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Abstract: Artificial intelligence has the potential to assist clinical decision-making 
for the treatment of ischemic stroke. However, the decision processes encoded 
within complex artificial intelligence models, such as neural networks, are 
 notoriously difficult to interpret and validate. The importance of explaining model 
decisions has resulted in the emergence of explainable artificial intelligence, which 
aims to understand the inner workings of artificial intelligence models. Here, we 
give examples of studies that apply artificial intelligence models to predict 
 functional outcomes of ischemic stroke patients, evaluate existing models’ 
 predictive power, and discuss the challenges that limit their adaptation to the 
clinic. Furthermore, we identify the studies that explain which model features are 
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essential in predicting functional outcomes. We discuss how these explanations 
can help mitigate concerns around the trustworthiness of artificial intelligence 
systems developed for the acute stroke setting. We conclude that explainable arti-
ficial intelligence is a must for the reliable deployment of artificial intelligence 
models in acute stroke care.

Keywords: explainable artificial intelligence; ischemic stroke; neural networks; 
functional outcome prediction 

INTRODUCTION 

Artificial intelligence (AI) focuses on developing computational systems that emu-
late human expertise on complex tasks. There have been many developments in 
AI, particularly related to the field of deep learning (DL), resulting in modern AI 
systems that could rival human performance on complex decision-making tasks 
on large amounts of data. Studies suggest that the performance of AI on a range of 
medical diagnostic tasks is equivalent to healthcare professionals (1). Consequently, 
there is much interest in the potential of AI in the development of clinical decision 
support systems (CDSS) (2). The purpose of CDSSs is not to replace the clinician 
but to increase the efficiency and efficacy of medical diagnosis and treatment. 
CDSSs will be particularly beneficial in the care of ischemic stroke patients due to 
the heterogeneity, complexity, and time-critical nature of the condition and the 
wealth of physiological information available from neuroimaging. AI algorithms 
can provide decision support for ischemic stroke in various clinical tasks, such as 
diagnosis, onset time estimation, and prognosis (3–5). However, AI systems can 
be met with resistance from health care professionals because even if the system is 
accurate, it is not obvious how it arrives at its decisions; this is the so-called ‘‘black 
box problem’’ (6).

The main goal of this chapter is to provide an insight into the potential of AI 
for developing CDSSs to be used in the hyperacute stroke setting. This way, we 
wish to make AI-based methods more accessible and understandable to those less 
familiar with AI. To this end, we first discuss the potential benefits of medical AI 
for developing CDSSs for ischemic stroke. We focus specifically on predicting 
functional outcomes, referring to the patient’s overall mobility and level of func-
tioning in day-to-day life (7). To contextualize the studies discussed in this chap-
ter, we provide an overview of machine learning (ML) and DL terminology. We 
then give examples of studies that have used AI methods to predict functional 
outcomes using clinical variables and neuroimaging, followed by a discussion of 
the potential barriers to implementing AI systems in the clinical setting. As one of 
the avenues to overcome the barriers, we introduce the concept of explainable AI 
(xAI) and refer to studies that use explainability to give insight into the inner 
mechanisms of functional outcome prediction models. We place particular atten-
tion on explanation methods that identify the important features that drive a pre-
diction and refrain from providing an in-depth review. Lastly, we evaluate the 
findings of these studies to understand what the explanations mean in terms of 
future directions. We conclude the chapter by discussing the necessity of explain-
able decision in CDSSs developed for acute stroke care.
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THE BENEFITS OF MEDICAL-AI FOR ISCHEMIC STROKE 

A major benefit of using AI for developing CDSSs is facilitating a patient-specific, 
adaptive (rather than reactive) approach to treatment decisions. Currently, isch-
emic stroke patients are treated following population-based guidelines, which rec-
ommend intravenous recombinant tissue plasminogen activator (IV-rtPA) or 
endovascular therapy (EVT) with or without rtPA for large vessel occlusions, but 
within specific time windows (8, 9). However, although these treatments are safe 
and effective for most that meet the eligibility criteria, due to the heterogeneity of 
the disease, there are some patients that meet eligibility criteria that could be 
harmed by treatment or may not benefit either way and other patients who are not 
eligible (e.g., unknown onset time) that could still have benefitted. Therefore, 
predicting the functional outcome of patients based on information available on 
admission, given a specific treatment option, will help clinicians identify, on a 
case-by-case basis and in a contextually informed manner, patients who will (or 
will not) benefit from different forms of treatment. 

Minimizing the time-to-treatment is critical in treating ischemic stroke due to 
the fast-evolving tissue death (10). CDSSs will help minimize this time, especially 
in complex and ambiguous cases, by providing formal support for the experi-
enced clinician’s treatment decisions. Knowing which treatment a patient is likely 
to benefit from will enable more efficient coordination of clinical resources for 
acute treatment, such as preparing patients for transfer to a comprehensive stroke 
center for EVT. CDSS will also mean less experienced physicians can make treat-
ment decisions for acute stroke patients, which will benefit hospitals that do not 
have the expertise and technologies of primary stroke centers.

ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, 
AND DEEP LEARNING 

ML is a subfield of AI that involves developing computer programs that extract 
patterns from data. In the context of traditional ML, a dataset is a tabular repre-
sentation of information where each column is a feature (e.g., age, sex, blood 
pressure), and each row contains the features’ values describing an instance, i.e., 
a patient profile. The standard task in ML is to create a computer program that can 
estimate the missing value for one feature (known as the target feature) based on 
the values of the other features. For example, ML can create a computer program 
to estimate blood pressure based on age, sex, and other features. The estimated 
value for the target feature is known as a prediction, and a program that can map 
from a set of feature values to an estimate of a missing feature value is known as a 
predictive model. 

An ML algorithm is a computer program that takes a dataset as input and 
returns a predictive model. Running an ML algorithm on a dataset to create a 
model is known as training the model. Once a model has been trained, it can be 
used to estimate the value of the target feature for new instances (patients) that 
were not in the original dataset. ML algorithms require structured or tabular data 
as input features, which take the form of categories, numbers, or values, such as 
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patient demographics (e.g., age, sex), comorbidities (e.g., diabetes, hypertension) 
and radiological variables such as the ASPECTS score (11), presence of a lesion 
(yes/no) and clot location. A limitation of ML methods is that getting the data in a 
structured format usually requires a domain expert, such as a clinician or neuro-
radiologist, to identify these important features.

DL is a subtype of ML that loosely mimics the human brain’s neural pathways. 
What is distinctive about DL systems is that they can automatically learn what 
features in the data that are most important to generate accurate predictions. This 
ability removes the need for a human expert to hand-design the features consid-
ered by a model and is important because it enables models to process data that is 
very difficult for humans to design features from, for example, to define what 
voxel patterns are most useful to predict a lesion. In more technical terms, this 
means that DL systems can perform high-level abstractions from structured and 
unstructured data without pre-processing (12). In this context, unstructured data 
refers to data that is not easily represented in a tabular manner, such as text, 
audio, and imaging. DL methods can therefore process data considerably more 
complex than traditional ML algorithms, such as 2D slices or 3D volumes from 
neuroimaging such as computerized tomography (CT) or magnetic resonance 
imaging (MRI). This ability is particularly advantageous in the context of acute 
stroke because different imaging methods reveal different aspects of stroke patho-
physiology, and so there is a large amount of information that can be obtained 
from scans obtained in the early hours of ischemia (13, 14). The fact that DL 
algorithms can simultaneously extract useful features from complex unstructured 
data and learn complex mappings from sets of inputs to an output means that for 
stroke treatment, these systems can learn to process and use both medical imaging 
data and structured information (such as clinical variables) to inform the model’s 
decision. This way, they can potentially return more accurate decisions than a 
system restricted to only processing structured data. 

The predictive performance of models is usually reported by testing them on 
validation data that is not part of model training using various performance mea-
sures. Accuracy, a popular performance measure that gives the percentage of true 
predictions amongst all predictions, has demonstrated over-optimistic results, 
especially when using imbalanced datasets (15). Thus, the field has shifted 
towards using alternative scores such as Area under the Receiver Operator 
Characteristics curve (AUC). The Receiver Operator Characteristics (ROC) curve 
shows the trade-off between sensitivity and specificity at different decision thresh-
olds. In functional outcome prediction, the AUC can be interpreted as the esti-
mated probability that a randomly selected patient who experienced an unfavorable 
outcome had a higher risk score than a patient who had experienced a favorable 
outcome. AUC is the standard measure reported across all ML and DL based stud-
ies in predicting functional outcomes.

ARTIFICIAL INTELLIGENCE-BASED MODELS FOR 
FUNCTIONAL STROKE OUTCOME PREDICTION

In this section, we focus specifically on studies that use modified Ranking Scale 
(mRS) (Table 1), (16) , as the main functional outcome measure, because it is a 
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common form of communication across all those involved in the patient’s care 
pathway (7), has good reproducibility (16), is the most prevalent functional out-
come measure in contemporary stroke trials (17) and is therefore frequently used 
as the primary outcome measure in AI prediction studies (3, 4). However, it is 
worth noting that the discussion points of this chapter are relevant to most 
AI-based prediction studies in stroke.

Before the introduction of AI, 90-days mRS was predicted using rule-based 
scores based on clinical information available on admission, such as the patient’s 
age, National Institute of Health Stroke Score (NIHSS), and onset time (18). These 
scores, such as the Acute Stroke Registry, and Analysis of Lausanne (ASTRAL) 
(19), among others, are based on assigning weights in the form of integers to the 
most relevant clinical variables pre-selected by clinicians. The weights are then 
aggregated to provide insight into patients’ risk of functional impairment. These 
scores are usually based on a small set of clinical variables and usually do not 
incorporate scores derived from imaging that may have predictive value (20). 
With the advancement in AI, both traditional ML and DL algorithms have gained 
popularity in predictive modelling of functional outcomes. ML classifiers used in 
predictive modelling range from logistic regression (LR) to more complex meth-
ods such as support vector machines (SVM) and random forests (RF). LR differs 
from the other ML classifiers in that it can only discover linear mappings between 
the input data and the desired prediction. Therefore, we differentiate the other 
traditional ML methods that can perform linear and non-linear mappings from LR 
and refer to them as non-linear ML algorithms. Table 2 provides information on 
the non-linear ML and DL algorithms that have been used in developing predic-
tive models for functional outcomes. 

Figure 1 summarizes the different properties of the rule-based, LR, non-linear 
ML, and DL methods. These properties are the type of input features they can 
process and the complexity of the patterns they can discover. We additionally 

TABLE 1 The modified Rankin Scale (mRS)

Grade Symptoms

0 None

1 No significant disability despite symptoms: able to carry out all usual duties and activities 

2 Slight disability: unable to carry out all previous activities, but able to look after own 
affairs without assistance

3 Moderate disability: requiring some help, but able to walk without assistance

4 Moderately severe disability: unable to walk without assistance, unable to attend to needs 
without assistance 

5 Severe disability: bed-ridden, incontinent, and requiring constant nursing care and 
attention 

6 Dead*

Patients are graded on the scale of 0–6. *The initial mRS was 0–5 and the 6th grade was added later. For outcome 
prediction in clinical trials, the mRS is usually dichotomized where good functional outcome is a score 0 – 2 and poor 
functional outcome 3–6. However other trials have analyzed the mRS ordinally. For full details on the mRS, see (16).
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emphasize two properties that change gradually between methods: interpretabil-
ity and computational cost. Generally, the intuitive interpretation of a model’s 
decision process decreases as complexity, in terms of its input features and map-
ping, increase. Additionally, the computational cost of training an algorithm 
increases with complexity due to the increased amount of model parameters that 
need training when more complex architectures and high-dimensional features 
are used. Finally, the arrows indicate that the advent of DL, and thus the ability to 
learn complex features and mappings simultaneously, has opened the path to the 
possibility of multi-modal learning, i.e., learning from structured and unstruc-
tured data together. 

TABLE 2 Non-linear Machine Learning (ML) and Deep 
Learning (DL) algorithms that are used for 
functional outcome prediction in acute ischemic 
stroke patients.

ML DL

Name Description Name Description

SVM SVMs perform classification by 
maximizing the distance between the 
instances of the two target classes. 
Although this is a linear mapping, they 
can also efficiently perform a non-linear 
classification by first applying non-
linear transformations to the input.

ANN ANNs are composed of neurons 
that are connected to 
one another in a layered 
structure. These neurons pass 
information from the input 
towards the output performing 
a non-linear mapping at each 
pass. They learn to optimize 
these mappings through 
backwards propagation of the 
prediction loss.

Decision 
Tree

A decision tree encodes if-then-else rules 
in a tree structure. Each tree node 
represents a feature, and each branch 
from a node a different value of that 
feature. A path from the root node to a 
leaf node defines a sequence of feature 
values that an instance must satisfy for 
the label associated with the leaf node 
to be predicted for that instance.

RF RFs are ensembles of decision trees where 
the independent prediction from 
each tree is averaged to obtain a final 
prediction. More trees give a more 
robust model.

CNN CNNs are a special type of ANNs 
that are biologically inspired 
by how the human visual 
cortex works. CNNs are 
specialized for processing data 
that has a known grid-like 
topology, for example, images.

Gradient 
boosting

Gradient boosting is another tree-based 
ensemble method that uses weak 
decision trees one after another (i.e., 
sequentially) to build a stronger 
classifier each time. 

ANN, Artificial neural network; CNN, Convolutional neural network; DL, Deep learning; ML, Machine learning; 
SVM, Support vector machine; RF, Random forest.
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Predictive models based on structured data

The potential utility of ML algorithms in functional outcome prediction was dem-
onstrated for the first time in 2014 (21). An SVM model predicted the 90-days 
mRS scores of patients treated with EVT, based on patient demographics, comor-
bidities, the baseline NIHSS, and the occluded vessels’ location with 70% accu-
racy (21). In subsequent studies, two main approaches have improved the 
predictive accuracy of ML and DL models for the functional outcome prediction 
of ischemic stroke patients. The first approach combines clinical information on 
admission with information from future time points (e.g., post-treatment or dis-
charge assessments) as inputs to the models, resulting in higher predictive perfor-
mance than admission information alone in several studies (18, 22–24). For 
example, RF classifiers trained by progressively adding information such as NIHSS 
and lesions detected during CT or MRI at 2 hours, 24 hours, and seven days after 
stroke onset, and discharge, were shown to achieve AUC values well above 0.90 
as more variables from future time points were included (18). Similarly, a study 
performed using the MR CLEAN registry found that by training an RF classifier on 
clinical variables obtained on admission (e.g., age, baseline NIHSS, comorbidities, 
laboratory tests, baseline ASPECTS) and post EVT assessments, including the 
NIHSS scores and modified thrombolysis in cerebral infarction scale (mTICI), the 
predictive accuracy of 90-days mRS increased to an AUC of 0.91 compared to an 
AUC of 0.79 using only admission variables (22).

The second approach involves using more advanced AI models, such as artifi-
cial neural networks (ANN) and gradient boosting to process the information 
available at admission (20, 25–27). For example, when comparing models based 
on patient demographics and baseline clinical information, an ANN model per-
formed better than the rule-based ASTRAL score for predicting 90-days mRS 

Figure 1. Types of Models. The four types of models used in functional outcome prediction 
studies and their properties.
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(AUC 0.84 vs AUC 0.89) (25). However, our work showed no difference in the 
predictive performance of LR models to gradient boosting and ANN models 
trained on patient demographics, comorbidities, baseline NIHSS and the presence 
of IV-rtPA treatment (27). Similarly, another study that compared LR to RF, SVM, 
gradient boosting, and ANN classifiers reported similar performance between all 
classifiers, with ANN achieving the highest AUC (0.81) (26), showing that while 
more advanced AI models might outperform rule-based scores, they perform 
comparably to traditional ML methods. 

We suggest that neither of the two approaches discussed above will revolution-
ize functional outcome prediction. Combining information from future time 
points with information available at admission gives high predictive performance, 
especially when using ANN models with huge amounts of data (28). However, 
these models do not help answer which treatment option is more suitable for a 
patient in the acute setting since the only available information in a real-life sce-
nario will be the information at admission. DL models such as ANNs have shown 
significant improvements over rule-based scores, but as indicated above, their 
improvements over ML algorithms are minor. Additionally, the predictive perfor-
mance of both ML and DL models reported across different studies is similar, 
suggesting that the predictive power of AI models trained only on clinical vari-
ables may have plateaued, highlighting the need to move beyond clinical 
variables.

Predictive models based on neuroimaging 

As a standard of care, all suspected ischemic stroke patients undergo imaging 
before treatment (8, 9). Non-contrast CT (NCCT) is usually the first-line imaging 
modality due to its widespread availability and speed and is used to rule out hem-
orrhage or other causes of neurological symptoms. However, MRI is becoming 
more commonplace in the acute stroke setting in western countries (14) as it is 
more sensitive to ischemia than NCCT and so can be used for direct diagnosis 
(29). MRI also benefits from being multiparametric, with different sequences 
revealing different pathophysiological changes in the ischemic brain (13). 

One approach for using ML to predict functional outcomes using imaging is to 
use radiological variables of the images as input variables. These radiological vari-
ables initially involved human input, for example, a trained radiologist calculating 
ASPECTS scores (27). However, this manual approach is not necessarily feasible 
for a clinical setting because it is time-consuming and requires a trained neurora-
diologist. This limitation has been overcome by AI-enabled inventions such as the 
e-ASPECTS tool (Brainomix, Oxford, UK; www.brainomix.com) for the auto-
mated use of ASPECTS which has been used in functional outcome prediction 
studies. For example, e-ASPECTS was found to be predictive of unfavorable out-
comes (mRS 4–6) after EVT 3 months post-stroke (30).

Although using radiological variables is a promising method for leveraging 
neuroimaging to improve functional outcome prediction, neuroimaging can offer 
much more for clinical decision support in acute ischemic stroke. CNNs have 
been shown to excel in image processing tasks (12). The novelty of DL methods, 
such as CNNs, is that they do not require a priori assumptions of which image 
features are important. DL methods can be applied directly to raw images straight 

www.brainomix.com�
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from the CT or MRI scanner, allowing them to learn useful features for making 
predictions that the scientist or clinician may be unaware of (5, 12). 

At the time of writing in August 2021, there had been little work done on 
developing CNN models to process acute stroke neuroimaging for functional 
 outcome prediction. Studies so far suggest little benefit of using imaging for func-
tional outcome prediction of ischemic stroke patients. For example, our CNN 
trained on whole-brain volumes of baseline Time-of-flight Magnetic Resonance 
Angiography (TOF-MRA) had a low predictive performance of 90-days mRS 
(AUC:0.64) (31). Similarly, a CNN applied to pre-EVT CTA images from the MR 
CLEAN registry (32) also predicted 90-days mRS with average performance 
(AUC:0.71) (33). In a separate analysis of the same images, LR and RF models 
trained on 20 radiological variables identified by clinicians showed slightly worse 
performance than the CNN model (LR AUC: 0.68 and RF AUC: 0.66), demon-
strating the added value of DL based models applied to raw imaging data com-
pared to ML models based on pre-defined radiological variables. Although 
promising, ultimately, the predictive performance reported in both studies are not 
high enough for the deployment of neuroimaging-based CNN models for func-
tional outcome prediction in a clinical setting. 

Considering the advances in AI that allow for multi-modal learning, a natural 
way to improve predictive performance is to develop DL-based models that pro-
cess neuroimaging data together with clinical variables available on admission. 
We, therefore, developed multi-modal neural networks to jointly process whole 
volumes of TOF-MRA imaging together with patient demographics and clinical 
variables at admission for predicting 90-days mRS (Figure 2) (31). Our multi-
modal networks had slightly better predictive performance (AUC:0.76) compared 

Figure 2. Neural network models. The four neural networks developed for modeling. 
A, Clinical variables; B, Neuroimaging; C and D, both clinical variables and neuroimaging.
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to an ANN model trained on only clinical variables (AUC:0.75) and a substan-
tially better performance than our previously mentioned TOF-MRA based CNN 
model (AUC:0.64). A similar study that used whole-brain NCCT images acquired 
on admission together with clinical variables to predict 90-days mRS demon-
strated superior performance of the multi-modal neural network (AUC:0.75) 
compared to models separately trained on the two data modalities (AUCs:0.54 
and 0.61) (34). 

Overall, a multi-modal approach to predicting functional stroke outcomes can 
achieve better performance than imaging variables alone. However, there is a need 
to explore alternative fusion approaches if these models are to excel when trained 
using only clinical variables. Additionally, a single imaging modality such as TOF-
MRA or NCCT may not be enough to capture all the information predictive of 
stroke outcome. Incorporating a range of images that reveal different aspects 
of stroke pathophysiology into the models may provide better predictive ability. 
For example, diffusion-based MRI for cytotoxic oedema (DWI or ADC), perfusion- 
based imaging for collateral flow (CT or MRI), NCCT or T2-based MRI (e.g., 
FLAIR, T2 relaxation) for vasogenic oedema, and angiography (CT or MRI) for 
vessel information. This possibility will become more feasible for research and 
clinical practice when AI-based MRI acquisition techniques such as magnetic res-
onance fingerprinting, which permits simultaneous acquisition of multiple MRI 
parameters at a similar speed to CT, becomes more readily available in clinical 
scanners (35). With the wealth of physiological information within acute stroke 
images and the capabilities of DL for learning new features and making predic-
tions, we would intuitively expect that by combining ML and multiparametric 
MRI, the accuracy of functional outcome predictions for stroke could only 
improve. However, this hypothesis remains to be tested. 

Moving beyond performance

In their current form, even the most advanced models do not perform well enough 
to be implemented in the clinical setting (4). There are several limitations to func-
tional outcome prediction in stroke that contribute to these models’ inability to go 
beyond a prediction accuracy ceiling. One is the lack of an established open-
source data registry that combines patient information from multiple centers 
worldwide and different sources such as clinical assessments, brain imaging, and 
surveys. Another is the simplicity of using dichotomized mRS scores, whereas 
experts require more information from the model than a simple binary prediction 
for supporting their decisions (2).

Lack of transparency is identified as one of the main barriers to implementa-
tion. No matter how accurate an AI model is in its predictions, clinicians should 
be confident that the predictions are also trustworthy. Improving model transpar-
ency is an essential step towards trustworthy AI, along with reporting data quality 
and conducting external validation studies (36). Explainable AI (xAI) provides a 
rationale that allows clinicians to understand why an AI system has produced a 
particular recommendation, allowing increased model transparency. Therefore, 
xAI has become a popular field of research to increase the adoption of AI systems 
in clinical practice.
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EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI)

xAI is an emerging field that aims to help humans understand decisions made by 
AI systems. The terminology around xAI is still not well-established, leading to 
the interchangeable use of “interpretability” and “explainability”. Here, we use 
interpretability to refer to a passive characteristic of a model that makes it easily 
understandable to a human; and explainability to refer to an active characteristic 
of a model that encompasses actions that aim to give details about its internal 
function explicitly (37). We suggest that there are two ways to achieve xAI (36): 

 i. Explainable modelling which means using models that are interpretable by 
design, i.e., “white-box” models. White-box models include LR classifiers 
and decision trees in which the internal functioning is directly accessible to 
the user and can be understood effortlessly (37). 

 ii. Post-hoc explanations which means converting models that are not interpre-
table by design, i.e., “black-box” models, into explainable ones using post-
hoc explainability methods. These methods aim to enhance interpretability 
using text explanations, visual explanations, and feature importance expla-
nations, among others (37). Feature importance explanations rank the 
explanatory power of input features on the model predictions and consti-
tute the majority of post-hoc explainability models. For clinicians, it is 
helpful to learn which features are responsible for the predicted outcome to 
compare these with their own prior knowledge (38). The quantitative 
assessment of feature importance is usually made more human-readable via 
a visual representation of how different factors contributed to the final deci-
sion (e.g., boxplots). 

xAI applications in functional stroke outcome prediction

One of the first studies investigating the relative importance of ML model vari-
ables in functional outcome prediction sorted the magnitude of model weights 
in descending order for each clinical variable used to train an LR model (i.e., a 
white-box model). They showed that the most influential predictor was baseline 
NIHSS, with age amongst the top four, indicating that model decisions were 
driven by factors compatible with prior knowledge. Following this, several stud-
ies that adopted post-hoc explainability methods with black-box models were 
able to reveal a similar promising outcome. For example, we applied two differ-
ent feature importance explanation methods to our gradient boosting and ANN 
models (27). Additionally, we used the model weights of our LR models to pro-
vide a rating of features based on a white-box model for comparison. Our results 
(Figure 3) showed that all models rated age and baseline NIHSS consistently as 
the top two important features in predicting 90-days mRS. A study that com-
pared post-hoc feature importance explanations of their RF, SVM and gradient 
boosting models to feature rankings of their decision trees and LR reported the 
same results. All models rated age and baseline NIHSS to be the top two impor-
tant predictors (20).
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Furthermore, the MR CLEAN study that used baseline and post-treatment 
variables to train RF models provided a feature importance table which not only 
showed that age and baseline NIHSS was rated among the top predictors but also 
suggested that most top predictors did not overlap with their selection of impor-
tant variables based on prior knowledge (22). This study shows the potential of 
post-hoc explanations in providing the researcher with previously undiscovered 
information. Overall, these studies indicate that black-box models can provide 
high predictive accuracy and reliable explanations that are compatible with prior 
knowledge while also helping discover new variables that may be important for 
functional outcome prediction.

There are relative advantages and disadvantages to using different post-hoc 
explainability methods for ML and DL models. The selection will depend on the 
type of models and the type of data used or the context in which it is used (36). 
In the context of healthcare, the two methods used in our study are valuable 
because they generate local explanations, i.e., feature relevance scores for each 
patient. For precision medicine, we need explanations at the patient level, where 
important predictors of outcome are laid out specifically for each patient.

A feature importance explanation method that is specifically designed for 
imaging-based CNN models and can provide local explanations is Gradient-
weighted Class Activation Mapping (Grad-CAM) (39). Grad-CAM calculates the 
rate of change in the prediction of a target class regarding a change in the input 
features (i.e., pixel/voxels). By allowing the preservation of spatial information, 
Grad-CAM identifies regions of interest in the input image that are important for 
the prediction rather than individual pixel/voxels. These regions of interest can be 
then visualized as heat maps allowing for qualitative analysis of the important 
areas through visual inspection. We applied Grad-CAM on a CNN model that was 
trained on MRI Apparent Diffusion Coefficient (ADC) maps of 40 hyperacute 
ischemic stroke patients to predict 90-days mRS (AUC:0.91) (40). Figure 4 shows 
the heatmaps generated from the quantitative Grad-CAM analysis for eight 

Figure 3. Importance rating. Graphical representation of the feature importance explanations 
derived from five AI models that were trained to predict 90-days mRS based on patient 
demographics, comorbidities, and presence of IV-rtPA treatment. All values were normalized 
to the range of [0,1] for comparability.
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example patients, all classified correctly by the model. The heatmaps showed that 
the model did not focus on the visible ischemic regions in the ADC maps but 
consistently focused on the boundaries of the brain. This may suggest that the 
model’s predictions were likely based on MR artefacts rather than pathophysiolog-
ical information represented in the ischemic regions of ADC maps. On the other 
hand, by focusing on the boundaries, the model may have discovered atrophy 
related to the patient’s age. These results highlight that (i) high performing models 
are not necessarily reliable, and (ii) when the explanations do not identify imaging 
features that are known to be predictive of functional outcome, it is hard to deter-
mine why. 

We suggest that a multidisciplinary process is needed to understand better 
the properties of existing models and what is clinically valid. Our study (27) 

Figure 4. Activation maps. Illustration of class activation maps for correctly predicted patients 
from the A, training, and B, validation data. For each patient, a slice from the ADC (apparent 
diffusion coefficient) maps is shown with the lesion mask overlayed. The generated heatmap 
for that slice is shown beside the original image, where red and yellow areas indicate regions 
of interest.
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showed that, complex algorithms such as neural networks correctly identified 
the most important clinical variables that drive the prediction of functional 
stroke outcome in alignment with existing literature (41). Similar work is 
needed for DL models applied to neuroimaging for functional stroke outcome, 
i.e., consensus between features found important using post-hoc explainability 
and the imaging properties already known to be important. This can be 
achieved by acknowledging the importance of information exchange between 
clinicians and developers and making these interactions a part of model 
development.

THE NEED FOR XAI FOR CDSS USED IN ACUTE STROKE CARE

The healthcare domain has unique ethical and legal challenges as decisions 
may considerably impact a patient’s physical and mental health and financial 
well-being. xAI can pave the way towards trusted decisions by enforcing the 
deployment of explainable models. We elaborate on four questions of concern 
for the deployment of AI models in the clinic, how these concerns are trans-
lated to the acute stroke setting and how they may be answered through xAI 
(2, 6, 36). 

 i. Why and when does the system fail?
  A global understanding of the model’s decisions can highlight possible con-

founding factors or inappropriate features that may have driven the deci-
sion. For example, our study using ADC maps (40) to predict functional 
outcome demonstrated that a high performing model, contrary to expecta-
tions, may have focused on imaging artefacts, or factors related to age, 
instead of the ischemic region. The use of xAI tools can help prevent a 
phenomenon like this while the model is still in the development phase, 
i.e., before it is adopted in another hospital setting, allowing a medical 
expert to detect and correct misguided decisions. 

 ii. How can the model advance our understanding of the underlying neurobiological 
mechanisms?

  As discussed, the primary benefit of DL algorithms is that they can intrinsi-
cally learn complex patterns from the data, eliminating the need to hand-
select features based on domain knowledge (12). Thus, DL algorithms have 
no intrinsic constraints related to pathological plausibility or validity, poten-
tially leading to AI systems that learn from confounding factors instead of 
plausible biomarkers. On the other hand, this freedom from constraints 
may help promote discovery, thus helping researchers build new hypothe-
ses and theories inspired by AI models (42). 

 iii. To which individuals or subgroups does the model apply?
  Algorithmic bias is present in some of the AI models that have been applied 

to healthcare systems against under-represented populations (43). 
Explainability can help reveal certain systematic biases in an AI system and 
allow developers to detect and correct for these biases which may pave the 
way towards impartiality in decision making. 
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 iv. Who is responsible?
  There are important ethical and legal discussions around clinicians’ account-

ability and patients’ autonomy concerning decisions made by a computer 
system. In 2021, there is no consensus on whether disclosing the use of a 
black-box AI system should be mandatory for informed consent. Similarly, 
there is no precise legal regulation requiring explainability during the devel-
opment of AI systems that inform medical treatment (6). However, under-
standing the reasoning behind an AI system’s decision will enable shared 
decision making between the patient and the clinician, allowing for an 
equal share of responsibility and increased patient autonomy. In the acute 
stroke setting, shared decision making may be difficult due to clinicians 
having to make time-pressuring treatment decisions and the possibility of 
patients not having the required cognitive abilities, which further empha-
sizes the need for transparent systems. 

Ultimately, xAI is essential when developing CDSSs for acute stroke care. 
Whether xAI should be acquired using white-box models that may have limited 
predictive power but offer complete transparency or using high-performing, 
black-box models with suitable post-hoc explainability techniques depends on 
the context of the CDSS design. Regarding functional outcome prediction, some 
studies have favored the use of white-box models when possible (18, 20), espe-
cially when using only clinical variables where performances between different 
ML/DL models do not vary much. However, our findings suggest that the predic-
tive power of ML models has reached a natural limit due to the type of data they 
can process. The field needs to move toward a data-driven multi-modal learning 
approach, which can only be achieved by using DL algorithms that capture rich 
patterns from unstructured data. Therefore, we are in favor of using post-hoc 
explainability methods together with black-box DL models and encourage 
potential users of CDSSs to understand that post-hoc explanations are only 
approximations of the inner mechanisms of DL and cannot provide full 
 transparency (36).

CONCLUSION

In this chapter, we have identified studies that applied AI models to predict 
functional stroke outcome in terms of 90-days mRS using a variety of structured 
and unstructured data. We showed that transparency in ML/DL models is pos-
sible to a certain level and feature importance explanations is a popular way to 
achieve this. We suggest that xAI is essential for developing models that can 
overcome the limitations of the predictive performance ceiling while providing 
reliable decisions. 
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