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Abstract: MicroRNAs (miRNAs) are short non-coding RNAs that post- 
transcriptionally regulate protein expression. The human genome encodes more 
than 2,500 miRNAs, with each being able to modulate several targets, act along a 
variety of cellular pathways, and affect various tissues. They are frequently 
 dysregulated in cancers and, via their protein targets, act as oncogenes or 
 tumor-suppressors. As such, their effects are pervasive—miRNAs have been 
implicated in various biological processes including apoptosis, epithelial-to- 
mesenchymal transition, and angiogenesis. In this context, miRNA involved in 
metastasis have been termed “metastamiRs”. This chapter focuses on the role of 
miRNAs in the metastatic processes of prostate cancer. Our primary aims are to 
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detail specific biological processes and molecular targets through which miRNAs 
act and that may serve as therapeutic targets. Secondly, we discuss the potential of 
miRNAs to serve as biomarkers of tumor aggression and thus potentially guide 
personalized therapy.
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INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNAs averaging 22 nucleotides in 
length that generally function by negatively regulating mRNA expression by bind-
ing to the 3’UTR of their targets (1). These molecules are found in all major cel-
lular compartments, and are often exported from the cell, where they may function 
as signaling molecules (2). An individual miRNA can modulate expression of 
numerous targets based on sequence complementarity between the miRNA and 
the 3’UTR of an mRNA (3). Similarly, an individual mRNA transcript may be regu-
lated by hundreds of miRNAs, resulting in a network of interactions between 
miRNAs, their target genes, and their downstream effectors (3). This interactive 
network contributes significantly towards the regulation of a plethora of  biological 
processes and cellular pathways. While miRNAs typically act to support the 
 normal function of the human body, aberrant expression of these molecules has 
been implicated in the pathogenesis of numerous human diseases (4). 

An area of interest with respect to the impact of miRNA expression on human 
disease is cancer progression (5). MiRNAs frequently become dysregulated in 
human cancers through mechanisms such as amplification or deletion of miRNA 
genes, aberrant transcriptional control of miRNAs, changes in epigenetic regula-
tion and defects in the miRNA biogenesis machinery (6). It has been shown that 
miRNA dysregulation has a strong influence on the following aspects of cancer 
phenotype: proliferative capacity, resistance to apoptosis, evasion of growth sup-
pressors, activation of invasion and metastasis via the epithelial-mesenchymal 
transition (EMT) pathway, and induction of angiogenesis (6). The miRNAs 
involved in the overall cancer phenotype have been termed “oncomiRs” (7), and 
their role in the regulation of these processes depends on their interactions with 
specific targets. MiRNAs that affect the metastatic phenotype when dysregulated 
can be characterized as having pro- and anti- metastatic effects depending on their 
net influence on tumor aggressiveness (8). The collection of miRNAs that are spe-
cifically associated with the promotion or suppression of metastatic potential and 
EMT of cancer cells are known as “metastamiRs” (8).

Research on the role of these metastamiRs in the development and progression 
of cancer has mainly focused on their association with downstream effectors and 
patient outcomes. Numerous metastasis-associated signaling pathways have been 
linked to abnormal expression of metastamiRs (9). For example, metastamiR 
expression has been identified as a driver of the phosphatase and tensin homolog 
(PTEN)/phosphatidylinositol-3-kinase (PI3K), EGF receptor (EGFR), transform-
ing growth factor-beta (TGFβ), and p53 pathways (9). More generally, miRNAs 
have been a popular target for translational research approaches such as studying 
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the predictive ability of specific miRNA expression signatures and their utility as 
non-invasive biomarkers. For example, a study in bladder cancer has elucidated 
the ability of miRNA panels to distinguish the aggressiveness of the cancer (10). 
Additionally, miRNA expression levels in the urine (11), serum (12), and exosomes 
(13) have shown viability as non-invasive biomarkers in cancer diagnostics. This 
chapter focuses on the role of metastamiRs in prostate cancer, explore their role in 
prostate cancer metastasis, and their potential in cancer diagnosis and therapy.

THE ROLE OF MICRORNAS IN THE METASTATIC PHENOTYPE 
OF PROSTATE CANCER

Apart from cutaneous malignancies, prostate cancer is the most common cancer 
among men in the United States (US), with roughly 250,000 new annual cases 
(14–16). Behind lung cancer, it is the second leading cause of cancer death in 
American men (14). Due to a multitude of treatment options that often offer cura-
tive potential, localized disease generally portends favorable outcomes, with 
5-year survival for localized and regional disease being nearly 100% (17). 
However, despite noteworthy recent progress in therapeutic measures, metastatic 
prostate cancer still inflicts significant morbidity and mortality, with the prepon-
derance of fatal cases of prostate cancer attributed to metastatic burden (18–20). 

With most prostate cancer-related morbidity and mortality stemming from its 
metastatic spread, it is important to understand the molecular processes involved 
in this disease. As more than 50% of miRNA genes are in cancer-associated 
genomic regions, they control the expression level of pro-metastatic genes by tar-
geting mRNAs at the post-transcriptional level, and thus act as central nodal 
points for metastatic progression (21, 22). Because of the highly aberrant expres-
sion levels and, in some cases, aberrant sequences of miRNAs found in prostate 
cancer, miRNAs have a particularly crucial regulatory role, acting as promoter or 
inhibitors of metastasis primarily through regulating invasion, migration, and 
EMT (Figure1) (18, 21, 23–26). Tables 1 and 2 summarize the product of a vast—
and continuously expanding—collection of research that has culminated in our 
current understanding of the role of miRNAs in prostate cancer metastasis. 
Importantly, there are miRNAs with documented roles in prostate cancer that 
have not been included in this chapter, largely due to either limited or conflicting 
evidence surrounding their metastatic role. Although current experimental meth-
ods are often powerful enough to detect the abnormal changes of miRNA expres-
sion in prostate cancer, it remains difficult to identify downstream effects of these 
miRNAs. This is due to multifactorial reasons including complexity of the meta-
static cascade, the heterogeneity of the primary prostatic tumors, as well as the 
convoluted relationship between genetic and environmental factors contributing 
to the progression of prostate cancer (27–29). 

Metastasis-promoting miRNAs in prostate cancer 

While metastasis-promoting miRNAs have diverse molecular targets and path-
ways, they generally encompass interaction with transcription factors, cytokines, 
receptors, and enzymes involved in cellular proliferation or the metastatic cascade. 
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Whereas some of these metastasis-promoting miRNAs directly activate oncogenic 
pathways via known proto-oncogenes, others silence or suppress tumor-suppres-
sive pathways to promote prostate cancer metastasis. For example, Ren et al. dem-
onstrated that miR-210-3p sustains the activation of nuclear factor kappa-B 
(NF-κB) signaling by targeting tumor necrosis factor-α (TNFα), which increases 
the capacity for cellular invasion, migration, EMT, and formation of bone metas-
tases (19, 30). On the other hand, Yu et al. showed that miR-671-5p targets 
known tumor suppressor SOX6 and inhibits its expression, preventing the tran-
scription of downstream tumor suppressive proteins and thus resulting in cell 
proliferation, migration, and invasion (26, 31). Table 1 details specific metastasis-
promoting miRNAs implicated in prostate cancer, their molecular targets, and 
function in promoting metastasis (32–46). 

Metastasis-suppressing miRNAs in prostate cancer 

While there are a diverse number of targets detailed within the literature, several 
of these pathways are represented across multiple miRNAs, highlighting their 
global influence in the metastatic process. For example, miRs -141-3p, -212, 
-200, -204-5p, and -532-3p all influence and downregulate the activity of NF-κB 
at some operational level, while miRs -33a, -132, -34a, b, -212, and -200 all act 
on transforming growth factor-β (TGF-β) to inhibit metastasis (47–62). Ultimately, 
these molecular processes suppress the transformation of localized prostate 

Figure 1. Simplified overview of the role of the effects of metastamiRs on the metastatic 
phenotype. Metastatic suppressing miRNAs inhibit the metastatic phenotype by attenuating 
expression of oncogenes that drive epithelial-mesenchymal transition. Conversely, the net 
effect of metastatic promoting miRNA is to drive epithelial-mesenchymal transition by 
downregulating the expression of tumor suppressor genes that could otherwise inhibit this 
process. A few examples of each, prevalent in prostate cancer, are detailed. 

MetastamiRs
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miRNA
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mRNA

Metastatic promoting
miRNA

Pro metastatic
• miR-21
• miR-181a
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• miR-141-3p
• miR-145-5p
• miRs-200a/b/c
• miR-221-3p
• miR-940

Tumor suppressor
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EMT
(epithelial-mesenchymal transition)

- loss of cell polarity
- loss of cellular adhesion

- gain of migratory and invasive properties
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cancer to metastatic disease. Table 2 delineates many of the known metastasis-
suppressing miRNAs in prostate cancer (63–92).

miRNAs as biomarkers and therapeutics in prostate cancer

The diagnostic standard for prostate cancer is either a transrectal or transperineal 
biopsy guided by a transrectal ultrasound (TRUS). Indication for biopsy is gener-
ally a prostate-specific antigen (PSA) level or change outside of clinically accepted 
parameters. The classification of prostate cancer is based on Gleason score 
(gleaned from biopsy results), PSA level, and other clinical considerations, which 
together inform therapeutic options and prognosis. Recently, prostate genomics 
has garnered clinical attention, with multiple assays becoming clinically available 
to help guide clinical decision making. While these assays further elucidate 
patient-specific risk, currently available resources are still not sufficient to predict 
true metastatic potential, particularly at the time of metastatic initiation or transi-
tion (19, 93–99). In addition, inconsistencies of Gleason score between prostate 

TABLE 1 Summary of metastasis-promoting miRNAs 
involved in prostate cancer, with impacted 
pathways, targets, and resulting oncologic 
outcomes

miRNA Targets/Regulators Function Reference

miR-9 E-cadherin, SOCS5, 
StarD13

 Promotes migration, invasion, EMT, and 
spontaneous metastasis

(32, 33)

miR-18a STK4 Promotes cell motility, migration, and invasion (34, 35)

miR-21 MARKS, PDCD4, 
TPM1, AR

Promotes apoptosis resistance, motility, and 
invasion potential via several molecular 
mechanisms

(36–38)

miR-32 RAC2, BTG2 Promotes proliferation of prostatic epithelium and 
inhibits apoptosis. 

(39, 40)

miR-181a TGIF2, LEF1 Promotes cell migration, invasion, and EMT via 
SMAD2/3 activation and Wnt signaling.

(41, 42)

miR-210-3p TNIP, SOCS1 Promotes invasion, migration, EMT, and 
formation of bone metastasis via NF-κB 
activation.

(19, 30)

miR-429 P27Kip1 Promotes cell proliferation. Restricts arrest in G1 
phase of cell cycle. 

(19, 43)

miR-454 NDRG2 Promotes cell proliferation and invasion via Wnt/ 
β-catenin signaling.

(44)

miR-671-5p SOX6, NFIA-CRYAB 
axis 

Promotes cell proliferation, migration, and 
invasion.

(31, 45)

miR-629-5p AKAP13 Drives cell proliferation, migration, and invasion. (46)
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TABLE 2 Summary of metastasis-suppressing miRNAs 
involved in prostate cancer, with impacted 
pathways, targets, and resulting oncologic 
outcome

miRNA Targets/Regulators Function Reference

miR-19a-3p SMAD2/4, PMEPA1 Inhibits cell invasion and migration. (63)

miR-33a TGFBRI, EN-2 Inhibits cell proliferation, invasion, and colony 
formation.

(49, 50)

miR-34a,b CD44, TGF-β/SMAD3 Suppresses tumor migration, clonogenic 
expansion, invasion, and progression via WNT/
B-catenin, JAK/STAT3, PI3K/AKT pathways. 

(19, 50, 61, 
64–66)

miR-132 SOX4 Inhibits cell migration, invasion, and EMT via 
suppression of TGFβ-mediated signaling.

(51, 60)

miR-141-3p TRAF5-6, RUNX1, 
MMP2/9

Suppresses cell invasion and migration via inhibition 
of NF-κB, EMT, and promotes apoptosis. 

(47, 48)

miR-145-5p E-cadherin, 
fibronectin, HEF1, 
OCT3, c-Myc, 
KLF4, WIP1, 
TWIST1

Suppresses bone metastasis by downregulating 
EMT via increasing E-cadherin expression and 
decreasing fibronectin expression. Decreases 
colony formation, decreases tumor spheroid 
formation and cellular cloning.

(67–71)

miR-148a-
3p

DNMT1 Induces apoptosis and reduces cellular 
proliferation.

(72)

miR-152-3p TMEM97, NOL4 Suppresses cell viability, invasion, and promotes 
cell-cycle arrest at S and G2/M.

(73, 74)

miR-195-5p Fra-1, MMP1/9 Inhibits cell motility, migration, and invasion. (73, 75)

miR-200a, 
b,c

NF-kβ, SNAI2, ZEB, 
TGF-β, BRD4 

Inhibits cell migration, adhesion, and angiogenesis. (19, 54–56)

miR-204-5p  NF-kβ, TRAF1, TAB3, 
MAP3k3, BCL2 

Suppresses invasion, migration, and dissemination 
of cancer cells into bone.

(57, 58)

miR-212 SOX4, BMI-1, EN2 Suppresses proliferation, promotes arrest of cell 
cycle, and inhibits EMT.

(51–53)

miR-221-3p VEGFR2, SIRT1 Suppresses cell proliferation, migration, and 
colony formation. 

(76–79)

miR-224-5p  UAP1, HK2, CHIT1, 
TOP2A, RRM2

Inhibits cell proliferation and migration. (80, 81)

miR-335 EGR3, eNOS Reduces cell viability and angiogenesis of the cell 
line, reducing migration, and invasive capacity.

(82–84)

miR-505-3p SMAD2/4, PMEPA1 Inhibits cell invasion and migration. (85)

miR-532-3p TRAF1,2,4 Inhibits tissue invasion, cell migration, and bone 
metastasis.

(59)

miR-543 eNOS Impairs migration and invasive capacity. (84, 86)

miR-802 FLOT2 Suppresses cell migration, invasion and EMT. (87, 88)

miR-940 MIEN1 Suppresses migration and invasion. Attenuates 
anchorage-independent growth ability via the 
Wnt/β-catenin, MAPK, PI3K-Akt pathways. 

(89–91)

miR-3622a SNAI2, ZEB1 Inhibits EMT. (92)
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biopsy and radical prostatectomy are frequent. Moreira Leite et al. (100) found 
Gleason score was underestimated in 29% of cases, and it was overestimated in 
14% of cases. As such, there remains an urgent clinical need for alternative bio-
markers to improve the diagnosis and prognosis of prostate cancer. miRNAs have 
considerable potential to fill this diagnostic, prognostic, and potentially therapeu-
tic void (19, 101, 102). 

Due to the relative abundance of miRNAs in various biological fluids and their 
stability and resistance to degradation in diverse storage media, miRNAs are 
 considered strong candidates as molecular biomarkers for prostate cancer (19, 89, 
91, 95, 96, 101). There are two distinct theoretical approaches concerning their 
utility: diagnostics, in which miRNAs can indicate presence or absence of disease; 
and prognostics, in which miRNAs aid in risk stratification and therapeutic 
 guidance. Concerning the first application, numerous pre-clinical studies have 
investigated miRNA expression trends in those with prostate cancer compared to 
non-malignant controls in various isolated body fluids (such as serum, plasma, 
urine, and semen) in order to identify miRNAs that predict the presence of dis-
ease. While individual miRNAs are often studied, the utilization of miRNA panels 
has bolstered diagnostic value as well (76, 103–106). However, this field requires 
further development, as much of the current data is complicated by a lack of con-
sistency between miRNA signatures and reproducibility. Proposed sources of these 
limitations include diversity of sample types (primary tumor, metastatic tissue, 
blood, urine, serum, plasma, etc.), study design, patient selection, study size, and 
most importantly, the intrinsic molecular heterogeneity of the disease (19, 101). 
Nevertheless, the idea of a miRNA panel as a non-invasive disease marker contin-
ues to make great headway, in hopes of a clinical application in the near future. 

Concerning the utility of miRNA as a disease prognosticator, proposed clinical 
applications include the prediction of biochemical recurrence after primary treat-
ment, the likelihood of transition to castration-resistant prostate cancer, and a 
generalized assessment of response to future therapy (101). Biochemical recur-
rence risk is an important clinical factor, as de-novo rise in serum PSA after treat-
ment can be predictive of metastatic spread. Multiple studies have investigated the 
role of miRNAs in this prediction, with various miRNA panels showing promising 
results (37, 107–115). Of particular interest is a miR index quote (miQ) proposed 
by Larne et al., which utilized four miRNAs (miRs -96-5p, -183-5p, -145-5p, and 
- 221-5p) to predict tumor aggressiveness in early organ-confined stages and was 
able to predict recurrence after radical prostatectomy with greater accuracy than 
PSA, with an AUC of 0.78 (115). 

Progression of disease after androgen deprivation therapy is known as castra-
tion-resistant prostate cancer and is a significant contributor to prostate cancer 
morbidity and mortality. Multiple miRNAs have been documented as predictive of 
castration resistance and many are associated with the androgen receptor pathway 
as either direct or indirect regulators (40, 116, 117). While several studies have 
demonstrated differential expression patterns of miRNA between castrate- sensitive 
and castration-resistant prostate cancer, miRNA-based modeling that predicts a 
transition from castrate-sensitive to castrate-resistant disease will require further 
development and refining (36, 40, 77, 116, 118, 119). 

MicroRNAs have also been promoted as biomarkers to guide personalized 
therapy by tailoring therapeutic options and monitoring for response. To this end, 
several studies have investigated miRNAs as predictors of both chemo- and 
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radio-sensitivity and have proposed models that are able to predict response rates 
to both systemic chemotherapy as well as radiation (101, 120–129). While these 
studies show promise, investigations into radio- and chemo- sensitivity have 
largely taken place in a non-clinical, in vitro setting, and further research is needed 
to determine if these trends are clinically transferable. 

CONCLUSION

There remains a need for prostate cancer markers beyond what is currently avail-
able, and miRNAs have the potential to serve as both diagnostic and prognostic 
biomarkers. For example, as the diagnosis of prostate cancer requires invasive and 
often repetitive biopsies, utilization of miRNAs as binary markers of the presence 
or absence of disease would both reduce morbidity associated with prostate can-
cer workup and healthcare-associated procedural costs (130–133). Further, as 
current prognostic algorithms lack the ability to truly predict metastatic risk in 
prostate cancer, miRNAs may refine clinical decision making (19, 93, 94, 96, 98). 
While further research is needed to bring the utilization of miRNAs as disease 
biomarkers to their full clinical potential, they remain a promising tool to improve 
diagnostics and prognostics in urologic malignancies. 

miRNAs also have the potential to reach therapeutics, which would be clini-
cally impactful. Since a single miRNA can regulate several separate targets involved 
in oncologic molecular pathways, targeting the miRNA may be beneficial on mul-
tiple molecular levels, thus providing redundancy in a therapeutic mechanism. 
Pre-clinical studies hope to take advantage of this redundancy with the develop-
ment of novel therapeutic approaches. These methodologies generally fall under 
two categories: miRNA mimics or miRNA inhibitors (19). Mimics replace lost or 
downregulated tumor-suppressive endogenous miRNAs and promote their down-
stream anti-oncogenic effects via targeting the 3’-UTR of the targeted oncogenes. 
miRNA inhibitors are antisense oligonucleotides, or anti-miRNAs, that inhibit 
endogenous tumor-promoting miRNAs via direct binding to the small RNA spe-
cies within the RNA-induced silencing complex, thus reversing their downstream 
effects (19). While the therapeutic benefit of this approach is intuitive, it is func-
tionally complicated by the necessity of effective delivery strategies. Two primary 
approaches include intra-tumoral therapy and systemic therapy, with particular 
attention focused on the latter as this would have the greatest effect on metastatic 
tumor burden. Proposed delivery methods include cationic-lipid transfection, 
polyethyleneimine or magnetic nanoparticles, atelocollagen, or viral vectors. 
(66, 134–140). While the majority of current research remains at the pre-clinical 
level, some miRNAs have reached early clinical development. For example, Hong 
et al. conducted a Phase 1 clinical trial into a miR-34a mimic MRX34, but the trial 
was discontinued due to its side effect profile (141). Certainly, further research is 
needed to further develop these therapeutic options, but in vitro and in vivo stud-
ies thus far show great promise for the future clinical application of miRNA as a 
therapeutic avenue in cancer.

While the subject of this chapter is miRNAs, an understanding of an increas-
ingly popular area of research—long non-coding RNAs (lncRNAs)––is necessary 
to understand the context of miRNA within this realm. These RNAs are an 
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emerging class of transcripts that are coded by the genome but not translated into 
protein. While not translated, ongoing research has uncovered their crucial roles 
in cellular and physiologic functions including chromatin dynamics, gene expres-
sion, growth, differentiation, and development (142–144). Unsurprisingly, emerg-
ing studies have shown that lncRNAs play an important regulatory role alongside 
metastamiRs in prostate cancer. For example, Huang et al. reported that lncRNA 
SNHG1 was upregulated in prostate cancer cells and had roles in regulating pro-
liferation, migration, invasion, and inhibition of apoptosis via repression of miR-
383–5p (145). Certainly, this growing body of research suggests that the true 
processes occurring in vivo surrounding oncomiRs and metastamiRs are far more 
complex than their individual targeting pathways alone, and that further research 
is required to fully comprehend these relationships. 

While discrepancies and inconsistencies remain, studies continue to better 
elucidate the vast and often redundant mechanisms through which they exert 
their oncologic effects to regulate characteristics of metastasis such as angiogene-
sis, cellular proliferation, migration, invasion, and EMT. Though this research is 
still in its infancy from a clinical perspective, efforts toward a more refined under-
standing are underway, with hopes of soon reaching the full clinical potential of 
oncomiRs and metastamiRs in combating prostate cancer and metastasis. 
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