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Abstract: Since its first description in 1921, Ewing sarcoma has been the subject 
of several morphologic and genetic investigations. Currently, the overall survival 
for localized Ewing sarcoma is 65–70%. However, in patients presenting with 
metastatic disease, the overall survival is poor, being in the range of 20–30%. 
There are several unknown features of Ewing sarcoma, such as its cell of origin, 
genetic background, chemotherapy resistance, and abnormal presentation sites, 
among others. A better understanding of the molecular basis of the development 
of Ewing sarcoma is needed to help improve survival, especially in metastatic/
resistance cases. In this chapter, we provide an overview of the features of 
 metastatic Ewing sarcoma.
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INTRODUCTION 

Among sarcomas, Ewing sarcoma/Primitive neuroectodermal tumor (ES/PNET) is 
one of the most dangerous and lethal (1). James R. Ewing, an outstanding 
American pathologist at Cornell, described this entity in 1921 (2–4). The inci-
dence of this tumor is 1–3 cases per million per year (5, 6). It is an aggressive 
tumor that can quickly become metastatic and affect children and young adults, 
being more common in Caucasians than in Asians or Africans. It is also more com-
mon in males than females (7, 8). ES/PNET usually occurs in the diaphysis or 
metaphyseal-diaphyseal portion of the long bones, pelvis, and ribs. Radiologically, 
ES/PNET shows an ill-defined osteolytic lesion with permeative or moth-eaten 
bony destruction. An “onion-skin” like periosteal reaction, associated with pain 
and fever, is the most common symptom. The most common laboratory findings 
include anemia, leukocytosis, and an increase in erythrocyte sedimentation rate 
(ESR). In the early 20th century, radiotherapy was the primary therapy modality, 
and the overall survival was 30%. Today, the combination of chemotherapy and 
radiotherapy is the standard treatment approach, with surgery reserved for resis-
tant/recurrence disease if the site of the neoplasm is amenable to surgery (9–12). 
Therapy and event-free survival for ES/PNET have significantly improved over the 
years with the 5-year survival rate being barely achieved before using neo- adjuvant 
chemotherapy. Today, the long-term survival rate is 30–60%, suggesting that ES/
PNET is sensitive to anti-cancer agents. There are many protocols to treat this type 
of sarcoma. The most common drugs used are doxorubicin, cyclophosphamide, 
vincristine, actinomycin-D, ifosfamide, and etoposide (13).

LIGHT AND ELECTRON MICROSCOPY FEATURES

Histologically, ES/PNET is a “round blue cell tumor” that is characterized by pre-
dominantly undifferentiated sheets of cells with relatively little stroma. It may be 
found at the skeletal site of origin or at metastasis (Figure 1). The cell size may 
vary with some ES composed of small round cells with round nuclei containing 
fine chromatin, scanty clear or eosinophilic cytoplasm, glycogen granules high-
lighted by Periodic Acid Schiff (PAS) staining, and indistinct cytoplasmic mem-
branes (Figure 2). On the other hand, some ES/PNETs are made up of larger cells 
with prominent nucleoli and irregular contours. The tumor cells contain abun-
dant glycogen, which is highlighted by histochemistry (PAS). In some cases, an 
arrangement of the tumor cells around a pseudo lumen (Homer-Wright pseudo-
rosettes) is seen. Necrosis is a standard feature, and non-necrotic viable areas 
show tumor cells with frequent perivascular distribution (7).

Almost all cases express CD99 on the cell membranes (Figure 3). Vimentin and 
neuron specific enolase are also frequently expressed by immunohistochemistry. 
The relative lack of differentiation of ES/PNET has led to difficulty in identifying the 
tumor cell of origin, and it probably involves more than one cell type. Various 
authors have tried to find the cell of origin. Many suggestions have been made. 
They include endothelial, perivascular lympho-endothelial, pure hematologic, mes-
enchymal/fibroblastic, neural crest derivatives, or stem/progenitor cells. The ultra-
structural investigation of tissue specimens of ES/PNET reveals polygonal cells with 
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slightly irregular nuclei, finely dispersed chromatin, and prominent nucleoli 
(14–16). Nucleoli are small-to-large and often open (nucleolonemas). However, 
some atypical cases of ES/PNET show more deeply indented nuclei. The tumor cells 
appear smooth-contoured, and aggregates of glycogen rosettes are frequently seen 
in the cytoplasm. Glycogen granules may also be seen free in the interstitium. 

Lipid spherules may also be seen. The cytoplasm has limited cytoplasmic 
organelles. Microtubules and mitochondria are rare, but pseudopod-like exten-
sions can be observed. There is little stroma between the tumor cells. Neurosecretory 
granules with a 100–150 nm diameter and microtubules may be seen. The cells 
are joined by poorly formed, so-called desmosome-type, intercellular junctions. 
Atypical ES/PNET shows variable amounts of glycogen. They can also demon-
strate prominent cytoplasmic filaments, mitochondria, and profiles of the endo-
plasmic reticulum. The ultrastructural assessment of ES/PNET requires optimal 
preservation of the cellular and sub-cellular organization. The “en bloc” staining 
technique with uranyl salts results in considerable glycogen extraction, and lead 
staining is mandatory. The fixation with Karnovsky osmium tetroxide-potassium 
ferricyanide fixative enhances glycogen preservation. Finally, ES/PNET should be 
kept in the differential diagnosis of the ultrastructural investigation of childhood 
round blue cell tumors. These tumors can sometimes be difficult to differentiate 
on immunohistochemistry or molecular biology (17–21). 

Figure 1. Blue cell tumor. The microphotograph depicts a resection specimen of the lung 
showing a “round” blue cell tumor involving the right lower half portion of the picture (dark 
blue area). The tumor is well demarcated and the intensity of the tumor cells is identifiable 
easily comparing to the alveolar parenchyma of the lung of the left upper half of the picture. 
The “roundness” of the tumor cells with round-ovoid contour is not appreciable at this 
magnification, but is better identifiable in figure 2 (Hematoxylin and Eosin staining x 12.5 
original magnification).
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Figure 2. Glycogen deposits in ES/PNET. The microphotograph shows a high power view of 
the Ewing sarcoma/Primitive neuroectodermal tumor (ES/PNET) depicted in figure 1 with 
particulate of glycogen in the cytoplasm of the tumor cells and a high nucleus to cytoplasm 
ratio. Two mitoses (right upper corner and right lower corner) are also seen (Periodic acid 
Schiff staining x 630 original magnification).

Figure 3. CD99 expression in ES/PNET. Immunohostochemistry of Ewing sarcoma/Primitive 
neuroectodermal tumor (ES/PNET) showing an intense membranous staining. It is imperative to 
emphasize that FLI1 immunohistochemistry is standard of care because of the non-specificity 
of the CD99 antigen. Thus, a positive CD99 staining result must be validated by a nuclear FLI1 
immunohistochemical result, which is not demonstrated here. FLI1 is the surrogate marker for 
characteristic EWSR1-FLI1 translocation. A minority of ES/PNET disclose a translocation involving 
the EWSR1 gene and an alternative partner, most commonly the ERG gene, which is located on 
21q12. (Avidin-Biotin Complex, anti-CD99 immunostaining, x400 original magnification).
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ONCOGENETIC ORIGINS AND CELL SIGNALING OF 
EWING SARCOMA

ES/PNET is an example of a malignancy caused by fusion between oncogenes— 
EWS (Ewing’s sarcoma breakpoint region 1) and ETS (E-twentysix family of tran-
scription factors) (22, 23). Genetically, these fusions come from specific 
chromosomal translocations that yield in-frame fusion of the amino terminus of 
the EWS gene on chromosome 22 and the carboxyl terminus, including the 
DNA-binding domain, of an ETS gene. The most common types are t(11;22)
(q24;q12) and t(21;22)(q22;q12). The t(11;22) translocation results in the 
fusion of the region 59 of the ubiquitously expressed EWS1 gene to region 39 of 
the FLI-1 gene. This chimeric gene product (EWS/FLI-1) is an aberrant transcrip-
tion factor that contains the transcriptional domain of EWS1, which is usually 
involved in protein-protein interactions, and the DNA-binding domain of FLI-1. 
Although capable of promoting tumorigenesis, the target gene(s) of EWS/FLI-1 
is not yet fully studied in detail. In a recent study involving the Children’s 
Oncology Group (COG) trial AEWS1221, the patterns of translocation testing 
for newly diagnosed ES were described (24). The AEWS1221 trial was a phase 
III randomized study enrolling patients with newly diagnosed metastatic ES/
PNET from 2014 to 2019. Three-hundred and five patients were enrolled. The 
most common type of molecular testing was fluorescence in situ hybridization 
(FISH). FISH was carried out on the primary tumor in three-fourths of the 
patients. Dubois et al. (24) found positive testing for an EWSR1 or FUS transloca-
tion in 211, which equates almost 90% of the patients. A reverse transcription-
polymerase chain reaction (RT-PCR) was carried out in one fifth of the patients. 
The authors recorded positive results in three-fourths of the patients. A next-
generation sequencing was reported in seven patients for the primary tumor and 
in three patients for metastatic sites. In about 5% of the patients, a translocation 
testing was neither on the primary nor on the metastatic tumor reported. The 
lack of an abnormality consistent with a molecular diagnosis of ES/PNET was 
seen in about 15% of the patients.

Besides chromosomal rearrangement, two mutations are correlated with ES: 
p53, and Retinoblastoma RB pathway, with an incidence of 5–20%. The rate on 
ETS/FLI-1 is in 85% of cases, ERG in 10% of cases, and ETV1, ETV4, or FEV in 
the remaining 5% of cases. Other common mutations or deregulated pathways 
involve the JNK (c-JUN oncogene) (25, 26), uPA/uPAR (urokinase plasminogen 
activator), and PEDF (pigment epithelium derivate factor) genes (27). The JNK 
pathway is related to malignant proliferation and differentiation via Mitogen-
activated protein kinases (MAPKs), growth factors, and environmental stress. It 
occurs in response to inflammatory processes such as cytokines, being useful as 
biological markers to define if the tumor is at a low or high differentiation grade. 
The signaling consists of phosphorylation of JNK, and activation of the transcrip-
tion factor c-Jun via several modulatory Serine/Threonine sites within its 
N-terminal transactivation domain. Activated c-Jun proceeds to homo/hetero-
dimerize with c-Fos, generating the activator protein-1 (AP-1) transcription 
 complex. It binds specific DNA sequences at target promoters and regulates the 
expression of genes (26, 28). The uPa/uPAR is involved in angiogenesis, cell 
migration, malignancy, and wound healing. Thus, high expression can indicate a 
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fast progression of ES/PNET, the chance of metastasis, and, consequently, the 
prognosis of the disease. This signaling works on the conversion of plasminogen 
to plasmin which degrades proteins such as fibrin, fibronectin and laminin, facil-
itating matrix degradation and breakdown of the extracellular matrix, which is a 
critical step in cell invasion and cancer metastasis. The PEDF is a potent antian-
giogenic and antitumorigenic glycoprotein and prevents cell migration. Low 
expression of PEDF can contribute to tumor growth, increased aggressiveness, 
metastasis, and poor outcome (29–31). 

The genetics of ES also interferes directly with cell signaling, deregulating 
many cell processes, leading to tumorgenesis. There are two common pathways 
deregulated in ES/PNET: tyrosine kinase and Wnt (32–35). The autocrine and 
paracrine activation of growth factor receptors and their corresponding ligands, 
such as insulin-like growth factor 1 (IGF1), determine ES proliferation and 
maintenance (34, 36–42). Targeting of EWS/FLI1 by RNA interference in ES cells 
affected IGF1/IGF1R (insulin like growth factor receptor type 1) survival path-
way and its downstream targets. Both MAPK and PI3K signaling pathways are 
constitutively activated in ES, probably because of the presence of IGF1R-
mediated autocrine loops. Stringent clustering was observed by analyzing gene 
expression in 181 tumor types, including 16 classes of sarcomas with high 
expression levels of tyrosine kinases or receptor tyrosine kinases in the pediatric 
sarcomas group. Also, there is evidence that Wnt/Frizzled signaling is functional 
in ES/PNET cell lines (43). Canonical Wnt/β-catenin signaling enhances EFT 
(Ewing family of tumors) cell motility, contributing to metastasis, probably 
through either autocrine or paracrine modes of action of Wnt glycoproteins. 
These are expressed in bone, muscle, and soft tissues. Wnt-3a induces morpho-
logical changes characterized by the formation of long cytoplasmic extensions in 
EFT cells (44–46).

There are reports correlating the role of IGF axis with the occurrence of ES/
PNET (37). Studies demonstrated a strong influence on deregulated secretion 
of IGF and the malignancy of tumors (40, 47–52). The genetic mechanisms 
involve mainly three genes: EWS, FLI1, and WT1 (23). The WT1 proteins can 
suppress the transcriptional activity of IGF and its proteins. There are several 
ways IGF can promote growth in tumor cells: increased secretion of IGF-1, 
decreased production of IGFBP-3 (insulin-like growth factor-binding protein), 
and the development of IGF-1R on the cell membrane. The EWS and WT1 gene 
can regulate the IGF1R activity by binding IGF1R transcription start site. As for 
the EWS and the FLI1, the latter, when present, can activate the EWS oncogene 
pathway, producing abnormal proteins, making the cell susceptible to abnor-
mal growth via the IGF axis and IGF1R is considered a potential target in ES/
PNET (37–39, 53–56). It has been demonstrated that resistant cells switch 
from IGF1-IGF1R signaling to IGF2/insulin/IRA signaling. It means that there 
is an activation of the proliferative downstream pathways, indicating that some 
responding patients with ES/PNET did not have active IRA signaling. Of the 
pathways detected, the IGF2/insulin/IRA and the MAPK pathways seem to be 
important for the resistance to IGF1R inhibition. Also, the role of the IGF2 
mRNA-binding protein 3 (IGF2BP3) in IGF1R and IRA signaling needs to be 
better elucidated. 
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PATTERNS OF METASTATIC SPREAD

Metastatic spread is probably the most powerful predictor of poor survival. There 
are several sites that have been reportedly affected by the metastatic spread. In up 
to four-fifths of the patients affected by ES/PNET, metastases occur in the first two 
years following the primary manifestation of the tumor. Metastases appear fre-
quently in the lung (57%) and bones (34%), while spread to the central nervous 
system occurs in 10–37% of cases with brain metastases; primary and metastatic 
ES/PNET of the skull bases have been reported (57). It seems that the occurrence 
of metastasis, which can be overt or subclinical, seems to be a recurring phenom-
enon in almost all patients. Such metastatic sites can also be quite distant and rare 
from the primary site of the tumor, including small bowel, oral cavity, pancreas, 
spine, and orbital cavities among others (57–65). In a dramatic presentation, ES/
PNET metastasized into the jejunum causing intussusception, one of the most 
life-threatening chirurgical emergency (65). It seems that the transcription factor 
hepatoma-derived growth factor (HDGF) plays a crucial role in meatastatic 
spread  (66). HDGF seems to regulate multiple metastasis-associated genes, 
including the activated leukocyte cell adhesion molecule (ALCAM)) in ES/PNET 
cells (66). By downregulating ALCAM, HDGF induces the expression and 
 activation of many downstream effector genes, including Rho-GTPase Rac1 and 
Cdc42. In addition, HDGF promotes actin cytoskeleton remodeling and cell-
matrix adhesion, which are critical in paving the pathways for metastatsic spread. 

THERAPEUTIC CHALLENGES OF METASTATIC ES/PNET

Local therapy has been proposed for some patients folllowing the examination of 
the primary tumor by MRI, the lungs by CT, and the entire body by 18F-FDG-PET/
CT/MRI. The principles, and techniques of surgery and reconstruction in primary 
malignant osteotumors have been defined (67). Local therapy of involved sites is 
crucial in controlling the outcome of patients affected with ES/PNET. 
Histopathological response in response to systemic therapy, assessed as >90% 
necrosis, has a major impact on local control rates. Additional radiotherapy fol-
lowing surgery has been indicated in any case of positive margins. Some protocols 
suggest additional radiotherapy for narrow margins and/or poor histological 
response (≥10% viable tumor cells in the surgical specimen assessed with histo-
pathological examination) (67). 

A combination of local therapeutic strategies may be suggested for large pri-
mary tumors with extensive soft-tissue extension. Neoadjuvant chemotherapy 
alone or in combination with preoperative radiotherapy has helped in reducing the 
tumor volume, particularly of the soft tissue component. It seems that it facilitates 
an adequate limb-sparing surgery. It is particularly important for subjects affected 
with disseminated and multifocal tumor and should probably complement sys-
temic protocols whenever possible (67). Local treatment of both primary and 
metastastic tumor seems to be superior to local treatment of either the primary 
tumor or extrapulmonary metastases in increasing the survival of the patients. 



Zetouni N C and Sergi C M188

In disseminated tumor, a combined modality treatment including surgery of both 
the primary tumor and extrapulmonary metastases has shown better survival than 
single-modality local therapy (67). It has been suggested that solitary osseous 
metastases may be approached by surgery, radiotherapy or both if the morbidity is 
considered acceptable. Patients with pulmonary metastases should be considered 
for the same local therapy as those without (67). The role of metastasectomy of the 
lung parenchyma in relapsed tumor remains controversial, with variable evidence 
of benefit between studies (67). It is reasonable to perform a metastasectomy in 
selected ES/PNET patients with resectable lung metastases and proof of adquate 
cardiopulmonary function. It seems that the number of pulmonary metastases, 
disease-free time interval, and chemotherapy-response are critical factors influenc-
ing overall survival in ES/PNET (68). 

The outcome of ES/PNET patients with metastasis only in the lung is better 
than those with bone metastasis. In fact, patients who have both pulmonary and 
bone metastasis have the worst outcome (69–74). While various combinations of 
chemotherapeutic agents have provided beneficial event-free surivial for localized 
ES/PNET, benefits of chemotherapy for metatastatic ES/PNET continues to be dis-
mal with the 3-year event-free survival being only 28–30% (75, 76). The addition 
of ifosfamide and etoposide to VDC (vincristine, doxorubicin, and cyclophospha-
mide) showed no significant benefit in patients who had netastatic diseases at 
diagnosis, differently from the improvement observed in patients with nonmeta-
static ES/PNET (77). Various combination of other anticancer drugs such as vin-
blastine, celecoxib, or the anti-IGFR antibody ganitumab, with VDC/ifosfamide/
etoposide have failed to improve outcomes (78, 79). High-dose chemotherapy 
with autologous stem cell did not provide any beneficial effect (80, 81). A recent 
Cochrane review concluded that when the location of primary ES/PNET metasta-
sis, i.e., with metastatic disease at diagnosis, is other than the lungs, high-dose 
chemotherapy or autologous hematopoietic cell transplantation do not provide 
any advantage in event-free survival than those who receive conventional chemo-
therapy with whole lung irradiation (82). Palliative radiotherapy can provide 
symptom relief, especially pain, without a protracted treatment course for meta-
static ES/PNET patients (83). 

CONCLUSION

Ewing sarcoma is a highly malignant bone tumor with a poor prognosis. The 
prognosis has improved over the years for localized tumors but remains poor for 
patients with metastatic disease. Various molecular pathways involving JNK, uPA/
uPAR, PEDF, and IGF have been identified in ES/PNET malignancy; however, 
their role in metastatic transformation is yet to be fully clarified. Metastatic ES/
PNET is difficult to treat. The most commonly used radiation therapies and che-
motherapies have very limited beneficial effect. Despite remarkable efforts in both 
diagnostic and therapeutic approaches, several aspects of ES/PNET remain elu-
sive. A better understanding of the molecular mechanisms of metastatic transfor-
mation is urgently needed to develop effective treatment strategy for metastatic 
ES/PNET. Exploring drug repositioning may be one of the therapeutic options for 
advanced, refractory, or relapsed ES/PNET.
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