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Abstract: Ovarian cancer is a leading cause of death among women in most devel-
oped countries. This malignancy is characterized by rapid growth and spread of 
intraperitoneal tumors, leading to ascites, which is accumulation of fluid in the 
peritoneum. Despite proof that the accumulation of peritoneal fluid signifies the 
poorest outcome for cancer patients, the role of malignant ascites in promoting 
metastasis and therapy resistance remains poorly understood. Malignant ascites 
presents a unique tumor microenvironment to the tumor cells, non-tumor cells, 
and various biofactors such as growth factors, cytokines, and lipids. Interest in the 
characterization of the components of the microenvironment of malignant ascites 
and their role in the progression of ovarian cancer has increased over the years. In 
this chapter, we summarize the role of malignant ascites as a liquid tumor micro-
environment in the development and progression of ovarian cancer.
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INTRODUCTION

Ovarian cancer is a leading cause of death among women in most developed 
countries (1). This malignancy is characterized by rapid growth and the spread of 
intraperitoneal metastasis (2). Ovarian cancer is distinct from other malignancies 
in some specific characteristics: (i) the origin of primary tumors can be from mul-
tiple sites, such as, the ovarian epithelium, the Fallopian tubes, the endometrium, 
or the peritoneum; (ii) tumor cells can disseminate by exfoliation from the ovaries 
(or the tubes) and migrate through the peritoneum; and (iii) secondary tumors 
do not have additional genetic mutations from that of the primary tumors (3). 
The World Health Organization classifies ovarian tumors as epithelial (~90% of 
the cases), germ cell (~3%) and sex cord-stromal (~2%) (4). Epithelial ovarian 
carcinoma (EOC) comprises five main types (Figure 1) based on its histopathol-
ogy, immune, and molecular profile: (i) high-grade serous carcinoma (HGSC, 
70%); (ii) low-grade serous carcinoma (LGSC, 5%); (iii) endometrioid carcinoma 
(10%); (iv) clear cell carcinoma (6%); and (vi) mucinous carcinoma (3–4%) (4). 
These subtypes are distinct but are clinically managed as a single entity, i.e., cyto-
reductive surgery followed by platinum-taxane combination chemotherapy. The 
response rate to first-line therapy is around 80–90%, but most patients relapse 
and develop chemotherapy resistance contributing to a poor 5-year survival rate 
of <35% (5, 6). Heterogeneity is a key feature of these tumors, explaining, in part, 
the lack of successful treatment. With the development of molecular tools such as 
deep sequencing, along with RNA sequencing, epigenomics, proteomics, and 

Figure 1 Origins of ovarian tumors. The EOC type comprises several subtypes. Created by 
Biorender.
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immunologic studies, we are gaining further insight into the complexity of hetero-
geneity within these subtypes and within individual patient tumors (1).

CLASSIFICATION OF OVARIAN CANCER

LGSC and HGSC represent two separate tumor types with different morphology, 
pathogenesis, molecular events, and prognosis (4). HGSC usually occurs in older 
patients, is detected at an advanced stage, and is responsible for most ovarian 
cancer deaths. Morphologically, HGSCs are composed of ciliated, columnar cells 
that form papillae, solid masses, or slit-like spaces with high-grade nuclear atypia. 
Immunohistochemistry is positive for cytokeratin 7 (CK7), paired box gene 
8  (PAX8), Wilms tumor gene product (WT1), but negative for cytokeratin 20 
(CK20). The cell cycle checkpoint p53 is generally mutated, resulting in overex-
pression, or null mutation which translates to a negative immunohistochemistry 
result. The genomic analysis of HGSC demonstrated a few recurrently mutated 
genes, such as TP53 (96% of the cases) and BRCA1/BRCA2 (22% of the cases) (7). 
Most of these carcinomas arise from the distal fimbrial end of the Fallopian tube 
from a precursor lesion known as serous tubal intraepithelial carcinoma (STIC) (4). 
Primary peritoneal HGSCs are extremely rare (4). 

LGSC are uncommon, comprising 2% of all ovarian carcinomas, and are more 
frequently found in younger women (median 43 years) (4). These tumors are 
slow-growing, arising from benign and borderline serous tumors (4), and have a 
10-year survival rate of 50% (8). Morphologically, these carcinomas seem like 
HGSC but with less atypia and an immunohistochemical profile also similar to 
HGSC (positive for CK7, WT1) however, the expression of p53 is normal-like. 
LGSCs are genomically stable and display somatic mutations in KRAS and BRAF 
in approximately half of the cases; these mutations are mutually exclusive (8, 9). 

Endometrioid carcinoma usually presents as unilateral solid masses, low grade, 
and associated with a good prognosis (10). Most of these tumors arise from trans-
formed ovarian endometriosis or benign and borderline tumors (4). Histologically, 
they are composed of glands resembling endometrial epithelium and typically 
exhibit a glandular architecture with squamous differentiation, but solid areas can 
be seen. The immunohistochemistry profile shows positivity for CK7, PAX8, and 
hormone receptors, and negativity for WT1 and CK20 (10). Endometrioid carci-
noma displays somatic mutations of CTNNB1, PI3KCA, PPP2R1A, PTEN, and 
ARID1A genes (11, 12). Based on its analogous molecular features, seromucinous 
carcinoma is considered a subtype of endometrioid carcinoma (4).

Clear cell carcinoma is quite uncommon, and some studies show that it has the 
worst prognosis of all EOCs subtypes (13). These carcinomas occur at a younger 
age and have a clear association with endometriosis (14–16). The pattern of 
growth is in the form of a large pelvic mass; it is rarely bilateral, and associated 
with thromboembolic complications, hypercalcemia, and lymph node metastases 
(17–19). Histologically, they are composed of glycogen-laden, large, cuboidal, 
hob-nailed, or flattened clear cells and display an admixture of growth patterns 
including solid, tubulocystic, or papillary (20). The immunohistochemistry pro-
file of clear cell carcinoma is characterized by the expression of napsin A and the 
absence of WT1, p53, and ER expression (21, 22). Some studies show that the 
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tumor suppressor ARID1A is mutated in most clear cell carcinoma cases (12, 21). 
PI3KCA exhibit activating mutations (22). Recent studies showed that clear cell 
carcinoma is resistant to platinum-based chemotherapy, but, despite this, its man-
agement is similar to the rest of EOC (18).

Mucinous carcinomas are rare, and patients are usually diagnosed at an early 
stage with an excellent prognosis after surgery. However, when patients have 
relapses (or metastatic mucinous carcinoma) they have a worse prognosis (23, 24). 
Usually, these type of EOC are unilateral, large, multicystic tumors filled with 
mucus and frequently containing solid areas. Morphologically, mucinous carci-
noma is composed of cysts and glands of variable size with a confluent pattern 
and back-to-back glands. The cells are tall, columnar, and stratified, with a large 
cytoplasm containing mucin (25, 26). Immunohistochemistry of mucinous carci-
noma shows CK7 and CK20 positivity but are usually negative for hormone 
receptors and WT1. These carcinomas seem to arise from borderline mucinous 
neoplasms and show a heterogeneous pattern with coexisting mucinous, benign, 
borderline, and adenocarcinoma areas (27). The most common molecular altera-
tions are KRAS and TP53 mutations (both 64%) (4), which have been identified 
in benign and borderline areas as well as in adjacent carcinomas (28–30). HER2 
amplification is also found in around 20% of mucinous carcinoma, as well copy-
number loss of CDKN2A (76% of cases) (4). These genomic abnormalities are 
mutually exclusive (31).

MALIGNANT ASCITES AS A LIQUID TUMOR 
MICROENVIRONMENT

Several studies associate different ovarian cancer characteristics with the intrin-
sic properties of tumors and their microenvironment (32–34). In ovarian can-
cer, most patients are diagnosed at advanced stages (stage III/IV), presenting 
metastasis throughout the pelvic and peritoneal cavities, and by the accumula-
tion of a large volume of peritoneal fluid (malignant ascites, MA) (35). The role 
of MA is to facilitate the spread of tumor cells to other pelvic and peritoneal 
organs, serving as a vehicle for tumor cells (36). This form of transcoelomic dis-
semination is crucial to the adhesion of tumor cells to the omentum and serous 
membranes lining the peritoneal organs, leading to metastatic lesions in the 
peritoneal cavity, instead of invading the lamina propria like the majority of 
other solid tumors (37). Ovarian cancer cells disseminate into peritoneal sites 
such as the hepatic, omentum, spleen, uterus, etc, using the MA flux. MA com-
prises not only tumor cells, but also many other non-tumor cell types (Figure 2), 
which produce a unique microenvironment that can modify the neoplastic 
properties of tumor cells (38). 

The peritoneum is lined by mesothelial cells that cover and protect the viscera 
and the stroma that contains a collagen-based matrix, activated fibroblasts, blood 
vessels, and lymphatics vessels. This conjugation creates a unique milieu full of 
factors secreted by all tumor cellular components that support metastatic seeding 
and tumor proliferation (39). MA is an exudative fluid composed by a cellular 
fraction with highly tumorigenic cancer cells (40), immune cells, including differ-
ent types of T cells (41), tumor-associated macrophages (42), and other host cells. 
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The acellular fraction contains tumor-promoting soluble factors, bioactive lipids, 
cytokines, and extracellular vesicles (43). 

Several studies have demonstrated an “activated” phenotype of the peritoneal 
environment associated with ovarian cancer, as opposed to its quiescent state in 
benign conditions (44). The pro-inflammatory signature, associated with cancer, 
promotes angiogenesis, and exerts chemotactic and protective effects on cancer 
cells. Chemokines, cytokines, and growth factors commonly secreted in the tumor 
microenvironment include the stromal cell-derived factor, interleukin 6 (IL-6), 
interleukin 8 (IL-8), monocyte chemoattractant protein 1, Chemokine (C-C motif) 
ligand 5 and 7 (CCL5 and CCL7), transforming growth factor- β1, tumor necrosis 
factor α (TNFα), fibroblast growth factor, and others (44–46). While tumor cells 
play a role in the secretion of factors that modulate angiogenesis, non-transformed 
tumor-infiltrating cells such as fibroblasts, myeloid cells, immune cells, and endo-
thelial precursors also play a crucial role in modulating neo-vascularization (47). All 
these factors present in the MA microenvironment induce tumor cell proliferation, 
progression, chemoresistance, and immune evasion (3) unveiling a key role of this 
serous liquid in the development and progression of ovarian cancer (48).

The cellular components of malignant ascites

Cancer cells in MA can be found as single cells with adherent properties or multi-
cellular spheroids with no-adherent properties (49), being the major contributors 
to the peritoneal dissemination (50). The multicellular spheroids are key media-
tors of peritoneal dissemination since they have low expression levels of E-cadherin 
(49) and allow ovarian cancer cells to resist anoikis and apoptosis, including that 
induced by chemotherapeutic agents, since drugs do not penetrate in such multi-
cellular structure (35, 51, 52). 

The stromal cells, such as fibroblasts, endothelial or mesothelial cells, adipo-
cytes, adipose tissue-derived stromal cells, bone marrow-derived stem cells and 

Figure 2 Scheme of cellular and acellular components of ascites. Ascites is composed by tumor 
cells (single cells and spheroids), and non-tumoral cells, including fibroblasts, mesothelial 
cells, endothelial cells, adipocytes, and immunologic cells. These types of cells communicate 
with each other through acellular factors, including cytokines, proteins, metabolites, and 
exosomes. Created by Biorender.



Nunes D and Ricardo S48

immune cells (53, 54), can regulate the extracellular matrix composition and pro-
duce molecules that attract ovarian cancer cells to specific sites (55, 56). These 
tumors are typically highly vascularized, because some of these cells show abnor-
mal activities, like the stimulation of growth and angiogenesis (57, 58), which 
correlates with a poor prognosis and contributes to tumor development (38, 59) 
(Figure 3). 

The malignant role of cancer-associated fibroblasts is to promote proliferation, 
migration, and invasion of cancer cells. Cancer-associated fibroblasts secrete fac-
tors that can transduce signals to cancer cells as well as to themselves, establishing 
reciprocal reinforcement of growth and migration signals and contributing to che-
moresistance (60). Mesothelial cells lining the peritoneum are also important for 
tumor progression (57), as they secrete factors that promote tumor growth. 
Lysophosphatidic acid is produced by immortalized peritoneal mesothelial cells 
and it was shown to improve adhesion, migration, and invasion of ovarian cancer 
cells (61). In addition, mesothelial cells produce dipeptidyl peptidase IV and vas-
cular endothelial growth factor (VEGF) in response to MA environmental expo-
sure (62, 63).

The complex immune suppression system that efficiently neutralizes antitu-
mor immunity is one of the reasons for disease progression and treatment failure 
(64) as cancer cells are able to subvert the natural purpose of immune cells for 
their own benefit. The equilibrium between these immune reactive and immune 
suppressive cells defines the immunosuppressive and pro-tumoral properties of 
MA microenvironment (38, 39) (Figure 4). 

The immune reactive cells include cytotoxic T lymphocytes and activated 
CD4+ T cells. The immune-suppressive cells are myeloid-derived suppressor cells, 

Figure 3 Cancer-associated changes in stromal cells. IL-10, interleukin 10; IL-1β, interleukin 1β; 
IL-6, interleukin 6; M-CSF, macrophage colony-stimulating factor; TGFβ, transforming growth 
factor β; TNFα, tumor necrosis factor α. VEGF, vascular endothelial growth factor. Created by 
Biorender.
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tumor-associated macrophages (especially M2 subtype), dendritic cells, lympho-
cyte T helper cells (Th2 subtype), and T regulatory cells (Tregs). The presence of 
CD3+ tumor-infiltrating lymphocytes (TILs) in ovarian cancer is associated with 
increased survival (65). It was shown that, in patients whose tumors contained 
T cells, the 5-year overall survival was 38% compared to 4.5% in patients with 
tumors lacking T cells. In addition, a strong correlation between the presence of 
CD8+ TILs and favorable clinical outcomes of HGSC (66–68) has been demon-
strated. The ratio of CD8+ T cells/Tregs cells is also related to increased survival of 
ovarian cancer patients (67). A positive correlation between the presence of oligo-
clonal expanding T cells and the regression or stabilization of metastases also 
demonstrates the value of the tumor immune microenvironment in the outcome 
of ovarian cancer patients (69). There is increasing evidence that non-tumoral 
cells in the tumor microenvironment have a key regulatory role in ovarian cancer 
and should be evaluated for diagnostic and treatment purposes (39).

The acellular components of malignant ascites

The cellular components of MA communicate with each other through soluble 
factors, including cytokines, proteins, metabolites, and the secretion and exchange 
of exosomes (2).

The cytokine profiles of ascites can be pro-tumorigenic or anti-tumorigenic 
(70–73). The pro-tumorigenic cytokines are regulated by Th2, such as, IL-4, IL-6, 

Figure 4 Immune cells in the tumor microenvironment. The left panel represents the immune 
cells that act as tumor killers by the production of cytokines that destroy tumor cells. The 
right panel represents the cells that contribute to immune suppression. CD8+T, CD8+ T cells; 
DC, dendritic cell; M1, macrophage type 1; M2, macrophage type 2; MDSc, myeloid-derived 
suppressor cells; N1, neutrophil type 1; N2, neutrophil type 2; NK, natural killer; TApDC, 
tumor-associated plasmacytoid dendritic cell; Th1, T “helper” 1 cell; Th2, T “helper” 2 cell; 
TIL, tumor-infiltrating lymphocytes; Treg, egulator T cell. Created by Biorender.
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IL-8, IL-10, IL-13, IL-15, CCL2 and VEGF and the anti-tumorigenic are regulated 
by Th1, such as, IL-2, IL-3, IL-5, IL-7, IL-17, CXCL-10, CCL4, INFγ, and TNFα 
(74, 75). These cytokines contribute to the creation of a pro-inflammatory and 
immunosuppressive tumor microenvironment (73).

The metabolome profiling of ascites has demonstrated important differences in 
fatty acids, cholesterol, ceramide, glycerol-3-phosphate, glucose, and glucose-3-
phosphate. The MA present low levels of 2-hydroxyisovalerate, although glucose-
1-phosphate is present in high levels in this liquid microenvironment. 
2-hydroxyisovalerate is the result of breakdown of branched-chain amino acids 
(76) and is found in the urine of patients with lactic and ketoacidosis, which 
indicates an increase in amino acid catabolism (77). The glucose-1-phosphate is a 
product of glycogenolysis which is correlated with the increased use of glucose by 
the tumor cells in the MA microenvironment (78). The glucose transporter 1 or 3 
and glycolytic enzymes, such as hexokinase II, are overexpressed in ovarian 
cancer, and are indicators of poor prognosis (36), as they are associated with 
chemoresistance and poorer progression-free survival (37). In addition, glycolate, 
glucose, furanose and fructose are found in low levels, while glycerol-3-phosphate, 
cholesterol, ceramide and monoacylglycerol are elevated in ovarian cancer 
patient-derived MA (38).

Proteomics of ascites has revealed the presence of over 2000 different proteins 
(79, 80). Examples of proteins found abundantly in MA are pyruvate kinase iso-
zymes M1/M2, glyceraldehyde phosphate dehydrogenase and mesothelin (81). 
Moreover, the most abundant proteins are related to the components associated 
with RNA splicing (79). Exosomes were also detected in ovarian cancer MA. These 
nano-sized microvesicles (30–100nm of diameter) are membrane-bound extracel-
lular vesicles that are produced in the endosomal compartment of most eukary-
otic cells and carry various lipids, proteins and nucleic acids, within the 
membrane-covered vesicles (82). These structures have the molecular signature of 
donor cells and circulate in the organism, with the objective of transporting infor-
mation between cells to change the gene expression of receptor cells (83). Exomes 
have disease-specific biomarkers in ovarian cancer, such as miR-200c, miR-214, 
CA125, Mucina-1 and CD24 (82, 84).

CONCLUSION

Metastatic ovarian cancer is a deadly disease. The mechanism of tumor 
 dissemination in the peritoneal cavity leads to the formation of MA. MA 
 constitute an easily accessible source of cancer cells and cancer-associated 
 factors. The presence of this liquid tumor microenvironment is correlated 
with a poor prognosis in ovarian cancer patients but its association with 
 chemoresistance is poorly understood. Further studies supported by 
 technological advances are needed to better explore the multidimensional 
potential of this unique tumor microenvironment that supports ovarian can-
cer cell growth, progression, and metastatic outgrowth. The actual challenge 
is to understand the complexity of the multiple interactions between ovarian 
cancer ascites components and to develop new drugs to abrogate these tumor 
microenvironment communications routes.
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