2017. A 5-year follow up of a Phase III trial in secondary 
AML confirmed an overall survival benefit of CPX over the standard 7+3, with a 
10% increase in survival due to reduced early mortality and higher transplanta-
tion rate compared with 7+3 (gain of survival due to reduced early mortality and 
higher transplant rate in comparison to 7+3 (48). The transplant landmark analy-
sis showed a higher number of transplanted patients, slightly older, in the CPX 
arm than in the 7+3 arm, having a 3-year overall survival rate of 56% versus 23% 
respectively (49). Improved transplant outcomes were not due to a decrease in 
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relapse, but to an improvement in non-relapse mortality with CPX, due to better 
tolerance of this induction approach compared to 7+3. This pivotal Phase III trial 
did not have the MRD data, but three real life data, the Italian, the French, and the 
German experience, showed respectively 57%, 57%, and 64% MRD negativity in 
responders (50–52). There is lack of data on the effect of CPX combination in 
FLT3 and IDH mutations. FLT3-mutated MRC-AML, fit for intensive therapy, 
should receive 3+7 with midostaurin; IDH-mutated patients do not yet have 
defined regimen for target therapy, but when ivosidenib and enasidenib achieve 
registration, they will represent an attractive therapeutic option.

CPX-351 combinations

V-FAST phase Ib trial accrued patients based on molecular profile: those with 
FLT3 and IDH2 wild type received CPX-351 plus venetoclax, those with either 
FLT3-ITDs or TKDs received CPX plus midostaurin, and those with IDH2 posi-
tive received CPX plus enasidenib (53). Venetoclax was administered as a short 
schedule, days 1–14, instead of days 1–28 of VIALE-A, to reduce hematological 
toxicity (Arm A). Midostaurin was administered along with the RATIFY schedule 
from days 8 through 21 (Arm B). Enasidenib was administered on days 8 to 28 
(Arm C). Arm A enrolled 20 patients obtaining 50% CR/CRi (CR with incomplete 
hematological recovery rate), with similar median time to absolute neutrophil 
count (ANC) and platelet recovery in comparison to CPX351 phase III trial (48), 
in a very poor prognosis setting represented by 86% of the patients with interme-
diate and high-risk profiling, and nearly 30% of the patients with TP53 muta-
tions. Thirty-day and 60-day mortality were low. The other two arms need to 
enroll additional patients before giving reliable results, but preliminary safety data 
show acceptable hematological recovery and a 0% early mortality rate, with 
responses achieved in all treated patients. The study is active, but not recruiting. 
MRC-AML might express FLT3 mutations. In the phase III study, 13% of patients 
had a FLT3 mutation on the CPX-351 arm versus 20% on the 3+7 arm. Trials 
combining FLT3 inhibitors with CPX351, quizartinib, and gilteritinib are ongoing 
and other regimens like the CLIA scheme (cladribine, idarubicin, cytarabine with 
gilteritinib) are under evaluation (NCT02115295). Trials on combination treat-
ment with azacytidine, venetoclax, gilteritinib, and quizartinib are also under 
evaluation (NCT03661307, NCT04140487).

CPX-351 in patients with MDS and prior hypomethylating agent 
exposure

Phase III data of CPX-351 did not show an advantage in comparison to 7+3 in 
patients with secondary AML and prior MDS, who received prior therapy with 
hypomethylating agents, such as azacitidine and decitabine. A retrospective anal-
ysis compared outcomes of 242 patients affected by AML secondary to MDS who 
were pre-treated with hypomethylating agents, after three induction strategies: 
CPX-351 versus 7+3 versus CLAG-M (cladribine, cytarabine, G-CSF, and mito-
xantrone) (54). Patients receiving the CLAG-M regimen, achieved a 53% CR/CRi 
rate, higher than that observed with CPX-351 (41%) and 7+3 (32%), with similar 
median overall survival accounting for 7.27, 7.07 and 7.63 months respectively. 
The sample size and multicenter enrollment make this real-life experience 



Capelli D et al.118

indicative of real-world outcomes, even with the limitation of being a retrospec-
tive study. Patients receiving less than four cycles of hypomethylating agents had 
a better response rate of 64%, and 6-months analysis showed that those receiving 
CPX-351, followed by allogeneic transplant, had a better overall survival in com-
parison to all other patients. Allogeneic transplant conferred a survival advantage 
in all treatment arms.

Hematopoietic stem cell transplantation 

Hematopoietic stem cell transplantation (HCST) represents the only curative 
option for the treatment of MRC and t-AML. A retrospective Italian study showed 
a median overall survival of 58.8 months in patients after HCST (55). Litzow et al. 
analyzed 545 t-AML undergoing HCST and showed an overall survival of 22% at 
5 years. The rapid identification of a suitable donor and the choice of a bridge to 
transplant with better extra hematological tolerance are the foundations of a suc-
cessful cure. In a phase III trial, 31% of patients transplanted after CPX-351 treat-
ment were over 70 years vs 15% transplanted after 3+7. Elderly t-AML patients 
who achieved a response after CPX-351 had better post HCST overall survival and 
a higher rate of transplantability, compared with those responding after 3+7 (56). 

A retrospective analysis of the European Group for Bone marrow Transplant 
(EBMT) analyzed 802 secondary AML patients, median age of 59.6 years, under-
going HSCT after a myeloablative conditioning (MAC) in 40% of cases and a 
reduced-intensity conditioning (RIC) in 60%. They showed a 2-year cumulative 
recurrence incidence (RI) of 37%, leukemia-free survival (LFS) of 40%, overall 
survival (OS) of 46%, non-relapse mortality (NRM) of 23%, and chronic graft-
versus-host disease (cGVHD) of 39%, with similar results between conditioning 
regimens. Patients in the MAC group had better RI (hazard ratio [HR], 1.79; 
P <. 05), LFS (HR, 1.43; P = .02) and OS (HR, 1.53; P = .005) in comparison with 
those receiving a RIC regimen. There was no difference in the cumulative inci-
dence of NRM (HR, 1.38; P = .15) (57).

Allogeneic HCST is the best long-term treatment strategy for high-risk patients 
compared with chemotherapy alone (58). Myeloablative regimens had a lower 
risk of recurrence and higher LFS and overall survival than RICs, with no statisti-
cally significant difference in NRM. The decrease in the incidence of recurrence is 
concordant with a recent phase III study by Scott et al. in which patients with 
AML/MDS who received myeloablative conditioning had a statistically significant 
higher recurrence-free survival rate and a nonsignificant trend toward improved 
overall survival (59). This study showed no difference in NRM between the two 
conditioning groups, suggesting improvement in supportive care and manage-
ment of post-transplant complications (60).

TREATMENTS OF PATIENTS UNFIT FOR INTENSIVE 
CHEMOTHERAPY

The criteria of patients who are unfit for intensive chemotherapy is defined above 
under “Definition of fitness to intensive and non-intensive chemotherapy”.
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Venetoclax and hypomethylating agents 

The high expression of bcl2 protein in AML blasts and the preliminary efficacy 
and safety of venetoclax in monotherapy (61) are the reasons for the VIALE-A 
phase III trial. It randomized 145 patients on azacitidine alone and 286 patients 
on azacitidine plus venetoclax. The CR/CRi was 67% with a hazard ratio of 0.56 
for the combination group whereas it was 23% CR/CRi for azacitidine alone (62). 
Even though the data on the combination of hypomethylating agent and veneto-
clax are encouraging, they are modest in TP53-mutated patients, and the addition 
of venetoclax to the 10-day decitabine scheme did not result in any particular 
benefit with regards to overall survival and relapse-free survival compared to his-
torical results with 10-day decitabine alone (63). VIALE-C showed that the com-
bination of low dose cytarabine and venetoclax did not result in survival advantage, 
in comparison with low dose cytarabine alone in secondary AML (64). Outcomes 
of t-AML patients, representing 8–9% of all enrolled subjects, were not reported 
in these trials.

A retrospective observational study analyzed 217 patients treated with 
CPX-351 and 439 patients treated with venetoclax/azacitidine; the patients had a 
balanced distribution of European LeukemiaNet risk, high risk mutations (TP53, 
ASXL1, RUNX1), FLT3, IDH, and hematopoietic cell transplantation-specific 
comorbidity index (HCT-CI) (65). Overall survival, tolerance, and early mortality 
were similar in both two groups, but infections and febrile neutropenia were more 
frequent in CPX-351 patients vs venetoclax/azacitidine, with a median overall 
survival of 13 months in the CPX-351 group and 11 months in the combination 
group. Multivariate analysis did not identify any predictive factors of response to 
therapy, but HSCT was associated with significantly improved survival. These 
outcomes were confirmed when analysis was restricted to patients who met the 
eligibility criteria of the phase III CPX-351 trial. The main pitfall of the study is 
the lack of MRD data.

The phase III AZA-AML-001 study comparing azacitidine vs conventional care 
regimens including 7+3 intensive chemotherapy, low doses of ara-c (LDAC), and 
supportive care showed a survival advantage in the azacitidine arm vs conven-
tional care regimens arm with one-year survival of 46% vs 32%, respectively (66). 
The study enrolled 488 elderly patients with newly diagnosed AML, and of these, 
262 had AML with myelodysplasia-related changes (AML-MRC). Even in the 
AML-MRC subgroup, the survival advantage in the azacitidine arm over the con-
ventional care regimens arm was maintained (one-year survival 44.3% vs 27.2% 
respectively). Within the patient’s group with AML-MRC, overall survival was 
higher in those with multilinear dysplasia on morphologic examination than in 
patients with cytogenetic alterations defining AML-MRC (67). The median overall 
survival in patients with morphologic dysplasia in the azacitidine arm was 
16.3 months vs 5.3 months in patients with cytogenetic alterations diagnostic for 
AML-MRC (68).

Decitabine administered for five consecutive days was compared to treatment 
choice (TC) (LDAC or supportive care) in 485 older patients with newly diag-
nosed AML in a phase III randomized multicenter trial (69). In this trial, decitabine 
did not demonstrate a significant improvement in median overall survival com-
pared to TC (7.7 months vs. 5 months) and this result was also true for 171 patients 
with secondary AML (69, 70). In a phase II study, in 19 patients with AML-MRC 
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aged ≥60 years, decitabine administered for 10 consecutive days (71) showed an 
overall response rate (CR + CRi) of 74% (95% CI: 49–91%). Although hypometh-
ylating agents are commonly used in the treatment of AML-MRC patients, to date, 
no head-to-head comparison between azacitidine and decitabine has been per-
formed. However, from the combined analysis of the five published phase III 
randomized control trials on hypomethylating agents seem to suggest an overall 
survival advantage of azacitidine over decitabine (HR for azacitidine 0.67, 95% 
CI: 0.56–0.79, P < 0.00001; HR for decitabine 0.86, 95% CI: 0.73–1.02, 
P = 0.08) (72).

JAK inhibitors

Ruxolitinib as monotherapy resulted in modest responses in phase II studies in 
transformed JAK2 mutated MPNs (73, 74). Decitabine alone extends survival to 
9–10 months in advanced MPN with a better safety profile than intensive chemo-
therapy regimens (75, 76). Azacitidine and ruxolitinib combination was explored 
in chronic phase primary myelofibrosis (PMF) in a phase II study at the MD 
Anderson Cancer Center resulting in high rates of reduction of splenomegaly and 
fibrosis (77). A combination of ruxolitinib 50 mg, twice a day, and decitabine was 
explored in a phase I/II study in blastic phase (BP) patients with an overall 
response rate of 61% and a median overall survival of 8.4 months (78). Mascarenhas 
et al. combined ruxolitinib at a reduced dosage of 25 mg twice daily for the induc-
tion cycle and 10 mg twice daily for subsequent cycles in combination with 
decitabine 20 mg/sm for 5 days, in a phase II study enrolling 25 PMF patients in 
AP/BP (advanced phase/blastic phase), achieving an overall response rate of 44% 
and a median overall survival of 9.5 months. The survival data equaled that of 
intensive chemotherapy followed by HCST, (23) but it appears that the addition of 
ruxolitinib, results in better responses in terms of rate and duration, compared to 
decitabine alone, due to the reduction in splenomegaly (median reduction, –54.8%) 
with a positive impact on quality of life, unaffected by TP53 expression (79).

Future Perspectives

The peculiar biological characteristics of MRC and t-AML, induce chemoresis-
tance and poor tolerance to the classic 7+3. CPX-351 and hypomethylating 
agents/venetoclax represent the current standard of care, but the mutational land-
scape deserves new possible target therapy in the repertoire of future clinical 
trials. IDH inhibitors (IDHi), antibody targeting CD47, and anti TP53 drug 
eprenetapopt (APR246) might represent possible target agents deserving further 
evaluation in combination with hypomethylating agents in MRC-AML. New 
MDM2 (murine double minute 2) inhibitors, and BET (bromodomain and extra-
terminal) inhibitors also show activity in advanced, accelerated-phase PMF, and 
could be extended to AML evolving from an underlying MPN. Several phase I and II 
clinical trials have shown promising results in this unfavorable setting and sup-
port the rational for the design of future trial of combinations of new drugs. For 
instance, anti PD-1 nivolumab in association with azacitidine provided a CR/CRi 
rate of 39% in 31 relapsed refractory secondary AML (80). The small molecule 
TP53 inhibitor eprenetapopt was able to restore mutated TP53 and showed a 56% 
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CR rate in a phase II trial in combination with azacytidine (81). The anti-CD47 
antibody magrolimab (Hu5F9-G4) demonstrated a 67% CR/CRi rate in combina-
tion with azacytidine in TP53-mutated AML with an overall survival of 12.9 months 
(82). The bispecific DART molecule targeting CD3-CD123 achieved a 39% CR in 
a phase I/II study in 38 relapse/refractory AML (83). Menin inhibitor SNDX-5613 
showed a 24% CR/Cri and a 50% overall response rate in a phase I study, with 
NPM1, MLL or KMT2A AML mutations, expressed by 40% of AML, predicting 
response (84). CPX-351, hypomethylating agents+venetoclax, 7+3+midostaurin 
are the current golden standard for the treatment of unfavorable disease respec-
tively in fit, unfit, and FLT3 mutant MRC and t-AML. Poor cytogenetic and molec-
ular risk, in addition to the older age of these patients, are the main limitations for 
cure, and allogeneic transplant remains the only curative option. Double or triple 
combinations of some of the above drugs with hypomethylating agents and/or 
venetoclax or CPX-351 might deserve further exploration in future phase III trials, 
tailoring therapies, based on molecular repertoire and patient fitness, aiming to 
increase both cure and quality of life.

CONCLUSION

Secondary AML are extremely heterogeneous diseases, characterized by poor 
prognosis. The study of the pathogenesis of this entity has led to the identification 
of a number of mutations specific to secondary AML (11). The latest revision of 
the ELN guidelines for the diagnosis and treatment of AML not only lowered the 
cut off of blasts to 10%, by identifying the new entity of AML/MDS in the presence 
of these specific mutations, but also eliminated the entity of MRC AML, replacing 
it with the ‘AML with myelodisplastic related gene mutations’, having at least one 
of the pathognomonic mutations (ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, 
STAG2, U2AF1, and/or ZRSR2) and lacking a specific cytogenetic alteration, diag-
nostic of AML with myelodysplasia-related cytogenetic abnormalities. This means 
that the prognostic significance of AML molecular features overcomes that of a 
previous history of hematological disorder or exposition to chemotherapy and 
radiotherapy, underlying the correlation between such mutations and resistance 
and refractoriness to standard therapies. CPX-351 remains the gold standard in 
patients eligible for intensive chemotherapy, with the chance of a potential 
improvement after combination with venetoclax and FLT3 and IDH inhibitors, 
currently under investigation (53). A better understanding of the pathogenesis of 
the disease may guide preclinical research for future targets, worthy of tailored 
therapies, especially in patients pretreated with hypomethylating agents, where 
current real-world experience shows improved OS in transplanted patients after 
CPX-351 (54). Current supportive therapies, which can certainly be implemented, 
have already determined an improved outcome of HSCT after MAC conditioning, 
as shown in a recent EBMT survey, with an NRM rate of 23%, similar to that 
observed after RIC conditioning (57), which was still burdened by worse LFS, 
without a significant reduction in OS. Therefore, the 2-year recurrence incidence 
of 37% remains the main obstacle to overcome, to improve the cure of the disease. 
An area of future research will certainly be the modulation of minimal residual 
disease after transplantation, through maintenance therapy with FLT3 inhibitors 
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and the use of pre-emptive therapy with target and immunologic drugs, such as 
anti-CD47 or anti-CD123 monoclonal antibodies, in addition to currently 
available hypomethylating agents.
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