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Abstract: Ovarian cancer is a leading cause of gynecological cancer-related deaths 
in women worldwide, mainly because of its late diagnosis. In many cases, at the 
time of diagnosis, the cancer cells are chemoresistant and invasive. Early detection 
of the disease is crucial for a clinically satisfactory outcome, treatment planning, 
and a better prognosis. The development of new strategies for early detection may 
contribute to improving overall survival in patients. Inflammation is an established 
factor in carcinogenesis, and protein complexes named inflammasomes, along 
with their components and subproducts, such as interleukins and other molecules, 
have been explored as promising potential targets for the detection and 
management of ovarian cancer. This chapter provides an overview of the role of 
inflammasomes in ovarian cancer. 

The Role of Inflammasomes in 
Ovarian Cancer
Bárbara da Silva Martins1 • Roberto Silva Ribeiro Junior1 • Tatiana Massariol 
Pimenta1 • Josiany Carlos de Souza2 • Leticia Batista Azevedo Rangel2,3

1Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of 
Espírito Santo, Vitória, ES, Brazil; 2Biotechnology Program/RENORBIO, Health Sciences 
Center, Federal University of Espírito Santo, Vitória, ES, Brazil; 3Department of 
Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, 
Vitória, ES, Brazil

Author for Correspondence: Leticia Batista Azevedo Rangel, Department of 
Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, 
Vitória, ES, Brazil; E-mail: lbarangel@yahoo.com

Cite this chapter as: da Silva Martins B, Junior RSB, Pimenta TM, de Souza JC, Rangel 
LBA. The Role of Inflammasomes in Ovarian Cancer. In: Lele S. editor. Ovarian Cancer. 
Brisbane (AU): Exon Publications. Online first 01 Aug 2022. 

Doi: https://doi.org/10.36255/exon-publications-ovarian-cancer-inflammasomes

https://doi.org/10.36255/exon-publications-ovarian-cancer


Martins BS et al.58

Keywords: absent in melanoma 2 in ovarian cancer; inflammasomes in ovarian 
cancer; interleukins in ovarian cancer; NLRP3 in ovarian cancer; pyroptosis in 
ovarian cancer

INTRODUCTION

Ovarian cancer is the seventh most common malignancy in women and is a major 
cause of gynecological cancer-related deaths (1). Ovarian cancer incidence 
increases with age and is usually diagnosed in the sixth decade of life (1–3). Due 
to the lack of specific signs and symptoms, ovarian cancer is usually diagnosed 
late, and peritoneal and distant metastases are common at diagnosis (2, 4, 5). 
Epithelial ovarian cancer (EOC) accounts for approximately 90% of all ovarian 
malignancies (6–8). EOC is traditionally classified into the following four main 
subtypes based on the differentiation of the epithelial components: serous, clear 
cell, mucinous, and endometrioid. Serous tumors represent over 70% of all 
diagnosed EOC cases, while endometrioid, mucinous, and clear cell tumors 
represent about 10% or less each (9, 10). EOCs are heterogeneous neoplasms, 
which were initially considered to be derived from the ovarian epithelium. 
However, it has been found that there are numerous similarities between ovarian 
cancer cells and epithelial cells from extra-ovarian sites. EOCs are subclassified 
into type I and type II tumors (11). In short, type I tumors are commonly low-
grade, with a high frequency of mutations in the Ras signaling pathway. They 
generally lack mutations in both p53 and BRCA and show a relatively normal 
karyotype. In addition, they are usually poorly responsive to platinum-based 
therapy (cisplatin). Type II EOCs are typically high-grade, invasive tumors. They 
present wild-type Ras, BRCA dysfunction, and p53 mutations. Type II tumors also 
exhibit changes in the DNA copy number and are responsive to platinum 
derivatives (12). Regardless of its heterogeneity, the standard treatment for ovarian 
cancer includes cytoreductive surgery followed by platinum (cisplatin and 
carboplatin) and taxane (paclitaxel and docetaxel)-based chemotherapy (13). 
Despite the treatment’s initial success, over 70% of patients show recurrence and 
chemoresistance (3, 14) resulting in aggressive and potentially lethal disease 
(3, 14, 15). 

There is an urgent need for novel markers and therapeutic strategies for ovarian 
cancer (10). In this context, inflammation and inflammasomes have attracted the 
attention of researchers in almost all diseases, including ovarian cancer. In a 
nutshell, inflammasomes are cytosolic multiprotein oligomers of the innate 
immune system that induce inflammation in response to infection or host-cell 
derived molecules, for example, molecules from cancer cells (16, 17) They mainly 
regulate the activation of caspase-1 (interleukin-1 converting enzyme). Once 
activated and assembled, inflammasomes promote proteolytic cleavage, 
maturation, and secretion of various pro-inflammatory cytokines such as 
interleukin 1β (IL-1β) and interleukin 18 (IL-18), and the cleavage of gasdermins 
(GSDM), a protein family that executes cell death and inflammation (18). 
Proteolytic cleavage releases the N-terminal fragments of these molecules. The 
released N-terminals insert into the cell membrane, forming large oligomeric 
pores, causing an imbalance of cellular homeostasis, and the induction of an 
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inflammatory form of cell death called pyroptosis (18). This chapter provides a 
snapshot of the current understanding of the role of inflammasomes in ovarian 
cancer.

INFLAMMATION AND INFLAMMASOMES IN 
OVARIAN CANCER

Inflammation is one of the events that promote initiation, development, 
progression, and chemoresistance in ovarian cancer (19, 20). The inflammatory 
pathways involved in ovulation may lead to ovarian cancer (21). Nowak and 
colleagues (22) analyzed the serological and the tumoral microenvironment of 
ovarian cancer patients along with samples of benign ovarian tumor patients. 
They observed that, in advanced stages of the disease, interleukins 6, 8 and 10 
were significantly overexpressed compared to early-stage disease. Interleukins are 
pro-inflammatory cytokines released during pyroptosis (23). First, PRR (pattern 
recognition receptor) is stimulated in response to a stimulus (infection or host-
derived molecule), which then activates the transcription factor nuclear factor-κB 
(NF-κB). This results in pro-interleukins and inflammasome expression (24). 

Inflammasomes are protein complexes formed by the nod-like receptor family 
(NLR) and comprise examples such as NLRP1, NLRP3 and NLRC4. Moreover, 
these complexes are formed by a pyrin domain (PYD) that binds to the NLR 
protein. Additionally, there is a caspase activation and recruitment domain known 
as CARD that is responsible for the binding of the complex to a caspase molecule. 
Finally, CARD and caspase, together, form the adapter protein (ASC) (17, 25). 
Inflammasome repositioning to the mitochondria, reactive oxygen species (ROS), 
mitochondrial DNA, cardiolipin, potassium efflux, and lysosome cathepsin are 
examples of signals for inflammasome assembly (26). After assembly, the caspase 
molecule binds to a specific site where its cleavage and consequent activation 
occur. Caspase cleaves pro-interleukin and GSDM, releasing the N-terminal 
portion, which binds to the cell membrane, forming pores that characterize 
pyroptosis (27, 28). This mechanism is crucial for cancer cell survival (29). IL-1β 
and IL-18 stand out for their participation in malignant progression and the 
occurrence of metastasis in various tumor types, such as pancreatic, breast, 
ovarian, and melanoma (30, 31).

Interleukins and cathepsins 

Interleukin 18 (IL-18) is a cytokine responsible for the maturation of natural killer 
(NK) and T cells (32). This cytokine plays a fundamental role in antitumor 
immunity (33), which requires its maturation through proteolytic cleavage, 
mediated by caspase 1 (34). It is known that healthy ovarian epithelial cells secrete 
the active form of IL-18. However, ovarian cancer cell lines secrete the inactive 
form, either by inactivating caspase 1 or by mutations related to its proteolytic 
function (35). Orengo et al. (36) found high concentrations of pro-IL-18 in the 
ascites and serum of ovarian cancer patients. Furthermore, IL-18BP, an endogenous 
inhibitor of IL-18, has been reported to be overexpressed in patients with the 
disease (37). Uppendahl et al. (38) highlighted the importance of IL-18 in 
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short-term cytokine-induced memory-like NK cell activation (CIML NK) in 
ovarian cancer cellular models. CIML NK was inefficient in inducing cell death 
within one day, but it was successful in eliminating cancer cells after seven days of 
exposure to cytokines. Accordingly, a phase I clinical trial has demonstrated the 
importance of IL-18 as a possible alternative therapy, since it confirmed that 
combinations of doxorubicin and IL-18 were tolerable without attenuating the 
effects of IL-18 (39).

Inflammation plays a key role in the development of ovarian cancer (40). 
BRCA1 gene is involved in ovarian cancer susceptibility, it can incite inflammation, 
and mutant BRCA1 expression in normal ovarian cell line significantly increases 
interleukin 1β (IL-1β) protein expression (30, 41). It is noteworthy that IL-1β is 
also responsible for the inflammasome assembly initiation since it stimulates its 
expression through the NF-κB pathway. Stem cells have anti-inflammatory activity 
due to their ability to promote tissue repair by paracrine action (42, 43). Kalamegam 
et al. (44) had mixed human ovarian cancer cell lines with human Wharton’s jelly 
stem cells lysate or conditioned medium from these stem cells and showed that 
both inhibited the proliferation of ovarian cancer cells through the downregulation 
of IL-1β expression while increasing IL-1β receptor antagonist (IL-1RA) synthesis. 
In contrast, Li et al. demonstrated that the increased expression of inflammasome 
elements, such as pro-caspase 1, caspase 1, pro-IL-1β, IL-1β, pro-IL-18, and 
IL-18, significantly attenuated proliferation, migration, and invasion of OVCA 
A2780 cells (45). Luborsky et al. (46) observed that, when compared to normal 
tissues, ovarian tumors have a high expression of IL-1β, IL-18, and caspase 1.

Interleukin 8 (IL-8) can stimulate metastasis and is associated with poor 
prognosis in ovarian cancer (47, 48). Interleukin 10 (IL-10) is another inflammatory 
cytokine that is overexpressed in ovarian cancer and prevents excessive 
inflammation in normal tissues (49). However, IL-10 can cause immunosuppression 
by inhibiting the expression of major histocompatibility complex (MHC) 
molecules, which leads to antigen presenting cells malfunctioning and help cancer 
cell survival. Furthermore, IL-10 can facilitate metastasis and stimulate the 
expression of anti-apoptotic and pro-inflammatory genes (50, 51).

Cathepsins D, K and L are overexpressed in malignant ovarian cancer indicating 
their relationship with invasiveness, proliferation, and migration (52–56); the 
inhibition of cathepsin L reversed paclitaxel chemoresistance in SKOV3 ovarian 
cancer cells (57).

NLR family protein 3 containing pyrin domain (NLRP3)

There are many types of inflammasomes that vary according to their function. The 
nucleotide-binding domain leucine-rich repeat-containing (NLRs) inflammasomes 
were first described in 2002 (58). Among these, it is worthwhile to highlight 
NLRP3, NLRP2, NLRP1, and NLRC4 (59). The NLR family protein 3 containing 
pyrin domain (NLRP3), shown in Figure 1, is the best characterized inflammasome 
(60, 61). Higher NLRP3 expression was identified in ovarian cancer tissues from 
46 patients and in ovarian tumor cell lines when compared to normal peritumoral 
tissues from these patients and normal ovarian cells (62). A comparison of NLRP3 
expression in pan-cancerous and normal tissues using data from The Cancer 
Genome Atlas Program showed higher NLRP3 expression in ovarian cancer and 
indicated worse overall survival (63). Genes such as NLRP3, IL-1B, and IL-18 were 
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identified in ovarian carcinoma samples using public microarray data. The 
association between genes and patients’ survival showed that high expression of 
AIM2 and NLRP3 were significantly correlated with low survival disease 
progression-free (64). However, this association is still unclear, as 
Luborsky et al. (46) observed that the NLRP3 inflammasome was not significantly 
overexpressed in ovarian cancer, while other components of this inflammasome’s 
pathway were overexpressed.

Treatment with carboplatin increased NLRP3 inflammasome activation in 
macrophages by caspase 3 and GSDM E (65). In the same study, NLRP3 was 
found in samples from carboplatin-treated ovarian cancer patients, demonstrating 
the importance of this inflammasome in ovarian carcinogenesis and possibly 
chemoresistance (65). Thus, it can be inferred that the NLRP3 inflammasome 
overactivation, rather than its overexpression, would be associated with 
carcinogenesis. An inverse relationship has been reported between miR-22 
(microRNA 22), an endogenous inhibitor of NLRP3, and the NLRP3 inflammasome. 
It was also observed that miR-22 was downregulated in SKOV3 ovarian cancer 
cells. The same group reported that NLRP3 inhibition by miR-22 and the inhibition 
of PI3K/AKT pathway decreased cell proliferation and mesenchymal-epithelial 
transition (66).

Absent in melanoma 2 (AIM2)

Absent in melanoma 2 (AIM2) inflammasome assembly occurs in the presence of 
cytosolic DNA (67). Lu et al. (68) have shown that it can auto-oligomerize. It 
should be noted that ASC protein phosphorylation at threonine Y60 and Y137 is 
important for AIM2 assembly (69). AIM2 drives pro-IL-18 and pro-IL-1β 
proteolytic cleavage without relying on NLRP3 and/or TLR (Toll-like receptor) 
stimuli (17, 67). AIM2 is a good predictor of efficacy of antiangiogenic therapies, 
as observed in patients treated with bevacizumab (70). AIM2 is involved in the 
malignant transformation of endometriosis to clear cell and endometrioid ovarian 
carcinoma (64, 71). This inflammasome has a high prognostic significance in 
several histological subtypes of ovarian cancer because overexpression of AIM2 
has been reported to worsen progression-free survival of patients (70). These 
studies point to the significance of AIM2 as a biomarker for ovarian cancer and 
requires further exploration.

GSDM

GSDM is an essential component for pyroptosis to occur because after its cleavage at 
the N-terminal domain, pores start to form in the cell membrane. GSDM A is 
commonly expressed in epithelial tissues, and it is upregulated in ovarian cancer (72). 
GSDM C and D are usually expressed in organs of the digestive system, skin, vagina, 
and bladder. They are also expressed in some cancers (73). GSDM C and D are 
upregulated in serous ovarian cancer and thought to be indicators of poor prognosis 
(74–76). GSDM D is expressed in gastrointestinal tissues (75), but it has also been 
reported to be overexpressed in serous ovarian cancer (74). Another crucial discovery 
was that GSDM D may be cleaved by serine proteases in neutrophils (77). This pathway 
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is necessary for the formation of neuroendocrine tumors (NETs) that facilitate the 
development of metastasis (78). To be activated, GSDM D mainly needs caspase 1, but 
may also be cleaved by caspase 11 (77, 79). These caspases are found at low levels in 
high-grade serous ovarian cancer (74). GDSM E is known to be a tumor suppressor 
molecule because of its antitumoral properties (80). This characteristic may be 
attributed to its ability to decrease the appearance of tumor-associated immune cells, 
such as tumor-associated macrophages (81).

Although there is an expression of these components, pyroptosis might not 
occur since the formation of pores in the cell membrane does not necessarily lead 
to cell death. The mechanisms behind cell membrane repair, or inefficient 
pyroptosis, are still unclear (79). It has been shown that the imbalance of 
phosphatidylinositide and cholesterol in the cell membrane makes the insertion 
of the GSDM N-terminal domain in the cell membrane difficult, thus hindering 
the formation of pores. Given that this imbalance is common in cancers (82), 
including ovarian cancer, the hypothesis is that there is a greater difficulty in pore 
formation, because of the higher levels of phosphatidylinositide and cholesterol in 
cell membrane, which makes the cancer cells viable (83). Cholesterol metabolism 
is altered in ovarian cancer (84). Thus, pyroptosis, impaired by metabolic 
alterations, plays a crucial role in the overall survival of ovarian cancer cells. 

CONCLUSION

Currently, there is an increasing interest in understanding the relationship between 
ovarian cancer and inflammasomes. Available evidence is contradictory with some 
inflammasomes such as NLRP3, IL-1β, IL-18, IL-8, IL-10, AIM2, and cathepsin 
being associated with the development and progression of ovarian cancer, while 
the overexpression of others such as pro-caspase-1, caspase-1, pro-IL-1β, IL-1β, 
pro-IL-18, and IL-18 attenuating proliferation, migration, and invasion of ovarian 
cancer cells. The mechanisms by which these molecules aggravate or attenuate the 
development of ovarian cancer are not clear. Despite the existing gaps, the 
inflammatory pathway demonstrates its impacts, and hence the manipulation of 
these pathways emerges as potential therapeutic targets. To this end, blocking 
components of the NLRP3 pathway, or the use of IL-1 receptor antagonists, has 
produced promising experimental results. Further studies will enable deciphering 
the role of inflammasomes and their therapeutic potential in ovarian cancer. 
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