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Abstract: Prostate cancer remains an important health problem worldwide affect-
ing one in every six men including members of vulnerable communities. Although 
successful treatments have been delivered to men affected with the disease result-
ing in improved patient outcome, process improvements including therapy titra-
tion and augmentation are needed to optimize tumor control and limit normal 
tissue injury from therapy. In this chapter, we describe current management strat-
egies for  optimal patient care with radiation therapy and opportunities for 
improvement of care moving forward with applied science to apply therapy in a 
strategic manner, potentially improving care and outcome for patients treated for 
this disease.

Keywords: clinical process improvement for prostate cancer; modern care for the 
prostate patient; patient outcome in prostate cancer; radiation therapy for prostate 
cancer; treatment strategies for prostate cancer

INTRODUCTION

Prostate cancer is an important issue affecting a substantial number of men. 
Incidence of prostate cancer remained stable despite a 4–6% annual increase of 
advanced disease as the proportion of prostate cancer diagnosed at advanced stage 
increased from 3.9% to 8.2% over the past decade (1). Clinical outcomes in 
patients with early disease with favorable features relative to Gleason grade and 
prostate-specific antigen (PSA) are outstanding with current therapy including 
surgery and radiation therapy. Patients with intermediate risk factors have excel-
lent outcomes with established treatment strategies when applied in the appropri-
ate manner. Research is focused on which patients with intermediate risk require 
treatment in addition to radiation therapy and if therapy is needed, what should 
be the type and duration of therapy. Historically, Hormone therapy using Casodex 
and Lupron have been used with radiation therapy. Gleason grade of 7 or 8 and 
PSA greater than 10 will characterize patients as unfavorable intermediate disease 
who require additional therapy beyond radiation therapy to optimize care. Patients 
with high-risk features including Gleason grade 9 and 10 disease require new 
strategies in addition to hormone therapy which can be directed by modern trans-
lational science. In this chapter, we review process improvements in the clinical 
application of radiation therapy and future opportunities for additional therapies 
to complement radiation therapy for patients at risk for recurrence.

CLINICAL PROCESS IMPROVEMENTS: 
RADIATION ONCOLOGY

Process improvements in radiation oncology have demonstrated outstanding 
progress in the care of prostate cancer patients. Volumetric planning has provided 
security in radiation therapy target definition and modern imaging tools including 
multi-parametric magnetic resonance imaging. New metabolic agents used for 
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positron emission tomography have provided more confidence that tumor targets 
are well defined and treated with accuracy (2–4). Intensity modulation has per-
mitted radiation oncologists to place sharper dose gradients across normal tissue 
structures, including bladder and rectum, with increased dose to tumor target, 
permitting higher dose to tumor targets with no additional clinical morbidity. This 
has served to expand our role in prostate cancer to treat early metastatic disease 
with success (3, 5, 6). Decreased dose and sharper dose gradients to normal  tissue, 
aided by intensity modulation, decrease radiotoxicity to the rectum, small bowel, 
bone structures including the acetabulum, and bladder (Figure 1). 

The advances in external beam radiation therapy treatment planning and 
delivery have positioned radiation therapy very well in the care of patients with 
prostate cancer. Image guidance secures and confirms the significant impact of 
intensity modulation on patient care. Because of the security of daily treatment 
execution, radiation oncologists have been able to adjust daily treatment dose 
to  levels securing optimal outcome (3, 7–12). The process improvements in 
technology have permitted investigators to compress both daily and total treat-
ment time without accelerated risk for normal tissue injury (3, 7–11, 13). 
Hypofractionation protocols decreasing the duration of treatment with increased 
daily dose are maturing and many investigators in the radiation oncology com-
munity consider compressed treatment programs moving towards the standard 
of care in patients with normal and near normal prostate anatomy and genito-
urinary function (8–11, 14, 15). Brachytherapy as monotherapy remains an 
outstanding therapy option for patients with low and early intermediate risk 
disease (3, 16–19). Modern real time image guidance in the development and 
execution of the plan has made brachytherapy an outstanding treatment option. 
Brachytherapy with external therapy provides excellent outcomes in patients 
with less favorable intermediate-risk disease and high-risk disease when ana-
tomically appropriate (Figure 2). 

In the near future, clinical protocols will include radiotherapy with or without 
radiopharmacy directed to sites of metastasis at presentation. With these treat-
ments, the outcome of patients with early metastatic disease is evolving to become 
equivalent to patients with local disease at presentation (2, 3, 20–22). The future 
of radiation therapy in the treatment of locally confined and early metastatic dis-
ease is significant and will use elements of advanced technology during radiation 
therapy such as intensity modulation, daily image guidance, optical tracking, ste-
reotactic therapy, radiopharmacy, and brachytherapy (2, 3, 7–11, 22). These tools 
have already permitted radiation oncologists to increase dose to prostate cancer 
targets without an increased risk of normal tissue injury. There is increased confi-
dence that outcomes relative to both tumor control and normal tissue injury are 
improved. The objective for the next generation of studies is to optimize care for 
patients by identifying which patients need additional therapy coupled with radi-
ation therapy and what therapy to apply. There are a growing number of agents 
approved by the FDA extending hormone treatment beyond the longstanding use 
of Lupron agonist/antagonist management and now direct therapy to additional 
androgen related pathways including multiple oral medications. Modern science 
will identify additional strategies for patient care especially for patients considered 
high risk and insensitive to hormone medication. How and when to apply these 
strategies coupled with evaluation for the duration of therapy will be vetted in the 
next generation of clinical trials.
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Figure 1. Process improvements in radiotherapy of prostate cancer. A, Dose gradients across 
bladder and rectum for a traditional radiation therapy using intensity modulation. Daily 
image guidance allows for adjustments in positioning each day relative to target 
motion. B, A cone beam computer tomography image obtained pre-therapy to validate target 
positioning on a daily basis. The security provided by image guidance permits titration in 
planning target volumes which in turn decrease dose to normal tissue further. The use of 
volume modulated arcs permits rapid therapy delivery over a few minutes giving confidence 
to both physicians and patients in limiting intrafraction motion of targets further promoting 
security in daily treatment execution. C, Arc geometries applied to prostate cancer care. 
Optical tracking provides both stability and security in daily positioning and monitors 
external motion during therapy. D, An example of optical tracking in a prostate cancer 
patient. Image courtesy of the Department of Radiation Oncology, UMass Chan Medical 
School and UMass Memorial Health.



Prostate Cancer Process Improvement 173

RADIATION THERAPY POST PROSTATECTOMY

Radiation therapy after prostatectomy remains an important component of patient 
care. Although surgery remains an important option for patient care in prostate 
cancer management, often surgeons are confronted with more challenges than 
anticipated with extracapsular spread of tumor, lymph node involvement, peri-
neural invasion, Gleason grade, and seminal vesicle invasion; all these are indica-
tors of risk for local regional recurrence of disease. Although debate continues as 
to when to intervene with radiation therapy post-operatively, many in the radia-
tion oncology community feel treatment is more efficacious earlier in the disease 
process (23–26). In contrast, many in the urology community prefer to defer 
referral of the patient to radiation oncology until there is continuous elevation in 
PSA (24, 27, 28). Evidence today suggests efficacy with earlier intervention than 
later before PSA becomes significantly elevated. Having established this point, the 
radiation oncology community is challenged by defining a target to treat as 

Figure 2. Permanent seed brachytherapy. This image shows the application of permanent seed 
brachytherapy in a high stage patient with the radiation dosimetry superimposed on the 
image courtesy of the Department of Radiation Oncology, UMass Chan Medical School and 
UMass Memorial Health.
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treatment is being directed to a biomarker. Radiation oncologists have tradition-
ally targeted the urethral anastomosis, former prostate capsule, and the undersur-
face of the bladder as high-risk targets with nodal volume therapy treated at the 
discretion of the radiation oncologist on an individual basis driven by the initial 
pathology. Although this demonstrated success, the choice of targets was thought-
ful but simultaneously arbitrary based on the perception of tissues considered at 
risk (29–31). Modern imaging has helped radiation oncologists pivot from this 
position and re-visit target definitions by optimizing targets that would be consid-
ered high risk and targets of intermediate risk with the option of dose painting to 
high-risk targets (Figure 3). In this case, metabolic imaging supported the identi-
fication of a bulk tumor aggregate which could be treated as a high-risk target 
with adjoining tissue, and tissue previously defined as high risk defined at inter-
mediate risk, thus limiting the risk of normal tissue injury. The high dose volumes 
were titrated to areas of activity defined on anatomical imaging.

IMAGING AND MODERN CARE FOR THE PROSTATE PATIENT

The importance of the development of anatomic and metabolic imaging for 
patient care, especially in radiation therapy, cannot be overstated (31–33). Prior 
to the development of volumetric imaging, patients were planned for radiation 
therapy on fluoroscopic simulators with catheters and contrast material placed 
into the bladder and rectum. While effective, there was no optimal definition of 
tumor and normal tissue targets, and mega voltage imaging could not validate 
target position nor volume of normal tissue in the therapy fields. The advent of 
volumetric imaging and replacement of fluoroscopic simulators with computed 
tomography permanently altered the process of simulation and workflow for both 
the planning team and the radiation oncologist. Fusion technology has permitted 
multiple datasets to be integrated with radiation therapy planning and imaging 
and serves to optimize target definition (31–33). Four-dimensional planning 

Figure 3. PET imaging. (left) PET scan image of recurrent disease in a post-prostatectomy 
patient and the radiation therapy treatment plan (right) directed to tissues considered of 
high risk (PET avid) and intermediate risk (2–8). Image courtesy of the Department of 
Radiation Oncology, UMass Chan Medical School and UMass Memorial Health.
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programs secured challenges imposed by motion and serve to optimize the loca-
tion of bowel position during respiration. The practice of radiation oncology has 
become fully integrated and synergistic with modern imaging. The radiation 
oncologist now must be more expert than our mentors in the application of imag-
ing to therapy. Not only do we need to define if an abnormality is present or 
absent, but also define the volume of interest in its entirety, including tissues of 
both high and intermediate risk of disease, to create a treatment plan, and define 
normal tissue dose volume metrics for dose delivery. The addition of magnetic 
resonance imaging with computed tomography has optimized the anatomy of 
high-risk regions and better-defined multiple structures, including the fat plane 
between the anterior wall of the rectum and the prostate to improve contouring 
of disease, thus permitting the placement of sharper dose gradients across critical 
normal tissues (3, 7–11). 

Metabolic imaging with Axumin and prostate-specific membrane antigen tar-
geted therapy has helped define areas of disease that might otherwise be over-
looked, especially in the post prostatectomy setting with elevation in PSA including 
identification of patients with oligometastasis (31–33). Radiation oncologists can 
identify metabolically active areas as high-risk including sites of limited metastatic 
disease and treat these regions to full dose while titrating dose to metabolically 
inactive regions (31–33). These images have altered how radiation oncologists 
contour nodal anatomy, and image guidance is giving confidence to the radiation 
oncology community to titrate target volumes. These imaging tools provide 
opportunity to adjust volumes to high-risk targets with dose painting and radio-
surgery techniques. Optimal targeting with image guidance has the potential to 
improve patient outcome and decrease the immediate need for additional therapy 
such as hormone therapy. In the future, this effort will expand and include patients 
with oligometastatic disease who will be treated with definitive intent. It is antici-
pated we can titrate high dose volume directed to areas of metabolic and anatomi-
cal disease and place areas traditionally thought at risk and treat them to a more 
intermediate dose. Advanced imaging tools may provide security that we are treat-
ing the appropriate volume to the optimal dose and spare normal tissue for addi-
tional therapies to be considered at a later time point if needed (23, 24). It is 
becoming clear the therapy community will become more aggressive in the man-
agement of patients with advanced disease at presentation and therapies beyond 
traditional application of hormone therapy.

Genomic and Molecular Applications: Current Clinical Use

Researchers have been evaluating newly defined roles for genomic signatures 
and biomarkers in assigning risk and appropriate therapy. Although traditional 
risk categories defined by stage, Gleason grade, and PSA have been used effec-
tively in the past, genomic signatures have the potential of adjusting care in low, 
intermediate, and high-risk populations. A patient defined as low risk with 
favorable PSA and Gleason score but may have an unfavorable genomic 
 biomarker supporting treatment at presentation. Signatures may define 
 intermediate risk patients who may benefit from augmented therapy and signa-
tures may tailor therapy as needed for high-risk patients to align with biomarker 
 expression. Following similar pathways identified for management of breast can-
cer, signature molecular profiles are being defined for prostate cancer 
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management. In patients with prostate cancer, traditional definition of disease is 
related to clinical stage, Gleason grade, and PSA coupled with anatomic and pos-
sible  metabolic imaging. Prolaris, Decipher, and Oncotype genomic profiling 
testing are available to patients to help define molecular signaling that may sug-
gest a different disease process than implied by traditional biomarkers and tools 
used to assign risk. In the future, next generation sequencing may be used to 
 complement more traditional biomarkers defined on immunohistochemical 
staining including markers for neuroendocrine expression (33–35). 

To date, this has largely been perceived as of benefit to patients recognizing the 
need for continued process improvements as each signature becomes validated 
moving forward (2, 3, 24). There are clinical situations where profiling has identi-
fied a treatment pathway not anticipated with traditional mechanisms. Recent 
publication suggests that deep learning models can be used to personalize pros-
tate cancer decision making for patient care. Clinical and pathology data from five 
prostate cancer clinical trials (NRG/RTOG 9202, 9408, 9413, 9910, and 0126) 
was re-purposed to determine if multi modal artificial intelligence models could 
outperform traditional established clinical risk stratification models of the National 
Comprehensive Cancer Network (NCCN) and D’Amico stratification. The data 
involved pathology samples from 5,654 trial patients with high and sufficient 
quality digital histopathology image data. The results confirmed that artificial 
intelligence model did outperform traditional clinical risk stratification for pre-
dicting outcome, therefore improvements in personalization strategies will help 
identify patients who could benefit from augmented therapy and potentially 
titrate therapy for those with favorable features (35).

Radiation therapy has a prominent role in the treatment of prostate cancer and 
will continue to be a primary treatment option for populations at risk for develop-
ing the disease. As our technologies have improved, our outcomes have improved 
as dose to tumor and sharper dose gradients across normal tissue targets, target 
validation, and daily imaging has served patients well by assuring security in 
treatment targeting. Further improvements in magnetic resonance and metabolic 
imaging will further improve targeting and patient outcome. Moving forward, we 
need to continue to evaluate which patients benefit from additional therapy and 
optimize integrated therapy for patient populations at risk for recurrence. This 
will require careful clinical trials to identify patients at risk for recurrence and how 
to apply additional therapies moving forward.

COMBINATION THERAPIES

There is evidence that additional therapy coupled with radiation therapy improves 
clinical outcome in patients with unfavorable intermediate risk and high-risk 
prostate cancer (36, 37). For example, multiple forms of hormone therapy cou-
pled with radiation therapy has demonstrated improvements in clinical outcome 
for intermediate and high-risk patients (3, 36, 37). However, despite the advan-
tage in patient care and outcome, the duration of hormone therapy, the impact of 
hormone on normal tissue, and the quality of life remain understudied. Current 
data show that protracted hormone therapy has demonstrable impact on cardiac, 
musculo-skeletal, and neurocognitive health (2, 36). Therefore, an opportunity 
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exists to mitigate these issues using basic science and applied molecular strategies 
for future clinical programs.

In the past, multiple agents have been approved for patient care in prostate 
cancer, many directed towards androgen-directed pathways including the andro-
gen receptor. Abiraterone acetate (Zytiga), apalutamide (Erleada), orgovyx 
(Regugolix), and enzalutamide (Xtandi) are new approaches to patient care 
directed towards androgen inhibition (37–42). While currently used for recurrent 
disease, studies are now needed to determine if these medications can function as 
a surrogate for traditional hormone therapy in primary management with the 
objective of limiting the sequelae seen with Lupron therapy. An equally important 
objective is to determine the duration of therapy and evaluate the risk benefit ratio 
of maintenance therapy or whether efficacy of management is optimized during 
the course of radiation management. These areas remain less well defined and are 
of important clinical relevance to patient care and quality of life. Radium 223, 
sipuleucel T immunotherapy, and more traditional chemotherapy with Docetaxol 
have been used in patients with advanced disease with and without hormone 
therapy, often with limited success due in part to previous treatments and limita-
tions in patient normal tissue reserves (37–42). Leutium 177 ligand is a novel 
radiopharmacy tool, FDA approved, which delivers beta particle radiation ther-
apy to PSMA expressing cells and the immediate microenvironment. This has the 
potential of augmenting radiation therapy to sites of metastatic disease (22). 
However, to move the field forward, additional new ideas are needed from basic 
science to apply to patient care moving forward, especially for patients with unfa-
vorable features at risk for progressive disease including those with unfavorable 
biomarkers and castrate resistant status. 

FUTURE CONTRIBUTIONS FROM THE SCIENCE OF 
PROSTATE CANCER

A primary objective to move treatment from bench to bedside is to define, as best 
as possible, the mechanism of hormone-radiation therapy interaction and pro-
mote the survival benefit for integrated therapy and potentially titrate the current 
approach of protracted therapy for at risk patients. This would have the potential 
of decreasing the development of castrate-resistant disease and possibly limit. 
A better understanding of fundamental mechanism of tumor cell kill would per-
mit evaluation of alternate therapies promoting the integration of science-directed 
therapies driven by biomarkers defined as high risk. 

Basic science is also yielding promising results by identifying additional tar-
gets for radiation therapy. Prostate cancer cells express different adhesion mol-
ecules than normal prostate including integrins; therefore, targeting adhesion 
molecules in parallel with radiation therapy could provide additive cell kill in 
prostate cancer patients (43–50). Simon and colleagues at the University of 
Massachusetts demonstrated that high doses of radiation were required to sup-
press integrin expression (one of the adhesion molecules) in prostate cancer 
cells and that traditional doses were less effective, implying resistance to tradi-
tional radiation therapy and indirectly supporting the utility of higher dose daily 
treatment that supports an argument for radiation doses similar to modern high 
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dose stereotactic therapy (50). Wang and colleagues demonstrated that Casodex 
decreased adhesion properties and sensitized prostate cancer cells to radiation 
therapy. This would suggest that the addition of casodex or surrogate would 
enhance tumor cell kill with radiation therapy and possibly permit lower doses 
of radiation therapy to be used and generate similar outcomes. From these series 
of experiments, cells cloned after surviving radiation therapy have demonstrated 
resistance to radiation therapy after re-culture. These cells exhibit multiple phe-
notypic and molecular properties including epithelial-mesenchymal differentia-
tion as well as features consistent with neuroendocrine differentiation (51, 52). 
Each of these areas have become important opportunities for study and we have 
pursued these pathways to determine if additional opportunities exist to apply 
alternate therapy to radiation treatment to increase tumor cell kill. Our group 
has been able to reverse therapeutic resistance with application of strategic 
molecular silencing therapy directed towards selected molecular targets (51, 52). 
Strategies directed to targets associated with survivin and poly (ADP-ribose) 
polymerise-1 (PARP-1) inhibition exhibit promise in further sensitizing prostate 
cancer cells to radiation therapy through multiple mechanisms including DNA 
repair (53–57). Extracellular signal related kinases (ERK 1 and ERK 2) appear to 
be additional targets to sensitize prostate cancer cells to radiation therapy 
(51–53). A series of recent experiments in our group have demonstrated 
 interesting results relative to radiation cell kill in cells that have demonstrated 
resistance to therapy. Prostate cancer cell line (DU) that survived and regrew 
post radiation (DI) demonstrated morphologic features consistent transforma-
tion into neuroendocrine phenotype expressing neurotensin receptor 1, chro-
mogranin B, and neuron specific enolase, unlike the parent DU cell line. In 
clonogenic assay, DI cells consistently demonstrate therapeutic resistance in 
comparison to the parent DU cell. DI cells, ERK1/2 activity is constitutively 
active in the resistant DI cell, less so in the DU cell. As can be seen in Figure 4, 
when the resistant DI cell is pre-treated with ERK 1/2 inhibitor U0126, the cells 
revert to the response to radiation similar to the parent DU cell. This is an 
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Figure 4. Combination therapy with radiation and ERK inhibition in neuroendocrine prostate 
cancer. As seen in the Western blot (a), DI (resistant) cells in a serum free medium display 
constitutive phosphorylation of PKC and ERK1/2, but not AKT. In figure 4b, clonogenic assay 
was performed with DI cells treated with and without ERK1/2 inhibitor U0126 (1 μM) 1 hr 
before exposed to IR with a significant improvement in cell kill when the inhibitor is applied 
prior to radiation therapy. (Image courtesy of the Department of Radiation Oncology, UMass 
Chan Medical School and UMass Memorial Health).
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 exciting finding as it provides an opportunity to study possible mechanisms to 
therapeutic resistance and pathways to provide additional therapy to mitigate 
this point.

Therefore, potential targets for therapy directed towards these expression 
products and molecular pathways are potentially helpful for patient care mov-
ing forward. Evidence suggests an important role for non-coding micro-RNA as 
a regulatory component to the identification of prognostic factors associated 
with prostate cancer, including defining altered microRNA patterns and clusters 
in prostate cancer. These are compounds of a limited number of nucleotides that 
regulate the expression level of multiple genes. These can become important for 
the next generation of biomarkers including prediction of malevolent behavior 
and tumor subtypes and have been identified both in circulation and in urine. 
The micro transcripts function through base pairing with messenger RNA and 
dysregulation of microRNA is identified in multiple malignancies. Recent litera-
ture suggests that microRNA can function in multiple capacities either initiating 
cancer or promoting the disease, therefore may prove be a valuable biomarker 
for identifying disease and a target for therapy in select patients (58–61). This 
will require detailed study, however coupled with additional biomarkers, may 
potentially influence how therapy is applied moving forward. Persistent eleva-
tion of these biomarkers post therapy may function as a surrogate for defining 
the duration of therapy in prostate cancer which to date remains less well 
understood.

CONCLUSION

In this chapter, we reviewed recent clinically important developments in radiation 
therapy of prostate cancer. Radiation therapy provides pathway to the care for 
patients with prostate cancer and plays an increasingly important role in patients 
including those with risk of treatment failure. Identifying agents that can increase 
cancer cell mortality in conjunction with radiation therapy is an important next 
step for progress in therapy, including situations that will require advanced radia-
tion therapy techniques for the treatment of patients with oligometastatic disease. 
We have made progress, however much more is left to be discovered.
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