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Abstract: Apoptosis is a biological process that allows adequate cellular turnover 
and the elimination of damaged or infected cells. However, there are  compensatory 
molecular mechanisms that promote cell proliferation after increased apoptotic 
events. These events are commonly mediated by mitogenic proteins, released by 
apoptotic cells, and received by neighboring cells, that trigger mechanisms 
 similar to cell repair after an injury or traumatic event. This effect is known as 
“apoptosis-induced proliferation”. This chapter addresses the process of 
 apoptosis-induced proliferation, the regulatory mechanisms, and its importance 
in cancer development, progression, and therapy development.
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INTRODUCTION

Apoptosis, commonly referred to as “programmed cell death”, is a natural or 
induced process by which senescent or damaged cells are eliminated via a 
self-destructive but orderly mechanism. This mechanism causes the destruc-
tion of proteins involved in cell survival, growth, and membrane integrity, 
finally leading to DNA breakdown without inflammation (1). Apoptosis is 
orchestrated by several signaling pathways, among which the cystein-aspartic 
proteases (caspases) stand out as proteolytic regulators of multiple proteins 
involved in this process (2). Apoptosis, on one hand, has been a therapeutic 
target for cancer because of its ability to control the proliferation of trans-
formed cells. On the other hand, there are compensatory mechanisms after 
the increased induction of apoptosis that promote cell proliferation, either 
from dying or neighboring cells (1, 2). In cancer therapy, this process is of 
great importance because it can generate resistance or insensitivity to 
 treatments. Interestingly, many of the compensatory mechanisms of cell 
 proliferation are mediated by caspases, which have been observed to have a 
role beyond cell death by regulating signaling pathways related to  proliferation, 
survival, repair, and cellular inflammation, triggering the apoptosis-induced 
proliferation process (AiP).

WHAT IS APOPTOSIS-INDUCED PROLIFERATION?

AiP is a compensatory proliferation process that has been observed to be active 
during programmed cell death and is associated with cell turnover during the 
development of an organism or tissue damage (3). The first findings of this pro-
cess were observed in 1977 in Drosophila melanogaster (D. melanogaster) wings, 
and later studies demonstrated the implication of caspases in this process (4). 
It  is believed that, in epithelial cells, this process allows cell turnover in an 
orderly manner, allowing a balance between dying and nascent cells. This occurs 
through the release of mitotic signals from the apoptotic cell to the 
 microenvironment, activating neighboring cells in a process similar to that has 
been observed in wound repair (5). It has been shown that dying or apoptotic 
cells trigger mitotic signals that lead to the activation of stem cells in which 
 caspase-3 and caspase-7, considered effectors of cell death, actively participate 
thus becoming promoters of tissue regeneration. The activation of 
 phospholipase A (PLA) is a repeatedly observed mechanism, which promotes 
increased synthesis of prostaglandin E2 (PGE2) (6) by cyclooxygenase-2 
(COX  2), and whose increased activity is associated with tumor growth and 
resistance of tumor cells to chemo and radiotherapy (7).

The expression levels of effector caspases are important to carry out cell 
death; caspases are known to cleave around 1000 protein substrates, so the num-
ber of active caspases is related to their biological activity (6). It has been observed 
that TGF-β (tumor growth factor beta) and Wnt pathways are commonly medi-
ated by caspases as well as the signaling pathways mediated by Notch (neuro-
genic locus notch homolog protein 1) and JAK-STAT ( Janus kinases/signal 
transducer and activator of transcription proteins); however, the triggering 
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mechanisms and the intermediate molecules involved in these pathways are not 
entirely clear (8). Studies in D. melanogaster showed that, although the two exist-
ing isoforms of the p53 protein (Dp53 and DΔNp53, N-terminally truncated 
isoform) are capable of inducing apoptosis, only the DΔNp53 isoform promotes 
AiP. This process inhibits the D. melanogaster proapoptotic protein 1 (DIAP1) 
and induces the Wg protein (Wnt homologous) more efficiently than the “com-
plete” form of the p53 protein (9).

On the other hand, Myo1D, a myosin involved in the left/right development of 
the visceral organs of D. melanogaster, is an important mediator of AiP; Myo1D 
translocates Dronc (Drosophila Nedd2-like caspase) to the basal side of the mem-
brane of disc epithelial cells and salivary gland cells, leading to increased ROS 
production and the involvement of Myo1D in the process of cell growth and 
migration, promoting the process of AiP and tumorigenesis. Therefore, it was 
proposed that the basal side of epithelial cells is associated with a non-apoptotic 
compartment of caspases. The location of Dronc-caspase in the plasma membrane 
was observed to also stabilize it in undead cells, promoting the activation of 
Dronc-caspase and the degradation of proteins (10). Furthermore, the outer mito-
chondrial membrane has been shown to provide a non-apoptotic scaffold for the 
activation of Dronc-caspase, which occurs during sperm maturation (11). 
Membranes can provide a microenvironment for non-apoptotic caspases, and 
their activation resulting from incomplete permeabilization of the outer mito-
chondrial membrane (MOMP) can induce DNA damage, genomic instability, and 
promote tumorigenesis (12). 

MECHANISMS OF APOPTOSIS-INDUCED PROLIFERATION

AiP involves multiple processes such as apoptosis, the induction of proliferation 
mediated by caspases, and changes in the mechanisms that involve the JNK (c-Jun 
N-terminal kinase) signaling pathway. Apoptosis can be achieved by the extrinsic 
pathway, caused primarily by cytotoxic T cells of the immune system and the 
intrinsic pathway, initiated by DNA damage or loss of mitochondrial membrane 
potential. 

Extrinsic pathway of apoptosis

The extrinsic pathway is triggered by external signals that are transmitted mainly 
by innate immune natural killer (NK) cells, and by adaptive CD8+-positive cyto-
toxic T lymphocytes (CTL). Both cell types can detect and induce death of infected 
cells or mutated cells (13). This pathway begins with the interaction of the tumor 
necrosis factor receptor (TNFR) with its ligand (TNF), which can be found in 
soluble form or bound to CTL membrane, which has a death domain that func-
tions as a coupler of a large group of proteins that form a death complex. This 
process allows caspase-8 activation (14), which in turn promotes caspase-3 activ-
ity, considered the great effector of apoptosis. Caspase-3 blocks DNase inhibitors 
preventing gene transcription and the division of genetic content, which pro-
motes the breakdown of actin sheets, thus interfering with the process of cell 
division (15, 16).
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Intrinsic pathway of apoptosis

On the other hand, intrinsic apoptosis is associated with the loss of permeability 
of the mitochondrial membrane, which allows the increase of pro-apoptotic pro-
teins such as cytochrome c. This process is regulated by proteins of the Bcl-2 fam-
ily, such as Bax, and Bcl-2 itself. The entry of Bax through the transition pore of 
mitochondrial permeability and the exit of Bcl-2, promotes the release of cyto-
chrome c to the cytosol, which forms a protein complex with the apoptotic pepti-
dase activating factor 1 (APAF1). This complex is known as apoptosome, which 
promotes caspase-9 activity, and in turn, the activation of caspase-3 (17).

Role of caspases in cell proliferation and survival

Mammalian caspases can be broadly divided into apoptotic (caspases -2, -3, -6, 
-7, -8, -9 and -10) and inflammatory (caspases -1, -4, -5, -11 and -12) (18). Non-
apoptotic activity of caspases has recently been observed through the proteolytic 
effect on cytokines, kinases, transcription factors and polymerases, as well as non-
proteolytic interactions with FLICE (cellular caspase-8 inhibitory protein), human 
caspase-12, coat complex protein (COP), inhibitory caspase-associated recruit-
ment domains (INCA) and ICEBERG (inhibitor of generation of IL-1beta by inter-
acting with caspase-1), which actively participate in cell survival, proliferation, 
differentiation, and inflammation (19). 

In immune system cells, it has been observed that the activation of caspase-8 
by the T cell receptor (TcR) and its association with the protein FADD (Fas-
associated Death Domain), promotes the activation of NF-κB, resulting in the 
production of cytokines and chemokines, which in turn promote inflammation, 
immune response, survival, and cell proliferation (20). It has also been observed 
that caspase-8 deficiency in patients leads to serious immunodeficiencies, mainly 
by bacterial infections, which can result in patient death due to the lack of activa-
tion of T lymphocytes, B lymphocytes, and NK cells (21). 

On the other hand, caspase-3 activity is widely related to cell growth and 
tumor progression. In cells deficient in caspase-3 (caspase-3KO), fewer tumor 
cells were observed based on their proliferative and invasive capacity. Cells that 
are caspase-3KO show greater sensitivity to mitomycin C and radiation, demon-
strating the importance of this enzyme in cancer progression, especially in inva-
sion mechanisms (21). In the same way, caspase-3 is also necessary for the 
production of VEGF-A (vascular epithelial growth factor A) during angiogenesis, 
which keeps tumor cells alive, especially during the development of metastasis. 
Caspase-7 has been known to be involved in the activation of IPLA2 (intracel-
lular phospholipase 2), but its role has recently evidenced in the activation of 
protein kinase C delta (PKCδ), which induces Akt phosphorylation (also called 
protein kinase B), p38 and JNK1/2, activating mitogens to repopulate tumors 
after radiation (22).

Likewise, caspase-2 is active when there is DNA damage due to oxidative 
stress, and its absence promotes high proliferation and faster immortalization in 
mouse fibroblasts. Several studies have shown the interaction of caspase-2 with 
cyclins and cyclin-dependent kinases, and its deficiency is associated with 
aneuploidy and tumor development. Active caspase-2 has been shown to stabi-
lize p53 after DNA damage (23). In the same way, caspase-9 has been related to 
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cell survival processes. Thus, in experiments with the anti-inflammatory 
FR122047 in MCF-7 breast cancer cells, cell death increased after caspase-9 
inhibition, which indicated that caspase-9 was involved in the resistance to this 
mechanism (24).

Therefore, functions other than apoptosis have been reported for caspases, 
including inflammation, immunity, differentiation, cell remodeling, and AiP 
(25, 26). Some studies have shown a paracrine regulation of AiP in apoptotic cells 
through the secretion of mitogenic signals (27).

The JNK signaling pathway

The JNK protein plays a preponderant role in AiP. The JNK pathway is one of the 
three protein signaling pathways known as mitogen-activated kinases (MAPK) 
and whose molecular, metabolic, and physiological effects are well known. It is 
currently known that JNK can act dually, both in survival and in the induction of 
cell death. Three genes are known to code for JNK 1, 2 and 3 proteins, and 12 
isoforms have been reported. It is known that several members of the mitogen 
activated protein (MAP) kinase kinase kinase (MAPKKK) can interact and activate 
JNK. JNK activation occurs from the signaling of cytokines such as TNF, IL-6, 
TGF-β, Toll-like receptors (TLR-3, 4 and 9) and antigen receptors of T cells and B 
cells. These promote the MAP3K activity that activates MAP2K, MKK4 and MKK7, 
which contribute to the activation of JNK, which in turn activates activator pro-
tein-1 (AP-1), a transcription factor of genes related to proliferation, survival, and 
cell growth (28). JNK can activate c-Jun, a component of the AP-1 complex, 
through three known mechanisms: (i) interaction with its NH2-terminal or phos-
phorylations at serines 63 and 73; (ii) c-Jun also functions as an activating factor 
for JNK, allowing feedback loops of the signaling pathway; and (iii) as a substrate 
for different transcription factors such as ATF-2 (activating transcription factor 2), 
Elk-1 (ETS like-1), p53, DPC4 (deleted in pancreatic carcinoma locus 4), Sap-1a 
(SRF accessory protein 1) and NFAT4 (activated T-lymphocyte nuclear factor 4), 
which in turn are activators of c-Jun protein that combines with c-Fos protein 
leading to the activation of genes of the AP-1 family which triggers cell prolifera-
tion (Figure 1) (29, 30). 

Although JNK is generally associated with cell proliferation and survival, it is 
now reported that JNK1 is the one that is related to this process; JNK2 has been 
found to be involved with apoptotic cell death in most cells and tissues, and JNK3 
has shown different functions mainly in the brain and, to a lesser extent, in the 
heart and testicles (31, 32). The affinity of JNK2 for c-Jun is much higher than 
that of JNK1, therefore it has been considered as the main kinase of c-Jun, although 
JNK1 isoforms with greater activity have recently been found. In mouse fibro-
blasts stimulated for survival, high JNK1 activity was observed, while JNK2 was 
found to be more active in non-stimulated cells (33, 34).

The JNK signaling pathway has been associated with DNA fragmentation after 
gamma ray stimulation. JNK knock-out mouse fibroblasts showed resistance to 
apoptosis after exposure to UV rays, methyl-methanesulfate, and anisomycin, 
which raises the hypothesis that the acute and transient activation of JNK is related 
with survival and cell growth whereas sustained activation with apoptosis (35). 

Studies carried out in three glioma cell lines (U251, U87-MG and C6) and 
an animal model (xenografted BALB/c-Jun mice) showed that extract from the 
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bark of Tripterygium wilfordii (celastrol) induced cell cycle arrest and apoptosis, 
both related to a notable ROS production and increased JNK activity (36, 37). 
Similarly, in rat renal pheochromocytoma PC-12 cells, it was observed that 
treatment with colistin promotes an increase in JNK activity, having its maxi-
mum peak at 12 h, which in turn promotes apoptosis mediated by ROS produc-
tion (36).

On the other hand, it has been observed that in undead cells of D. melanogas-
ter, Dronc is capable of promoting the activation of JNK signaling, which acts as 
the main inducer of AiP (22). It has also been observed that once Dronc is active, 
it can promote the generation of extracellular ROS, which activate JNK signaling 
in the disc tissue of the undead eye. JNK can promote a positive feedback loop by 
transcriptionally activating the apoptosis inhibitory proteins (IAPs) Hid and 
Reaper which in turn allows to amplify the AiP process. In undead cells, down-
stream JNK pathway can produce and secrete mitogens such as Wg (Wingless) 
from the WNT-beta family (37), Spi (Spitz) that is an EGF homolog (38), and Upd 
(unpaired interleukin-6 homolog), in addition to the BMP/TGF-β DPP (decapen-
taplegic homolog) (39). These mitogens send their signals to neighboring cells 
and in this way, proliferation begins. Along with JNK signaling, p38 and JAK /
STAT signaling are necessary for AiP (40). Studies show an important participa-
tion of JNK which is highly related to the intracellular production of ROS, but also 

Figure 1. Mitogenic effect of apoptotic cells on neighboring cells. A, During the process of cell 
death by apoptosis, cells release mitogenic proteins such as TNF-alpha. This signal is 
received by neighboring cell receptors that activate various kinases which promote cell 
proliferation and survival. B, The effect of the JNK pathway is shown throughout the 
activation time, having an apoptotic effect in long times and favoring survival in acute 
activation times.
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to the time of exposure to the triggering agents of JNK activation (Figure 1B), 
which strengthens the theory that prolonged times of this signaling pathway leads 
to apoptotic processes. 

APOPTOSIS-INDUCED PROLIFERATION IN CANCER

Some of the features of cancer include increased sensitivity to growth signals, 
decreased perception of growth arrest signals, unlimited replication, promotion of 
angiogenesis, activation of invasion-related mechanisms, metastasis, and resis-
tance to apoptosis (41, 42). These signals start on the cell surface by the interac-
tion of IGF (insulin growth factor) with its receptor (IGFR), which keeps 
programmed cell death inhibited, promoting cellular proliferation. Also, in trans-
formed cells, there is a decrease in the number of FAS death receptors and cell 
death signals, and increased survival pathways, thus avoiding apoptosis (43, 44). 
The release of growth signals from dying tumor cells in tumors showed that cas-
pase-3 upregulates a series of growth factors (44).

ROS, especially H2O2, can randomly damage DNA and lead to tumorigenesis 
through genomic instability (45). While oncogenes such Ras can promote ROS 
production (46), tumor suppressor genes such as p53 can restore ROS levels and 
decrease the oxidative status of tumor cells through the regulation of antioxidant 
enzymes such as GPx1 (glutathione peroxidase 1) and SOD2 (superoxide dis-
mutase 2) (47, 48). It is known that the expression and concentration of the NOX 
enzyme (NADPH oxidase) is increased in many tumor types because the NOX 
enzyme is involved in the overproduction of ROS that mediate DNA damage and 
tumorigenesis through the activation of redox-sensitive pathways (49). NOX 
enzymes are known to regulate MAPK/ERK and PI3K/Akt/mTOR signaling path-
ways through H2O2-mediated oxidation of phosphatases (50). Many tumors have 
mutations in ETC (electron transport chain) proteins, encoded by mitochondrial 
DNA, which have been shown to be responsible for the production of mitochon-
drial ROS (51). Mitochondrial ROS are responsible for activating HIF (hypoxia 
inducing factor) in tumor cells that have decreased oxygen levels, allowing them 
to adapt to a hypoxic microenvironment in order to survive. When oxygen is 
decreased, superoxide is formed by mitochondrial ETC, stabilizing the HIF-
1alpha and HIF-2 alpha subunits (52). 

An increase in ROS can contribute to AiP. In D. melanogaster, increase in exog-
enous ROS in hemocytes (blood cells of insects) triggers JNK activity in epithelial 
cells through the release of TNF and the interaction with its receptor. Drun pro-
tein, homologue of Caspase-9 in this model, has an isoform that can induce JNK-
mediated AiP in dying cells (53). An increase in ROS in injured intestines enhances 
intestinal stem cell proliferation mediated by increase in calcium uptake which in 
turn is mediated by TRPA1 receptors (transient receptor potential cation channel), 
and RyR (ryanodine receptor) (54). On the other hand, in a study in Danio rerio 
zebrafish larvae, it was observed that a high hydrogen peroxide gradient is 
required to carry out the repair and healing process (55). 

Another mechanism related to AiP is autophagy, which is a highly regulated 
process with very important homeostatic functions, such as the maintenance of 
the cell in moments of lack of nutrients, the reduction of ROS, and the destruction 
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of damaged and harmful structures within the cell. Prolonged activation of 
autophagy has been observed to trigger cell death, in the same way the process is 
canonically related to cell survival (56, 57). Autophagic process also induces AiP, 
where the homolog of ULK (autophagy triggering complex) in D. melanogaster, 
called dAtg1, has an important role and is regulated by JNK. Likewise, dAtg1 also 
transcriptionally controls the Wg mitogen, whose role in AiP has been shown to 
be highly relevant (56). 

THERAPEUTIC IMPORTANCE OF APOPTOSIS-INDUCED 
PROLIFERATION

Targeted therapies have undoubtedly been a great advance in the treatment of 
various types of cancer; however, adaptive or resistance responses to these thera-
pies have been observed. While a multitude of mechanisms for therapy resistance 
have been identified, from the therapeutic point of view, inhibition of one signal-
ing pathway leads to the activation of compensatory pathways allowing the con-
tinued progression of cancer. For example, when the AKT signaling pathway was 
inhibited with the pro-apoptotic compound LBH589 in colorectal cells, a com-
pensatory cellular response through an increase in the activity of the STAT3 path-
way was observed (58). Similarly, the compensatory activation of STAT3 was 
observed in lung cells in which the PI3K/AKT signaling pathway was chemically 
and genetically inhibited. The activation of STAT3 was observed to be induced by 
the MET proto-oncogene, and a better response was observed when the inhibition 
was carried out for both the PI3K/AKT and STAT3 pathways (59). Thus, a thera-
peutic approach using inhibitors of multiple signaling pathways may be required.

Another compensatory mechanism observed is the proliferation stimulated by 
dying cells. This mechanism was studied in irradiated pancreatic ductal adenocar-
cinoma cells, PANC1. It was observed that the role of caspase-3, caspase-7, and 
PKCδ are essential for the proliferation process to take place in neighboring cells 
of dying cells. Likewise, an increase in the activity of AKT, JNK, and MAPK was 
observed in non-irradiated neighboring cells. This supports the observations of 
increased proliferation of pancreatic ductal adenocarcinoma in patients after 
radiotherapy (22). 

On the other hand, in a diethylnitrosamine-induced hepatocarcinoma model, 
it was observed that IκB kinase β (IKKβ) is important for the regulation of the cell 
cycle in liver carcinogenesis, since IKKβ knock-out mice showed a marked 
increase in cell proliferation with an increase in ROS production, a sustained acti-
vation of JNK, and an initial increase in hepatocytes death, which resulted in a 
compensatory proliferation of the surviving cells that was reduced after adminis-
tering oral antioxidants (60). A similar process was observed in caspase-3- deficient 
mice that were treated with diethylnitrosamine and contrary to the expected 
results for the canonical pathways of programmed cell death, increased p38 
 activity through activation of the cytokines TNF-α and IL-1a was observed (61). 
In a similar model of liver carcinogenesis, the importance of the cellular commu-
nication network factor 1 (CCN1) protein, commonly involved in cell repair 
 processes in liver lesions, was also shown. In CCN1 knock-in mice, a significant 
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increase in compensatory proliferation was observed whereas in the knock-out 
model, the compensatory proliferation was effectively inhibited showing accumu-
lation of ROS that in turn promoted the activation of p53 and blocked cell cycle 
(62). These examples indicate that the mechanisms commonly linked to inflam-
mation and apoptosis are also involved in compensatory proliferation of neigh-
boring cells, promoting drug resistance.

The role of caspases in AiP has been described as “Phoenix Rising” (6). Caspases 
play a key role in allowing tumors to continue to proliferate after undergoing che-
motherapy or radiation cycles (19). In this process, the activation of IPLA2 is 
necessary, which in turn produces prostaglandin E2 (PGE2) in a calcium- 
independent way, both induced by the activation of caspases-3 and -7 (7). The 
production of PGE2 by caspase-3 is necessary for the healing of epithelial wounds 
in the skin of mice, the regeneration of hepatocytes after a partial hepatectomy, or 
to repopulate the tumors after cytotoxic therapies (6, 63, 64). In the same way, 
during radiotherapy treatment of patients with various types of cancer, it has been 
observed that dying tumor cells promote the proliferation of neighboring cells as 
a way to compensate for the induced damage (65). It has been observed that in 
the normal cells of the salivary glands, which receive a large amount of radiation 
during the treatment of some head and neck cancers, the functionality is altered, 
triggering symptoms such as xerostomia and chronic hyposalivation. In these 
cells, PKCζ, which is partially responsible for cell proliferation and apical polarity, 
is significantly decreased. Likewise, there is an increase in JNK activity related to 
compensatory proliferation which, in this case, does not allow cell differentiation, 
preventing the development of salivary cells. (66). CD24-deficient and CD44-
abundant breast cancer cells show resistance to conventional treatment with che-
motherapy, likewise, the importance of HER2 in the proliferation of breast cancer 
cells was observed, whose mechanism could be compensatory to the decrease in 
EGFR activity (67).

CONCLUSION

AiP is a compensatory mechanism in response to increased apoptosis. This can 
occur in different ways including the release of mitogens from apoptotic cells and 
their interaction with neighboring cells, the activation of compensatory signaling 
pathways towards blocked signaling pathways in dying cells, and by reversal of 
autophagy. In cancer therapy, inhibition of one signaling pathway leads to the 
upregulation of another compensatory pathway enabling the progression of 
 cancer. Therefore, simultaneous inhibition of multiple pathways has been 
 proposed as a potential therapy. AiP is involved in tumorigenesis and resistance of 
cancers to chemo and radiotherapy. More studies are needed to completely 
 elucidate the signals and mechanisms that trigger AiP.
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