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Abstract: Tumor metastasis is the main cause of cancer-related deaths. Tumor 
metastasis is orchestrated by a complex network of biological events. One such 
event is the formation of new blood vessels, termed as tumor angiogenesis. Tumor 
angiogenesis is essential for tumor progression. Without tumor angiogenesis, 
most solid tumors remain dormant. Apart from supplying tumors with nutrients 
and oxygen, tumor blood vessels provide a route for metastasis. Endothelial cells 
are key players in the formation of neovessels. Tumor endothelial cells that line 
tumor blood vessels differ from normal endothelial cells in many aspects. Tumor 
endothelial cells are irregular monolayers, have a higher expression of proangio-
genic factors, and impaired endothelial barrier function when compared with 
their normal counterparts. The basement membrane thickness of tumor blood 
vessels is uneven and the association between pericytes and tumor endothelial 
cells is weak, leading to vascular leakiness. In this chapter, we highlight the role 
of endothelial cells in the initial steps of tumor metastasis.
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INTRODUCTION

Cancer metastasis is the main cause of cancer death. Hematogenous metastasis is 
still a major issue in cancer therapy, despite improvements in the development 
and implementation of targeted therapies. Tumor cells induce neovascularization. 
Without angiogenesis, most solid tumors remain dormant (1). Tumor cells intrav-
asate from primary tumor into blood circulation and extravasate into distant organ 
from blood stream (Figure 1). Thus, blood vessels support tumor cell metastasis 
by providing a route from primary tumors to distant organs. The concept of tumor 
antiangiogenesis was proposed by Dr. Folkman in his 1971 landmark report (2). 
Folkman suggested that tumors are dependent on angiogenesis for their progres-
sion and that the inhibition of angiogenesis may restrict tumor growth (1). To this 
end, angiogenesis inhibitors (AIs)  ––for example, bevacizumab, a humanized anti-
vascular endothelial growth factor (VEGF) antibody (3)––have been widely used 
since its approval by the FDA in 2004. 

VEGF is highly expressed in tumor endothelial cells (TECs), and because 
VEGF is a known factor to enhance permeability of blood vessels (4), tumor blood 
vessels typically are leaky and immature structures. AIs not only block angiogen-
esis but also normalize blood vessel integrity and improve the delivery of oxygen 
and drugs (5). In addition, vascular normalization by AIs increases the 

Figure 1. Tumor metastasis process and tumor blood vessels. Tumor cells invade extracellular 
matrix, intravasate into the bloodstream, disseminate in the circulation and reach distant 
organs, and extravasate and invade into the parenchyma of distant tissues. 
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effectiveness of immunotherapy because immune cells are delivered into tumor 
tissues via blood vessels. However, the clinical benefits of AIs are limited (6) 
because of the development of resistance to AIs (7). TECs that line the inner sur-
faces of tumor blood vessels are the primary targets of AIs. Several reports have 
demonstrated that TECs are abnormal, and their abnormality is one of the causes 
of resistance to antiangiogenic therapy (8, 9). In addition, TECs are highly hetero-
geneous (10, 11). In this chapter, we overview the abnormality and diversity of 
TECs, offering new perspectives on treatment strategies that can target TECs.

ABNORMALITY OF TUMOR BLOOD VESSELS 

It is well known that tumor blood vessels differ morphologically from normal 
blood vessels. Abnormalities in tumor blood vessels may be due to an imbalance 
of angiogenic factors and their inhibitors (11–13). Vasculature in normal tissues 
has an organized hierarchical structure that supports efficient blood supply. 
However, tumor vasculature demonstrates unorganized patterns (14). Tumor 
blood vessels consist of irregular monolayers of endothelial cells (ECs) and do not 
have an endothelial barrier function (15). Basement membrane thickness is 
uneven. Unlike normal blood vessels, the association between pericytes and ECs 
are loose in tumor blood vessels (16). These abnormalities result in vascular leaki-
ness, resulting in an increase of interstitial fluid pressure in the tumor tissue, caus-
ing vessel collapse (17). Consequently, blood flow in tumor vasculature is generally 
random. This is one of the reasons why tumor is usually hypoxic regardless of the 
high vascularization. This causes insufficient delivery of anti-cancer drugs and 
immune cells that attack cancer cells (18). 

Hypoxia may be a switch to glycolytic metabolism, and an increase in tumor 
acidosis in some tumors. Hypoxia in tumors further induces tumor aggressiveness 
through epithelial-mesenchymal transition (EMT), resulting in tumor 
 metastasis  (19). Thus, at least theoretically, vascular normalization is beneficial 
also for anti-metastasis. There is also a dysfunction in the TECs themselves. While 
normal ECs (NECs) are uniform, forming a continuous monolayer in normal 
blood vessels, TECs are irregular in shape and size. In addition, there are often 
gaps between adjacent TECs (20) and transcellular fenestrations also have been 
observed in TECs. These morphologically abnormal TECs can cause hemorrhage 
and plasma leakage. Furthermore, loose intercellular adhesion in the tumor blood 
vessels is one of the mechanisms of tumor cell intravasation (Figure 2). 

PROANGIOGENIC PHENOTYPE IN TUMOR 
ENDOTHELIAL CELLS

There are marked phenotypic variations between TECs and NECs. TECs show a 
higher expression of proangiogenic factors when compared with NECs. For 
example, VEGFR-1, VEGFR-2, VEGFR-3, VEGF-D, angiopoietin receptor tie-2, 
and angiopoietin 1 are upregulated in TECs when compared with NECs (21), 
resulting in a proangiogenic phenotype (22). They also express adhesion 
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molecules such as ICAM-1, VCAM-1, and E-selectin (23), through which they 
interact with proinflammatory cells and tumor cells. We have previously demon-
strated that TECs show an upregulated expression of secreting factors such as 
biglycan (24) and pentraxin 3 (PTX3) (25), known as damage-associated molecu-
lar pattern (DAMPs), which activate inflammatory signal, via NF-κB without 
infection. Thus, TECs have been described as “activated” and “chronically 
inflamed” (26). 

Unlike NECs, TECs are highly proliferative (22, 27), self-sustaining, and are 
less dependent on serum for proliferation (21). FDCP 6 homolog (DEF6) and 
PTX3, upregulated in TECs, play a role in continuous proliferation (28). TECs 
are highly migratory than NECs (10, 22, 29). The upregulation of several genes, 
such as, LOX (30), SBSN (31), and biglycan (24) enhances the migration and 
tube-forming ability of TECs. Murine TECs maintain their biological character-
istics for longer periods in cell culture than NECs (22). Several chemokine 
receptors CXCR7 (32–34) or PTGIR (35) impart a proangiogenic phenotype to 
TECs. Furthermore, TECs show altered metabolism. It was recently demon-
strated that uncontrolled glycolysis in TECs due to an upregulated expression of 
glycolysis genes, including the enzyme 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 3 (PFKFB3), contributes to structural deformities observed in 
tumor blood vessels (36). We have reported that TECs can proliferate even under 
lactic acidosis which is caused by tumor cell glycolytic metabolism. The pH 
regulator, carbonic anhydrase 2 (CAII), is involved in resistance to low pH in 
TECs (13). Moreover, TECs require nucleotide precursors and lipids to maintain 

Figure 2. The structure of normal and tumor blood vessels. Normal endothelial cells are 
uniform, forming a continuous monolayer in normal blood vessels. On the other hand, there 
are often gaps between adjacent tumor endothelial cells. Transcellular fenestrations also 
have been observed in tumor endothelial cells. These morphologically abnormal tumor 
endothelial can cause hemorrhage and plasma leakage. Also, loose intercellular adhesion in 
the tumor blood vessels is one of the mechanisms of tumor cell intravasation.
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their high proliferation. To support these biomolecule demands, TECs express 
high levels of key enzymes such as D-3-phosphoglycerate dehydrogenase 
(PHGDH) and phosphoserine aminotransferase 1 (PSAT1) (36) for serine bio-
synthesis, and fatty acid synthase (FASN) (37) for lipid synthesis. Nucleotide 
biosynthesis is also enhanced in TECs compared to that in NECs (38). These 
phenotypes of TECs are beneficial for tumor cells to grow and metastasize.

CHROMOSOMAL ABNORMALITY AND STEM-LIKE 
PHENOTYPE IN TECS 

Chromosomal abnormalities have been reported in murine TECs (39), and human 
renal TECs (40). These include chromosomal aberrations, missing chromosomes, 
translocations, and abnormal centrosomes characterized by large sizes and excess 
numbers (39). The hypoxia in tumor microenvironment induces genetic 
 instability  and abnormal centrosome structure, resulting in chromosome 
 missegregation  (41). We have also found that reperfusion after hypoxia causes 
chromosome abnormality (42). TECs in B-cell lymphoma were also found to have 
lymphoma-specific chromosomal translocations (43). More recently, nonhemato-
poietic aneuploid CD31+ circulating TECs were detected in the peripheral blood 
of patients with breast cancer, demonstrating that circulating TECs possess chro-
mosomal changes (44). Transdifferntiation from glioblastoma to ECs may be very 
rare because ECs rarely carry the cancer genetic mutations (45); however, other 
groups of investigators have demonstrated that transdifferentiation from tumors 
may occur in other cell types, not ECs (46). 

It has been reported that monocyte-derived immature dendritic cells behave as 
endothelial-like cells in the presence of specific cytokines such as VEGF (47). 
These variations could lead to TEC diversity. In addition, tumor microenviron-
ment itself can cause TEC diversity. The hypoxic tumor microenvironment induces 
the expression of “stemness” genes (48). Several studies have identified the upreg-
ulated expression of stemness genes such as stem cell antigen-1 (Sca-1) (49), 
MDR-1 (49) and aldehyde dehydrogenase (ALDH) (50) in TECs. These stem-like 
cell population is a part of TEC population (51, 52). TECs upregulate ALDH. 
There are two populations of TECs based ALDH on activity: high, and low. 
ALDHhigh TECs produce longer tubular networks in matrigel than ALDHlow TECs 
(50). The ALDHhigh TECs are resistant to the chemotherapeutic drug 5-Fluorouracil 
(5-FU), with upregulation of stemness-related genes, compared with ALDHlow 
TECs (53). Furthermore, ALDHhigh TECs show higher grade of aneuploidy (53). 
Other reports show that CD133(+) TECs have a higher frequency of aneuploidy 
than the CD133(-) TECs. This suggests that several TECs originated from pro-
genitor cells may be involved in inducing genetic instability in these cells (54). It 
has been reported that progenitor-derived TEC which express CD133 are undif-
ferentiated, highly proliferative cells (55). 

TECs are indeed different depending on tumor microenvironment (10). 
Naito et al. reported that vascular-resident stem/progenitor-like ECs, which 
form a minor population in tumors, contribute to tumor angiogenesis (56). The 
heterogeneity of TECs has been revealed at the single cell level resolution 
by  recent technological improvement, e.g., single cell RNA sequence. 
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There  are  various population of TECs, for example, TECs with highly colla-
genolytic activity, TECs that attract immune cells, and that with collagen cross-
linking activity (52).

DRUG RESISTANCE IN TECs 

TECs demonstrate drug resistance via high drug efflux (56). The heterogeneity of 
ECs in tumor tissues may be a mechanism contributing to resistance to anticancer 
and antiangiogenic therapy. We have shown that the TECs of metastatic mela-
noma have a higher expression of MDR-1 (8) and ALDH, and are resistant to the 
drug paclitaxel (53). Another study, using TECs derived from human hepatocel-
lular carcinoma, showed that the CD105+ TECs are more resistant to 5-FU and 
sorafenib (an antiangiogenic drug) when compared to CD105+ NECs or human 
umbilical vein ECs (57). IGFBP7 expressed by TECs suppresses IGF1R signaling 
and the stem-cell-like property of tumor cells. Chemotherapy triggers TECs to 
suppress IGFBP7, and the upregulation of IGF1 activates the FGF4-FGFR1-ETS2 
pathway in TECs and accelerates the conversion of tumor cells to chemoresistant 
tumor stem-like cells (58). Tumor-derived microvesicles induce EC drug resis-
tance via IL-6 upregulation, suggesting tumor secreting factor cause resistance of 
TEC to chemotherapy (59). Kikuchi et al. reported that IL-8, induced by anti-
cancer drugs, increases the expression of p-glycoprotein/ABCB1, which is a drug 
transporter in TECs of human bladder cancers (60) (Figure 3). It has been shown 

Figure 3. Drug resistance in tumor endothelial cells. During cancer therapy, a drug transporter, 
ABCB1 is upregulated in tumor endothelial cells. These resistant tumor endothelial cells also 
sustainably support tumor cells and provide the route for distant metastasis.
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that inhibition of TEC ABCB1 enhanced the therapeutic efficacy of the anti-cancer 
drug paclitaxel (61) (Figure 3). These resistant TECs also sustainably support 
tumor cells and provide the route for distant metastasis.

THE ROLE OF TECs IN CANCER PROGRESSION 

Tumor stromal cells such as cancer-associated fibroblasts and the immunosup-
pressive myeloid-derived suppressor cells contribute to tumor progression (62). 
TECs also play important roles at this process. The enhanced VEGF signaling in 
TECs causes immature blood vessel formation, through which tumor cells could 
intravasate easily, as described above. Upregulation of adhesion molecules in 
TECs is also an advantage for tumor cells to attach to ECs, which lead to extrava-
sation to drive metastatic dissemination. In addition, TECs secrete various induc-
tive factors named “angiocrine factors” (11), which stimulate growth and migration 
of tumor cells (63). Biglycan has been detected in human lung cancer patients and 
TEC biglycan level was correlated to poor prognosis of cancer patients (64). TECs 
produce endothelin-1, bFGF, TGFβ, IL-6, and IL-8 as paracrine mediators of pros-
tate cancer progression (65). Other angiocrine factors, including IL-6, IL-3, gran-
ulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage-CSF 
(GM-CSF), IL-1, and nitric oxide, stimulate leukemia cancer cell growth. In addi-
tion, TEC-derived Jag1 activates Notch2 to promote invasiveness of lymphoma 
cells (66). CXCR7 upregulated in TECs regulates CXCL12–CXCR4-mediated 
tumor cell transendothelial migration (67). Platelet-derived growth factor (PDGF) 
signaling is important for inhibitor of differentiation 4 (ID4)-mediated regulation 
of ECs and glioma cells by promoting the PDGF–NOS (nitric oxide synthase)–ID4 
signaling axis. These effects maintain cancer stemness and promote tumor angio-
genesis (68). Moreover, TECs stimulate tumor cell intravasation and metastasis. 
TEC-Notch1 promotes lung metastasis with neutrophil infiltration. ALK1 expres-
sion in TECs is an independent prognostic factor for metastasis of breast 
 cancer (69). The oxygen-sensing prolyl hydroxylase domain protein 2 (PHD2) in 
TECs is involved in vessel shaping. PHD2 deficiency normalized blood vessels, 
which led to the reduction of tumor cell intravasation and metastasis (70). We 
have shown that biglycan, a small leucine-rich repeat proteoglycan, was remark-
ably upregulated in TECs of metastatic tumors and facilitated the migration of 
toll-like receptor2/4-expressing tumor cells, which increased circulating tumor 
cells and lung metastasis (71). Endothelial calcineurin activates the outgrowth of 
metastases (72). These studies suggested that TECs actively promote tumor pro-
gression and metastasis. 

In recent years, immune checkpoint inhibitors have become key drugs for 
antitumor immunity (73). Tumor blood vessels play an important role in deliver-
ing immune cells into tissues (74). The abnormalities of TECs suppress T-cell 
trafficking and function, resulting in immune-suppression (75). VEGF and pros-
taglandins induce CD95 (FasL) expression on TECs, leading to apoptosis of anti-
cancer CD8+ T cells. Upregulation of CD73 on TECs reduces effector T-cell 
homing, whereas anti-CD73 antibodies can restore efficacy of antitumor immu-
notherapy and decrease tumor angiogenesis (76). In addition, PD-L1 is expressed 
in TECs. Biglycan secreted from TEC induces tumor fibrosis (77), which acts as 
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a barrier for immune cells to migrate towards tumor cells, which leads tumors’ 
escape from immunity. Tumor fibrosis also induces tumor cell invasion via 
 integrin signaling, leading tumor progression. Thus, TECs support tumor cell 
progression in various manners. Vascular normalization is a promising concept 
in anticancer treatment and can potentially improve the outcome of 
 immunotherapies (78).

CONCLUSION

The functions of ECs in angiogenic blood vessels in tumor tissues are not only to 
transport nutrients and oxygen for tumor survival and growth, but also to actively 
promote tumor progression and chemoresistance by expressing various juxtra-
crine or paracrine factors. Antiangiogenic therapy has been widely used in many 
types of tumors; however, since it is now clear that TECs are heterogeneous, to 
understand the complex situation in the tumor microenvironment, companion 
diagnostics to monitor vascularization is required. 
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