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Abstract: Ascites is an inflammatory process that induces the abnormal accumulation 
of a large amount of fluid into the peritoneal cavity. This pathological condition is 
observed in many neoplasms harboring peritoneal dissemination, a common feature 
in advanced ovarian cancer. In almost all patients, recurrent disease is accompanied 
by the accumulation of malignant ascites and is associated with chemoresistance and 
poor prognosis. The malignant ascites comprises a reservoir of a complex mixture of 
cellular components and soluble factors which provides a pro-inflammatory and 
tumor-promoting microenvironment for cancer cells. Moreover, tumor cells exhibit 
cancer stem-like phenotypes, acquire enhanced resistance to therapies, and higher 
capacity for metastatic spread and recurrent disease. The accessibility to malignant 
ascites and its cellular components makes it a unique source to track tumor progres-
sion and a key element to overcome chemoresistance.
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INTRODUCTION

Ascites can occur in different diseases, including cirrhosis, pancreatitis, nephritis, 
heart failure, and cancer (1, 2). Malignant ascites (MA) refers to a pathological 
accumulation of fluid into the peritoneal cavity, being present in several neo-
plasms e.g., ovarian, endometrial, pancreatic, gastric, colorectal, liver, and perito-
neal malignancies (1, 3–5). Also, ascites can occur at a lower frequency in 
extra-abdominal tumors, e.g., lung and breast cancers (3, 4). This inflammatory 
condition occurs as a disruption in the balance of fluid production and reabsorp-
tion (4, 6) by different pathophysiologic mechanisms including increased vascular 
permeability––largely driven by upregulation of vascular endothelial growth fac-
tor (VEGF)––peritoneal lymphatic obstruction, and high levels of fluid produc-
tion (3, 4, 7, 8). The presence of MA is often indicative of tumor cells in peritoneal 
cavity or peritoneal carcinomatosis (7) and can cause several comorbidities e.g., 
dyspnea, abdominal tenderness and painfulness, nausea, anorexia, fatigue, early 
satiety, weight change, and compromised movements (3, 9).

MA is considered a hallmark in advanced ovarian cancer as more than one-third 
of the patients develop this condition (6, 9, 10) and occurs in all epithelial ovarian 
cancer subtypes, including serous [i.e., low-grade and high-grade serous carcino-
mas (HGSC)], clear cell, mucinous, and endometrioid carcinomas (10, 11). MA 
accumulation is significantly higher in HGSC, the most aggressive subtype (10, 12). 

MA containing a variety of cellular and acellular components associated with poor 
prognosis, provides a nurturing environment for cancer progression, metastasis, che-
moresistance, and recurrence (Figure 1A) (3–6, 13). Also, the immunological con-
stituents of MA enhance an inflammatory environment through the secretion of 
pro-inflammatory cytokines and chemokines accelerating disease progression (6, 13). 
Chemotherapeutic agents can prevent MA accumulation, however, chemoresistant or 
recurrent disease commonly develop intractable ascites that lead to a worse prognosis 
(4, 6). A persistent accumulation implies a repeated paracentesis for palliation, how-
ever, this temporary solution to relieve symptoms may lead to clinical complications, 
such as catheter-associated infections (3, 6, 13). Nevertheless, this regularity allows 
sampling cellular and acellular components from MA during tumoral progression, 
providing a unique opportunity for translational research (5, 14).

TRANSCOELOMIC DISSEMINATION 

The most common route of dissemination in ovarian cancer is the transcoelomic 
spreading across the peritoneal cavity (15, 16), but, less commonly, can also occur 
by lymphatic and hematogenous spreading (6, 15). Transcoelomic dissemination 
leads to peritoneal carcinomatosis, a more diffuse and widespread metastatic form 
that have a high negative impact in surgical resectability (17). This metastatic 
route is a more efficient process for cancer spread since tumor cells follow the 
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dynamics of peritoneal fluid until they meet the mesothelial lining, where they 
implant and aggregate (8). Metastatic implants are dispersed in areas with con-
stant and extensive contact to peritoneal fluid, especially the omentum, Pouch of 
Douglas and right subphrenic region (18, 19). In ovarian cancer, peritoneal 
metastasis involves shedding of cells from primary tumor, dissemination in the 
abdominal cavity, attachment and invasion of the mesothelial lining, and coloni-
zation of intra-peritoneal organs (Figure 1B) (16, 20). Indeed, MA is described as 
a requirement for transcoelomic metastasis facilitating the dissemination of tumor 
cells and acting as a growth-promoting environment (20, 21) and is also reported 
as a promotor of lymphatic and hematogenous dissemination (22). 

THE MICROENVIRONMENT OF MALIGNANT ASCITES

MA is composed of tumor and non-tumor cells (e.g., fibroblasts, adipocytes, 
mesothelial, endothelial, and inflammatory cells) (6, 23) and a liquid acellular 
fraction, all contributing to tumor progression, metastasis, and chemoresistance 
(7, 24). Frequently, MA contain cell aggregates (both cancer and non-cancer cells) 
forming spheroids that have a higher metastatic potential (25, 26). Several in vitro 
multicellular spheroids systems present anoikis resistance (27), restricted access 
and limited efficacy of cytotoxic drugs (25, 28) and slowly cycling and quiescent 
states becoming more chemoresistant (29, 30). Lafiti et al. showed that 95% of 
chemoresistant patients had an increased proportion of spheroids in its MA when 

Figure 1 The accumulation of malignant ascites in ovarian cancer. A, Malignant ascites 
comprising cancer and non-cancer cells (e.g., fibroblasts, mesothelial, endothelial, immune, 
mesenchymal and blood cells) and acellular components (e.g., growth factors, cytokines, and 
chemokines). B, Malignant ascites contributes to transcoelomic dissemination, i.e., ovarian 
cancer cells detach from primary tumor in single or multicellular spheroids (i) and travel to 
other peritoneal sites (ii). Ovarian cancer cells adhere and implant on the peritoneum and 
peritoneal organs surface (e.g., omentum), where they clear the mesothelial lining 
(iii), invade the submesothelial extracellular matrix (iv), migrate, and proliferate creating 
secondary lesions (v). MA, malignant ascites; OC, ovarian cancer.
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compared to chemo-naïve (25%) (26). Moreover, MA liquid fraction contain 
tumor-derived circulating free DNA (cfDNA) that presents an opening for track-
ing changes in the mutational profiles that cause chemoresistance and relapse (5). 

The acellular components of MA involve a dynamic reservoir of pro- and anti-
tumorigenic factors, comprising cytokines (31-35), chemokines, growth factors 
(36), integrins (37, 38) and metabolites contributing to metastasis and chemoresis-
tance (5, 23, 28). In ovarian cancer, the cytokine profiles of MA demonstrated high 
levels of pro-tumorigenic (e.g., interleukin (IL)-6, IL-8, IL-10 and IL-15) and 
reduced levels of anti-tumorigenic (e.g., IL-2, IL-5, IL-7 and IL-17) factors 
contributing to a pro-inflammatory and immunosuppressive tumor microenviron-
ment (4, 23, 34, 39). IL-6 and IL-10 are both correlated with poor prognosis and 
reduced therapy response (32, 40). High levels of IL-6 promotes MA accumulation, 
and ovarian cancer progression (40) and dissemination (41, 42). It is also associated 
with shorter progression free survival (PFS) (40, 43), poor overall survival (OS), 
reduced initial therapy response, and development of chemoresistance (35). 

In ovarian cancer, high levels of VEGF are correlated with MA accumula-
tion (36, 44) and poor prognosis (45). Zhan et al. showed that MA has high 
levels of VEGF compared to benign ascites and is associated with poor sur-
vival rates (36). Also, VEGF is commonly related with advanced-stage disease, 
high tumor grade, and increased metastatic potential (7). In ovarian cancer 
tissues, high epidermal growth factor receptor (EGFR) expression is often 
associated with aggressive, invasive, and metastatic disease (46, 47) and 
decreased OS and disease-free survival (48). Extracellular vesicles comprise 
another class of factors abundantly expressed in MA being important media-
tors of crosstalk between cancer cells and their microenvironment (49, 50). 
A recent study demonstrated that extracellular vesicles containing glycolytic 
pathway-related proteins can transmit chemoresistance to other tumor cells, 
facilitating disease progression (51). The proteomic profiling of MA enables 
the identification of possible therapeutic options to overcome ovarian cancer 
chemoresistance (52-55). Based on high-resolution mass spectrometry analy-
sis, Ahmed et al. identified differential expression of 178 diminished, and 175 
enriched proteins in MA of chemoresistant ovarian cancer patients compared 
to MA of chemonaïve patients (52). 

Both cellular and acellular components display crucial roles in regulating pro-
liferation, metastasis, and chemoresistance. Hence, exploring MA cell populations 
and signaling molecules during disease progression, and specially over the course 
of therapy (e.g., comparing patients in remission versus relapse), will be crucial to 
improve patient outcomes (5).

THE MANAGEMENT OF MALIGNANT ASCITES AND 
CHEMORESISTANCE 

Over the last decades, the standard care for advanced ovarian cancer patients is 
based on platinum (e.g., Carboplatin) and taxane-based (e.g., Paclitaxel) chemo-
therapy following cytoreductive surgery (56, 57). In some cases, neoadjuvant che-
motherapy is performed as alternative to standard treatment procedures (58, 59). 
The management of MA can be performed by aspiration during debulking sur-
gery, chemotherapeutic schemes, or a paracentesis procedure (i.e., removing MA 
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inserting a wide-bore needle percutaneously through abdominal wall) (5, 7). 
Paracentesis is the most frequent procedure providing immediate relief symp-
toms, however, requires repeated drawings and can cause serious comorbidities 
and complications, such as draining site continuous leakage or bowel perforation 
(4, 60, 61). Most of the chemoresistant patients present intractable MA being 
submitted to repeated paracentesis during its’ clinical course (4, 7).

Drainage catheter is placed percutaneously in the peritoneal cavity is an alter-
native intervention for MA management, being easy to self-drain, increasing 
patient independence, and diminishing the necessity for constant paracentesis at 
the hospital (62). It has been shown that intraperitoneal (IP) catheters drainage is 
a successful procedure and have a low complication rates supporting their use as 
first-line approach in refractory MA (63). Recently, Fotopoulou et al. demon-
strated that in patients with hepatic and ovarian malignancies, subcutaneously 
implanted Sequana Medical Alfapump System, which continuously drains MA via 
urinary bladder, reduced the number of paracenteses from 4 to 1 (64, 65). 
However, more studies are essential to include catheter drainage as a routine 
procedure in oncological practices. 

IP chemotherapy, i.e., the administration of high chemotherapy concentrations 
in the peritoneal cavity, directly exposes of peritoneal organs surfaces to chemo-
therapy agents compared to intravenous management and minimizes the toxicity of 
systemic chemotherapy (3, 4). A study performed in ovarian cancer patients at stage 
III with optimally debulked showed that IP administration as first-line treatment 
had a 16-month survival benefit (66). However, less than half of women completed 
all chemotherapy cycles, and it was shown a higher complication and toxicity rates 
in these patients (66). Early phase trials studying chemotherapy to control MA indi-
cate that IP is the most effective method to deliver chemotherapy (4). Hyperthermic 
intraperitoneal chemotherapy (HIPEC), a combination of cytoreductive surgery and 
high concentration of heated chemotherapeutic agents, can reduce MA (67), since 
cytoreductive surgery removes macroscopic tumor implants, and IP act directly in 
the peritoneal cavity improving drug absorption and efficacy, targeting the remain-
ing microscopic tumoral implants (68, 69). In advanced ovarian cancer with exten-
sive peritoneal metastasis, HIPEC can be effective in improving patient survival 
(70, 71). Van Driel et al. showed in stage III ovarian cancer patients that combining 
cytoreductive surgery with HIPEC resulted in longer OS and PFS compared to sur-
gery alone (72). Nevertheless, it is difficult to include HIPEC as a standard treatment 
as several studies demonstrate significant variation in patient outcome, as they use 
different chemotherapeutic drugs, concentrations, temperatures, and procedures 
duration leading to heterogenous and incomparable studies (70, 73). Thus, we need 
more well-designed trials to reach a more specific conclusion regarding the use of IP 
and HIPEC as a crucial armamentarium for ovarian cancer. 

Studies focused on pharmacological therapy to MA management are limited 
and include antiangiogenic and metalloproteinase (MMP) inhibitors, and immu-
nological modulators (4, 74–77). Bevacizumab is an anti-angiogenic targeting 
VEGF that delays the recurrent disease and palliate symptoms associated with 
MA accumulation (4, 78, 79). Numnum et al. reported that Bevacizumab treat-
ment reduced the levels of MA allowing the discontinuation of repeated para-
centesis (78). Several phase III trials in ovarian cancer, e.g., GOG18 
(NCT00262847) and ICON7 (NCT00483782) added Bevacizumab to standard 
treatments and reported improved PFS and OS in patients with advanced stage 
disease (80, 81). Also, the randomized clinical trials OCEANS (NCT00434642) 
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and AURELIA (NCT00976911) indicate that Bevacizumab can provide benefits, 
delaying the recurrences in platinum-sensitive and platinum-resistant ovarian 
cancer (82, 83). In previously mentioned trials, Bevacizumab was not intro-
duced with primary intention of affecting MA but revealed very effective in the 
reduction of its’ formation (84, 85). Recently, a study demonstrated that IP 
administration of Bevacizumab present an acceptable safety profile and reduces 
the formation or delay MA accumulation in chemoresistant patients (86). A pilot 
study using Aflibercept (VEGF inhibitor) showed that this drug increased the 
time between paracentesis (87). Moreover, preclinical models demonstrated 
that Aflibercept prevent MA accumulation and inhibits tumor proliferation 
through VEGF blockade, however, it was observed an increased risk of morbid-
ity associated with bowel perforation (75, 85). Batimastat (MMP inhibitor) has 
been used in animal models studies and demonstrated to decrease tumor 
growth, metastasis, and MA volume (88, 89). However, a Phase I study that 
administered Batimastat intraperitoneally in ovarian cancer patients found that 
the decreased MA volume was limited to a small number of patients (90, 91). 
Using an ovarian cancer mouse model, Zhao et al. demonstrated that Losartan 
(antihypertensive therapy targeting renin-angiotensin system) as a matrix-
depleting strategy enhances the efficacy of Paclitaxel and reduces MA (92). 
Octreotide (Somatostatin analogue) is particularly useful for chylous ascites 
(a  rare form containing large amounts of triglycerides), reducing splanchnic 
blood flow, contributing to a decreased lymph flow and bowel obstructive 
symptoms (7). Jatoi et al. revealed that a monthly intramuscular injections of 
long-acting Octreotide delayed the need for paracentesis from 14 to 28 days (93). 
The efficacy of Batimastat, Losartan and Octreotide is still under scrutiny and 
more studies are needed to clarify is role in MA management. 

Several studies suggest improvements in the management of MA using immuno-
logical approaches including IP triamcinolone (76), IP interferon α and β (94), 
tumor necrosis factor (95) and even non-pathogenic infectious agents (96, 97). 
Recently, a prospective randomized phase II/III trials were conducted in ovarian 
cancer patients with MA using Catumaxomab, a trifunctional IgG2 antibody (anti-
CD3, anti-EpCAM and anti-Fc receptors) that generates a strong immune reaction 
response against tumor cells (4, 61, 77). Heiss et al. demonstrated that IP adminis-
tration of Catumaxomab leads to longer paracentesis-free survival, fewer ascites-
related symptoms, and improved palliation (77). In 2009, Catumaxomab became 
the first therapeutic agent approved for MA management in Europe (4, 77). 

Summing up, the previously described treatment options revealed a limited suc-
cess in the management of MA in ovarian cancer patients. It is crucial to test more 
effective drugs and to develop improved methods for drug delivery to prevent MA 
accumulation during the ovarian cancer patient’s clinical course. 

MALIGNANT ASCITES AS AN OPPORTUNITY FOR 
TRANSLATION RESEARCH

MA is an exceptionally good source for research due to easy accessibility, repeated 
collection, capacity for reflecting primary tumor, metastatic implants, and tumor 
microenvironments. MA enables successive sampling of the milieu and therefore, 
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an ideal resource for translational studies including prediction of drug response 
and monitoring drug efficacy (4, 5, 98). MA accumulation is more frequently 
observed in recurrent cases and is absent in cases where patients respond to ther-
apy (5). The understanding of the mechanisms involved in accumulation of MA 
and metastatic spread of ovarian cancer will allow the identification of potential 
drug targets that could be used to overcome chemoresistance. The pathways 
responsible for driving EMT phenotypic changes are responsible for spheroids 
tumorigenicity and can be potential targets (5, 99). Saine et al. reported that high 
expression levels of signal transducer and activator of transcription 3 (STAT3) in 
MA-derived ovarian cancer cells promote invasion and metastasis (100). In mouse 
models, it was shown that STAT3 inhibitors reduced chemoresistance and spher-
oid tumorigenicity (100, 101). Other studies showed that transforming growth 
factor (TGF)-β present in MA cells is a major driver in metastatic spread (99, 
102). Acellular components provide a microenvironment that sustain cancer cells 
survival and potentiate the discovery of new treatment strategies based on dis-
rupting this tumoral environment (103). By analyzing malignant effusions from 
ovarian cancer patients, Davidson et al. demonstrated high expression levels of 
AKT, cAMP-responsive element binding protein (CREB) and JUN N-terminal 
kinase (JNK) compared to benign effusions (104). Also, high levels of p8, and an 
increased ratio of phosphorylated EGFR and phosphorylated JNK were associated 
with worse outcome (104). Thus, all mentioned proteins and respective pathways 
are potential therapeutic targets for overcoming chemoresistance and the abroga-
tion of peritoneal metastization of ovarian cancer.

A PERSONALIZED MEDICINE APPROACH FOR OVARIAN 
CANCER USING MALIGNANT ASCITES 

The frequency of MA occurrence at first presentation, and subsequent relapse in 
ovarian cancer, provides a highly accessible pool of biologic material to track the 
sensitivity or resistance of tumor cells, as it captures several populations that com-
pose the tumor microenvironment (4, 5). Serial samples, e.g., pre- and pos-
chemotherapy could be compared to assess molecular changes that may be 
predictive of therapeutic responses (103-105). 

Conventional treatment strategies just allow a “one-size-fits-all” treatment based 
on a limited panel of drugs excluding alternative opportunities (106). The use of 
patient-derived tumor cells allows the association of specific tumor characteristics 
with a personalized treatment (106). Recently, patient-derived organoids (PDOs) 
emerged as a powerful modeling approach in cancer research (107-110) as many 
studies, in different cancer models, established PDOs that recapitulate the features 
from original derived lesions (111-116). Recently, Velletri et al. used ovarian cancer 
clinical samples across primary tumours and metastatic sites and demonstrated that 
MA-derived organoids retain key subpopulations and recapitulate features of the 
original samples acting as ‘patient-matched avatars’ that can be used in a precision 
oncology platform (117, 118). Moreover, other groups have demonstrated the 
capacity for growing tumor cells from MA in vitro for drug sensitivity testing (106, 
119) and predicting clinical responses to therapy through assessment of biomarkers 
present in MA tumor cells (32, 120, 121). A study by Bi et al. demonstrated that 
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PDOs can be established in a high percentage of cases to perform drug tests in a 
timely manner and that PDOs have the potential to identify more efficient regiments 
(106). In addition, they demonstrated a specific case in which the PDO revealed 
patients resistance to standard therapy (106). Another study showed that the expo-
sure of MA-derived spheroids to a panel of drugs can reflect the patients’ therapy 
responses and identify the best viable candidates (122). 

Many co-clinical trials (i.e., preclinical studies and clinical trials are conducted 
in parallel) are currently underway in different tumoral contexts, including ovar-
ian cancer, comparing therapy responses in PDOs to corresponding patient out-
comes, e.g., NCT04555473 and NCT05175326. This new strategy enables real 
time data integration to accurately stratify and customize treatment of patients 
(123). Additional clinical trials propose to evaluate therapeutical responses in 
PDOs to predict the clinical drug efficacy and choose the best regimen for each 
patient to guide clinical decisions, e.g., NCT04279509 and NCT04768270. 

The establishment of PDOs from MA offers a valuable preclinical platform 
since they can be obtained with high efficiency in a short-period time, since MA 
contain cellular aggregates that are “natural” PDOs floating in the ascitic fluid 
(124). These systems can be used in drug efficacy tests using a range of approved 
and novel compounds (single or combined regiment) in a case-specific and in an 
acceptable time frame to predict therapy responses and guiding clinical decisions 
(Figure 2) (106, 125-128).

Figure 2  A personalized medicine approach in ovarian cancer using malignant ascites. Malignant 
ascites obtained from ovarian cancer patients by paracentesis will be used to make PDOs 
models and exposed to a panel of drugs to predict patients’ responses. The most promising 
drugs will be selected to be administrated in the corresponding patient. MA, malignant 
ascites; OC, ovarian cancer; PDOs, patient-derived organoids. 
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CONCLUSION

Currently, therapeutic options for MA management generate initial acceptable 
responses but the efficacy in very low in the long-term. The accumulation of MA 
embodies the poorest outcomes representing a significant clinical challenge for 
ovarian cancer management. However, MA constitutes a unique opportunity for 
translational research. Large volumes of MA can be removed from patients, often 
repeatedly, representing a successive sampling of the tumor milieu in which ovar-
ian cancer spreads making this an ideal source of biologic material to monitor 
chemoresistance and test several therapeutical options ex-vivo. 
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