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Abstract: Chemotherapy resistance is a major limiting factor for the extensive use 
of chemotherapeutic drugs in cancer treatment. Despite the large number of newly 
discovered medications, treatment success rates are still unsatisfactory. Programmed 
cell death, called apoptosis, is one of the main tissue homeostasis mechanisms that 
balances cell survival and death. Apoptosis can be induced through extrinsic and 
intrinsic pathways or repressed by inhibitor proteins. During tumor progression, 
homeostasis between the anti-apoptotic and pro-apoptotic regulators is disturbed 
and shifted towards survival through various escape mechanisms. Dysregulation 
of apoptosis-regulatory mediators, particularly high levels of anti-apoptotic pro-
teins, is one of the main mechanisms by which tumor cells acquire resistance to 
chemo- and radiotherapy. Therefore, it is important to restore apoptosis in the 
chemo- and radiotherapy-resistant tumor cells. In this chapter, we summarize 
general chemotherapy resistance mechanisms, discuss the role of extrinsic and 
intrinsic pathways in chemoresistance, and review the current experimental strate-
gies to overcome chemotherapy resistance targeting the apoptotic pathways. 
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INTRODUCTION

Cancer is an important global health problem causing death of ~10 million 
people in 2020 (1). The preeminent hallmarks of tumor cells are uncontrolled 
proliferation and the acquisition of invasive and/or metastatic properties (2). 
The therapeutic options for cancer largely depend on the stage of the disease; 
these include surgery, chemotherapy, immunotherapy, radiotherapy, hormone, 
and anti-angiogenic therapy (3). Cytotoxic chemotherapy is one of the  treatment 
modalities for the control of invasive malignancies (4, 5). Commonly used 
 chemotherapeutic drugs are alkylating agents, anthracyclines, topoisomerase 
inhibitors, antimetabolites, microtubule inhibitors, molecular targeted drugs 
and immune antibodies (6). Limiting factor for the extensive use of 
 chemotherapeutic drugs in cancer treatment is the development of chemother-
apy resistance by which tumor cells often regain their invasive and metastatic 
properties (7, 8). 

MECHANISMS OF CHEMOTHERAPY RESISTANCE 

Chemotherapeutic drug resistance can either occur through intrinsic or acquired 
mechanisms. Intrinsic mechanisms include natural resistance of tumor cells 
against chemotherapeutic drugs at the onset of treatment, while acquired mecha-
nisms occur later during cancer treatment, where tumor cells that were initially 
sensitive to the administered chemotherapeutic drug develop resistance against it 
(8, 9). Acquired mechanisms that result in drug resistance can vary from altera-
tions in drug activation/inactivation to decreased drug uptake, increased drug 
release, changes in drug targets, inhibition of cell death, increased DNA repair, 
and changes in epigenetic regulation (7, 10).

Uptake and efflux mechanisms 

Limited or prevented access of targeted tumor cells to chemotherapeutics drugs 
often result in the development of drug resistance (11). ATP-binding cassette 
(ABC) transporter protein family members are located at the plasma membrane 
and use ATP as an energy source to effectively pump drugs out of the cell (2). ABC 
transporter proteins are usually substrate-specific and mediate efflux of major 
cancer chemotherapeutics such as taxanes, topoisomerase inhibitors, and antime-
tabolites. Increased expression of ABC transporter proteins such as MDR1, MRP1 
and BCRP can reduce intracellular drug concentrations, thus leading to chemo-
therapy resistance (12). MDR1 and BCRP are highly expressed in the blood-brain 
barrier which complicates treatment of metastatic tumor cells in the central ner-
vous system and brain (11). Reduced uptake of chemotherapeutic drugs into 
tumor cells has also an unfavorable effect on cancer treatment (13). For instance, 
the solute carrier (SLC) transporter protein family members are involved in 
 processes like drug uptake or absorption, distribution, metabolism, and 
 elimination. Therefore, changes in SLC transporter protein expression levels are 
often associated with chemotherapy resistance (14). 
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Drug metabolism

Some chemotherapeutic drugs must be activated by metabolic enzymes before 
reaching their clinical efficacy. Irregularities or defects of these processes can lead 
to reduced drug activation, and chemotherapy resistance (15). Cytochrome P450 
(CYP) superfamily members, glutathione-S-transferase (GST), uridine diphospho-
glucuronosyltransferase (UGT), thiopurine methyltransferase (TPMT), and dihy-
dropyridine dehydrogenase (DPD) are the most prominent enzymes responsible 
for chemotherapeutic drug activation and detoxification. Genetic variations in 
specific CYP genes with effects on the protein structure or expression levels can 
cause functional differences in drug absorption or clearance leading to chemo-
therapy resistance; for instance, CYP3A5 polymorphisms that are associated with 
premature lapatinib inactivation are responsible for drug resistance occurring 
during breast cancer treatment (16, 17). On the other hand, GSTs are phase-II 
detoxification enzymes that are protecting cellular macromolecules from reactive 
electrophile attacks, catalyzing conjugation reactions with xenobiotics, inactivat-
ing conjugated drugs, and presenting them to ABC transporters (11, 18). Elevated 
GST expression levels have been found to be associated with chemotherapy resis-
tance in various cancer types (19). In addition, GSTs can also indirectly cause 
drug resistance by inhibiting the RAS-MAPK signaling pathway (7).

DNA damage repair

Many chemotherapeutic drugs cause DNA damage, either directly (for example, 
platinum-based drugs) or indirectly (for example, topoisomerase inhibitors). 
Tumor cells can counteract these damages by using several DNA repair  mechanisms 
such as homologous recombination, base excision repair, mismatch repair, 
 nucleotide excision repair or translesion synthesis (20–22). Elevated expressions 
of repair systems genes are often associated with chemotherapy resistance and 
therefore excellent molecular drug targets to overcome chemotherapy resistance 
in many cancer types (20, 23–25).

Epigenetic regulation 

Heritable changes in gene expression that are not caused by variations and muta-
tions of the genomic DNA sequence are usually epigenetically regulated (26). This 
can be achieved by different mechanisms, including the creation of specific DNA 
methylation and histone modification patterns that are crucial in regulating gene 
expression. Upregulation of genes encoding DNA repair, anti-apoptosis, and ABC 
transporter proteins by epigenetic mechanisms can contribute to the development 
of chemotherapy resistance during cancer treatment (7, 27).

In the human genome, about 2% of all transcripts encode for proteins, while 
the majority of the remaining are non-protein coding RNA transcripts (28). 
MicroRNAs (miRNAs) are short RNA transcripts consisting of ~22- 24 nucleotides 
that bind to the 3'-untranslated region (3'UTR) of their target mRNA and inhibit 
their translation (29). It has been shown that miRNAs that target genes involved 
in carcinogenesis, drug metabolism, drug efflux, and uptake are also responsible 
for the development of chemotherapy resistance (30, 31). miRNAs can serve as 
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biomarkers for the assessment of prognosis and survival of cancer patients under-
going chemotherapy (7). Long non-coding RNAs (lncRNAs) are another class of 
non-protein coding RNA transcripts, ~200 nucleotides long, with important func-
tions in gene expression. Especially, those that regulate the expression of drug 
metabolism enzymes, ABC transporter proteins, DNA repair proteins, and pro-
teins involved in the apoptotic pathway have been found to be responsible for the 
development of chemotherapy resistance (28, 32). Recently a new class of non-
protein coding RNA transcripts, named circular RNAs (circRNAs), have been 
found to be associated with chemotherapy resistance and are currently used as 
prognostic biomarkers (33).

Inhibition of cell death

The main goal of cancer chemotherapy is to inhibit cancer cell survival by induc-
ing cell death. Apoptosis, or programmed cell death, is a genetically regulated and 
evolutionarily conserved process with important roles in all developmental stages 
and tissue homeostasis (34). Defects in the apoptotic pathway can cause abnormal 
cellular proliferation and accumulation of genetic defects, mostly leading to can-
cer development and later also chemotherapy resistance (35). The apoptotic regu-
latory molecules constitute important molecular targets in cancer therapy; most 
anticancer treatments like chemotherapy, radiotherapy, and immunotherapy pri-
marily aim to activate apoptosis, and they fail when cancer cells gain apoptotic 
resistance (36). 

ROLE OF APOPTOSIS IN CHEMOTHERAPY RESISTANCE

Apoptosis is regulated by extracellular and intracellular signals from extrinsic and 
intrinsic pathways (37). The extrinsic pathway is mediated by cell surface death 
receptors while the intrinsic pathway is initiated from the mitochondria. Caspases 
(cysteine   aspartic acid-specific proteases) are the regulatory proteins in both path-
ways and divided in two groups: initiators and effectors (38). Initiator caspases are 
activated by binding to an adaptor molecule and then activate effector caspases. 
Caspases-8 and caspase-10 are the initiators of the extrinsic pathway while cas-
pase-9 activates the intrinsic pathway. Although they are triggered by different 
initiators, effectors (caspases-3, -6 and -7) are similar for both extrinsic and intrin-
sic apoptosis (39).

Extrinsic pathway

The extrinsic or death receptor-mediated pathway is activated by binding of 
death-inducing ligands to the death receptors on the cell surface. Membrane 
death receptors belong to the tumor necrosis factor (TNF) receptor superfam-
ily and include tumor necrosis factor-receptor 1 (TNF-R1/DR1), Fas (Apo-1/
CD95/DR2), death receptor-4 (DR4) and -5 (DR5) (40). These receptors are 
activated by specific ligands such as TNF-alpha, FasL and TNF-Related apop-
tosis inducing ligand (TRAIL). Ligand binding leads to the recruitment of 
adapter proteins, activation of initiator caspases, and formation of 
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death-inducing signaling complex (DISC) (41). Cell death is accomplished 
through executioner caspases activation (35, 37, 42). Decreased expression of 
death receptors was associated with reduced sensitivity to apoptosis in several 
cancers. For instance, transcriptional downregulation of FAS/CD95 (43), con-
stitutive endocytosis of DR4 and DR5 (44), and decoy receptors (45, 46) are 
the potential sources of the resistance mechanism. 

Intrinsic pathway

Cellular stress signals resulting from radiation, cytotoxic drugs, toxins, pollutants, 
hypoxia, or loss of cell survival factors activate intrinsic pathway (47–51). The 
main characteristics of the intrinsic pathway are mitochondrial outer membrane 
permeabilization, cytochrome-c release, formation of apoptosome complex and 
activation of caspase-9 (42). 

B-cell lymphoma 2 (BCL-2) protein family, key regulator of cell survival and 
death, initiates the release of pro-apoptotic proteins from the mitochondrial intra-
membrane space and regulates the intrinsic or mitochondria-mediated apoptotic 
pathway. BCL-2 members are well characterized by the presence of the BCL-2 
homology (BH) domain and divided into three groups according to their struc-
tural and functional properties (52). The balance between pro- and anti-apoptotic 
subfamily members is regulated by cell signaling pathways and the fate of the cell 
is determined according to “survive or die” signals. Overexpression of anti- 
apoptotic BCL-2 proteins provide survival advantage to the malignant cells and 
promote the expansion of radiotherapy or chemotherapy resistant colonies 
(53, 54). Besides that, decreased expression of pro-apoptotic proteins such as BAX 
and BAK are associated with chemotherapy resistance (55).

BCL2 family members have remarkable potential as molecular prognostic mark-
ers to predict chemotherapy response in myeloma (56), leukemia (57, 58), breast 
cancer (59), and solid tumors (60). Furthermore, dynamic BH3 profiling has recently 
been used to identify the best BH3 mimetic combinations in the resistant xenograft 
mouse models (61) and non-small cell lung cancer (NSCLC) cell lines (62).

TARGETING APOPTOSIS TO OVERCOME 
CHEMOTHERAPY RESISTANCE 

With the increasing knowledge of cancer molecular biology, numerous candidate 
molecules have been identified and some approved as molecular targeted 
 therapies (63). However, chemotherapy resistance is still the major obstacle to 
successful cancer treatment in the 21st century. Because apoptosis is the main cell 
death mechanism, targeting apoptotic pathways has a remarkable potential to 
overcome chemotherapy resistance. 

Targeting extrinsic pathway

TRAIL and agonists for TRAIL specific receptors, DR4 (TRAIL-R1) and DR5 
(TRAIL-R2), are extrinsic pathway inducers that selectively kill tumor cells while 
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harmless to the normal cells. Although they are very advantageous in this regard, 
inefficient receptor multimerization, poor pharmacokinetic properties, and tumor 
intrinsic resistance limit their usage in the clinical practice (40).

Death receptor agonists (DRAs) have been developed in different forms such 
as monoclonal antibodies (64, 65), genetically modified specific death receptor 
agonists (66), drug conjugates (64), or nanobody constructs (67), to enhance 
selectivity, increase antitumor activity, and overcome chemotherapy resistance. 
TRAIL resistance, exhibited by ~70% of cancers, was re-sensitized by targeting 
apoptosis pathways even at a low drug dose (68). A ferritin-based nanocage 
loaded with native-like trimeric TRAIL and doxorubicin showed antitumor effi-
cacy both in vitro and in vivo experiments (68). CRISPR-Cas9 knockout screen in 
the TRAIL and DRA-resistant colorectal cancer cells (CRCs) revealed that XIAP, 
BCL-XL and CDK6 genes are associated with resistance (69). Combination of 
death receptor agonists with BCL-XL and/or XIAP inhibitors overcame chemore-
sistance in patient-derived xenografts (69). 

It has been shown that RALB GTPase which has functions downstream of RAS, 
also controls apoptotic priming of cells (70). Interestingly, RALB regulates DR5 
expression in the KRAS mutant CRCs which are resistant to MEK1/2 inhibition. 
Furthermore, RALB depletion increased cell surface DR5 levels, induced cas-
pase-8 mediated activation of the extrinsic pathway, and sensitized KRAS mutant 
CRCs to recombinant human TRAIL (70).

Combination therapy regimens are commonly used to overcome chemother-
apy resistance in clinical trials. A recent report showed that sequential treatment 
might be more effective than combined treatment to block drug resistance (71). 
To be specific, chemotherapeutic agents simultaneously stimulate the expression 
of TRAIL death and decoy receptors. Sequential treatment of cells with chemo-
therapeutic agents, followed by DR5-B remarkably sensitized resistant cancer cell 
to the DR5-B (71). Likewise, androgen-independent and TRAIL-resistant prostate 
cancer cells were sensitized to TRAIL-mediated apoptosis via pre-treatment with 
taxane (72). Additionally, DRAs can increase the efficacy of other drugs and con-
vert the response from anti-proliferative to apoptotic state (73). 

Targeting intrinsic pathway

Human tumors generally express high levels of anti-apoptotic proteins and shut 
down themselves to the death signals. Thus, numerous molecules have been 
developed to inhibit anti-apoptotic signals, and some of them have been approved 
by the FDA (74). We would like to focus on chemotherapy-resistant tumors and 
discuss potential treatments that can restore drug sensitivity. 

BH3 mimetics are small molecules that can mimic the binding of the BH3-only 
proteins to the hydrophobic groove of anti-apoptotic proteins of the BCL-2 family 
(75). Among them ABT-199 (Venetoclax) is approved for use in the chronic lym-
phocytic leukemia (CLL); ABT-263 (Navitoclax), S55746, and S63845 are under 
Phase I/II trials (52). Although venetoclax provides high remission rates, recur-
rence develops. A novel mutation, Gly101Val, in the BCL-2 gene has been reported 
in CLL patients as a source of the venetoclax resistance (76). This mutation 
reduces the affinity of venetoclax to BCL-2 and leads to acquired resistance (76). 
Combination of venetoclax with the PI3K/AKT/mTOR inhibitors (NVP-BEZ235 
and GS-1101) restored venetoclax sensitivity in the resistant cells (77). 
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Cisplatin  and ABT737 combination increased the sensitivity of ovarian cancer 
cells to cisplatin via regulation of mitochondrial fission (78). It is also possible to 
prevent drug resistance by using the synergistic effects of BCL-2 inhibitors. For 
instance, resistance to osimertinib (AZD9291) could be overcome with ABT263 
and ABT199 combination (79). 

MCL-1 is an important anti-apoptotic member of the BCL-2 family, and its 
stabilization has a critical function in the intrinsic resistance. Patients with 
increased MCL-1 expression have shown drug resistance, relapse, and poor prog-
nosis (80). Following venetoclax treatment, binding of released BIM by MCL-1 
caused intrinsic resistance in acute myeloid leukemia (AML) cells and combina-
tion of venetoclax with conventional chemotherapeutic agents daunorubicin or 
cytarabine restored drug sensitivity (81). Pan-BCL-2 inhibitor (-)BI97D6 
 suppressed MCL-1 and abolished ABT-737 resistance in AML (82). MCL-1 
 inhibitor, VU661013, induced apoptosis in venetoclax-resistant AML cells and 
patient-derived xenografts (83). Another MCL-1 inhibitor, S63845, killed MCL-1 
dependent cancer cells by activating the BAX/BAK dependent mitochondrial apop-
totic pathway (84). MCL1 and BCL2 inhibitor combination, S63845 and ABT-199, 
repressed tumor growth in BRAF-V600E mutant advanced melanoma (85). Similar 
combination with AZD5991 and venetoclax provided a sharp decrease in the 
MCL-1 expression and tumor regression in the mouse AML model (86).

Targeting the inhibitors of apoptosis

Inhibitors of apoptosis proteins (IAPs) family includes X-linked IAP (XIAP), 
cIAP1, cIAP2, ILP2, Bruce, Survivin, Livin and NAIP (87, 88). Overexpression of 
these proteins lead to chemoresistance and poor prognosis (89). Targeting IAPs is 
a safe therapeutic option that has limited effect on non-cancer cells and more 
attractive upstream signaling on initiator and effector caspases (90). XIAP is the 
most potent IAP with three binding domains to the effector caspases and directly 
blocks apoptosis. IAPs can be targeted by antagonist proteins, such as Smac/
Diablo, Omi/HtrA2, XIAP-associated factor 1 (XAF1), and apoptosis related 
 protein in the TGF-β signaling pathway (ARTS) (88). 

Transmission of exosomal circular RNA of XIAP (Circ-XIAP) to the docetaxel-
resistant prostate cancer cells acted as a miRNA sponge for miR-1182 and pro-
moted resistance (91). A recent report showed that anti-apoptotic proteins 
FLICE-like inhibitory protein (FLIP) and XIAP are downregulated after hydrogen 
peroxide in the imatinib-resistant CML cells (92). Mechanism of XIAP and FLIP 
degradation is explained as: ROS-activated ERK decreases AKT phosphorylation 
which inhibits AKT-XIAP binding and increases ubiquitin-mediated XIAP degra-
dation (92).

Survivin is the smallest member of the IAPs family and associated with chemo-
resistance and poor prognosis (93). Survivin inhibitors MX106/MX107 sup-
pressed chemotherapeutic resistance of triple-negative breast cancer (TNBC) cells 
by inhibiting nuclear factor-κB (NF- κB) activation in vitro and in vivo orthotopic 
xenograft model (94). 

Hagenbuchner et al. reported the effects of SMAC-mimetics, and combination 
of them with the glycolysis inhibitors, on mitochondrial dynamics (95). SMAC 
mimetic treatment induced mitochondrial fragmentation, inhibited ROS accumu-
lation, and caused Warburg effect, thus cells drifted into a highly glycolytic state 
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and become highly sensitive to non-genotoxic treatments in vitro and in vivo (95). 
This metabolic shift was used to sensitize cancer cells to the non-toxic glycolysis 
inhibition which can overcome chemoresistance.

DEBIO-1143, a SMAC mimetic that targets cIAP1, cIAP2, and XIAP, is cur-
rently in phase III clinical trial for the treatment of locally advanced squamous cell 
carcinoma of the head and neck (NCT04459715). DEBIO-1143 treatment 
reversed carboplatin-resistance of ovarian cancer cells by inducing apoptotic or 
necroptotic cell deaths (96). Similarly, first line chemotherapy-resistant urothelial 
cancer cells responded well to TRAIL after SMAC mimetic treatment (97). 

Down-regulation of the tumor suppressor protein prostate apoptosis response-4 
(PAR-4) is frequent in human cancers and associated with tumor cell survival and 
recurrence (98). Stability of cIAP1 is regulated by PAR-4 and targeting cIAP1 
restores caspase-8 activation and overcomes chemoresistance induced by the loss 
of PAR-4 (98). Castration-resistant prostate cancer cells were sensitized to enzalu-
tamide using AEG40995 which is an IAP antagonist (99). AEG40995 degrades 
cIAP1 protein and combination with enzalutamide increases apoptosis via activa-
tion of caspase-8 (99). 

Targeting non-protein coding RNAs 

Targeting resistance-related miRNAs or lncRNAs has been studied in several 
cancers. Ectopic overexpression of let-7i inhibited resistance in breast cancer 
cells via targeting KRAS and BCL2 (100). Upregulation of BCL2 targeting miR-
153-3p increased imatinib sensitivity in tyrosine kinase inhibitor (TKI)-resistant 
CML cells (101). Overexpression of BCL-xL led to acquired resistance to the 
BCL-2 inhibitor ABT-199 (venetoclax). Ectopic expression of BCL-xL targeting 
miR-377 increased apoptosis in chronic lymphocytic leukemia (CLL) cells 
(102). miR-214-3p is another tumor suppressor that regulates ABCB1 and XIAP, 
and inhibits chemoresistance; it is a potential therapeutic target in retinoblas-
toma (103).

A recent report indicated that signal transducer and activator of transcription 
3 (STAT3) transcription factor translocates to the nucleus and mitochondria, and 
dysregulates apoptotic pathways and ROS production in gemcitabine-resistant 
lung adenocarcinoma cells (104). Silencing of STAT3 inhibited the proliferation of 
resistant cells through two main mechanisms: blocking the ROS production, and 
anti-apoptotic proteins (104).

LncRNA NONHSAT141924 was associated with paclitaxel resistance in breast 
cancer cells, and its inhibition reversed resistance (105). LINC00473 promotes 
taxol resistance in CRCs, and its inhibition using tumor suppressor miR-15a 
reversed resistance via inducing apoptosis (106). In gastric cancer cells, urothelial 
carcinoma associated 1 (UCA1) reversed adriamycin resistance through the 
upregulation of cleaved PARP and downregulation of BCL-2 (107). In 
 doxorubicin-resistant bladder transitional cell carcinoma (BTCC) cells, GAS5 
restored  sensitivity to doxorubicin, and inhibited malignant proliferation (108).

Resistance-associated circRNAs were investigated in doxorubicin-resistant 
AML cell lines, and patients-derived bone marrow specimens (109). Among the 
49 differentially expressed circRNAs, circPAN3 was found as a potential target for 
reversing drug resistance via miR-153-5p/miR-183-5p-XIAP axis (109).
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Targeting endoplasmic reticulum - mitochondria interactions 

The unfolded protein response (UPR) is an acute stress response of mammalian 
cells and regulated by the endoplasmic reticulum (ER) localized proteins such 
as HSPA5, PERK, IRE1, and ATF6. Furthermore, ER can produce pro-apoptotic 
signals that amplify the apoptotic signaling cascade via ER-localized BCL-2 
family proteins and this crosstalk might be involved in chemotherapy resistance 
(110).

Anti-apoptotic HSPA5 protein (also known as BIP or GRP78) is generally 
 overexpressed in solid tumors and associated with increased malignancy and 
 chemotherapy resistance. Doxorubicin-conjugated cell penetrating cyclic 
 anti-HSPA5 peptide induced apoptosis in chemotherapy-resistant B-lineage acute 
lymphoblastic leukemia (ALL) cells (111). 

BAG3 is an anti-apoptotic, co-chaperone protein that is highly expressed in 
chemoresistant breast cancer cells (112). Inhibition of BAG3 down-regulated 
anti-apoptotic proteins (MCL-1, BCL-2 and BCL-X) and restored chemosensitiv-
ity (112). 4-HPR is a synthetic retinoid that induces apoptosis and cell death in 
cancer cells. It was reported that 4-HPR stimulated the expression of ER stress-
related and pro-apoptotic genes, and sensitized breast cancer cells resistant to 
TRAIL (113).

Natural compounds targeting apoptosis

Numerous studies have shown that natural compounds can be used to induce 
TRAIL-mediated apoptosis or overcome TRAIL resistance. For example, Galbanic 
acid, a natural bioactive compound from Ferula species, induced TRAIL mediated 
apoptosis in the resistant NSCLC cells (114). p-Hydroxylcinnamaldehyde from 
Cochinchina momordica seeds reversed TRAIL resistance in esophageal squamous 
cell carcinoma xenograft model (115). Imatinib-resistant CML cells sensitized to 
TRAIL via hydroxychavicol, a polyphenol from piper betel leaf (116). 
Thymoquinone downregulated the expression of anti-apoptotic proteins and sen-
sitized hepatocarcinoma cells to TRAIL-induced apoptosis (117). Marine actino-
mycetes-derived secondary metabolites reduced survivin and XIAP proteins and 
overcame TRAIL resistance in the TNBC cells (118). Skyrin, the active metabolite 
of Hypericum spp induced DR5 expression and reversed TRAIL resistance in 
hypoxia and normoxia in the CRC cell lines (119). Periplocin upregulated DR4 
and DR5 receptors and induced apoptosis in the TRAIL resistant gastric cancer 
cells (120). 

A xanthonoid compound α-mangostin showed apoptotic functions inducing 
mitochondrial depolarization, upregulating BAX, and downregulating MCL-1 
and BCL-2; it enhanced the cytotoxicity of cisplatin in cancer stem cells-like 
cervical cancer cells with chemotherapy-resistant and metastatic 
 phenotype  (121). Essential oil fraction from Vitex agnus-castus induced 
 caspase-3/-7  activation and extrinsic and intrinsic pathways in the multidrug 
resistant lung carcinoma cells (122). 

Echinatin, derived from G. inflata, suppressed EGFR and MET, blocked kinase 
activity, and induced cell cycle arrest and apoptosis via the intrinsic pathway in 
lung cancer cells that were resistant to gefitinib (123). A combination of hypericin 
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(plant product) and manumycin A (yeast product) showed anti-cancer effects on 
the oxaliplatin-resistant CRCs (124). This synergistic combination decreased IAPs 
proteins (cIAP1, cIAP2, XIAP and survivin), induced PARP cleavage, and restored 
chemosensitivity to oxaliplatin (124). The curcumin analog EF24 decreased the 
expression of the anti-apoptotic protein BCL-2 and apoptosis inhibitor proteins 
(XIAP, cIAP1, Birc7) through the inhibition of the NF-κB in the chemotherapy-
resistant melanoma cells (125).

Others

Induction of apoptosis can be achieved indirectly in therapy-resistant cells. For 
example, celecoxib, a cyclooxygenase-2 inhibitor, stimulated apoptosis through 
AKT suppression in 5-fluorouracil (5-FU)-resistant gastric cancer cells (126). 
Sulforaphane treatment downregulated anti-apoptotic proteins (BCL-2 and XIAP) 
and sensitized cholangiocarcinoma cells to cisplatin (127). PPARγ ligands, CB13 
and PPZ023, sensitized radioresistant NSCLC cells via induction of apoptosis and 
ER stress (128, 129).

Enalapril is an antihypertensive drug that inhibits angiotensin-converting 
enzyme (ACE) and so angiotensin I to angiotensin II conversion. In this way, 
angiogenesis is suppressed through VEGF and NF-κB downregulation. In a mouse 
model of colorectal cancer, enalapril overcame 5-FU resistance (130); also, a com-
bination of 5-FU and enalapril synergistically inhibited NF-κB/STAT3 signaling 
and increased the expression levels of NF-κB/STAT3-regulated genes including 
BCL-2, and XIAP both in vitro and in vivo (130).

Salinomycin-mediated DNA damage induced mitochondrial membrane poten-
tial loss in cisplatin-resistant breast cancer cells through the downregulation of 
NF-κB regulated expression of pro-survival proteins, e.g., survivin, XIAP and 
BCL-2 (131). PR-619, a deubiquitinating enzyme (DUB) inhibitor, enhanced the 
antitumor effects of cisplatin in cisplatin-naïve and -resistant metastatic urothelial 
carcinoma both in vitro and in vivo through suppressing anti-apoptotic BCL-2 
protein (132). The pterocarpanquinone LQB-118 compound induced apoptosis 
and reversed cytarabine-resistance in AML cells (133). Calmodulin can directly 
bind to DR5 in a Ca2+ dependent manner. Calmodulin antagonist, trifluoperazine, 
enhanced TRA-8-activated DR5 oligomerization, DISC formation, caspase cleav-
age, and decreased anti-apoptotic pERK, pAKT, XIAP, and cIAP-1 expressions in 
TRA-8 resistant TNBC cells (134).

CONCLUSION

Inhibition of apoptosis has shown promising results in overcoming chemotherapy 
resistance. However, the effects of these inhibitors or agonists depend on the cells’ 
physiological state and gene expression status. Therefore, profiling of apoptosis 
regulators might be useful to identify the best drug combinations (61, 62, 135). 
In addition, instead of combination, sequential administration of  chemotherapeutics 
might prevent resistance and increase treatment success rates (71).

Specific delivery of chemotherapeutic agents to tumor cells can be improved 
with exosome or nanoparticle conjugations. For instance, exosome-mediated 
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transfer of apoptosis inducers such as circRNA and miRNA may help overcome 
chemotherapy resistance (91, 136). Cancer-specific, pro-apoptotic drug-drug 
conjugate for SMAC and doxorubicin suppressed tumor growth in drug-resistant 
lung cancer model (137). Development of such nanoparticle designs might pro-
vide tumor-specific therapeutic options without drug resistance.

With the development of CRISPR-Cas technology, genomic screening studies 
have revealed novel candidate targets to overcome chemotherapy resistance. In a 
chemotherapy-resistant ovarian cancer model, knock-out screening showed that 
loss of BCL2L1 decreases cell survival whereas loss of pro-apoptotic genes pro-
motes resistance (138). Inhibitors of BCL-XL or MCL1 promote cell death in com-
bination with chemotherapy (138). In the near future, it would be possible to 
overcome chemotherapy resistance with the development of new drug targets 
revealed by large scale screening studies.
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