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Abstract: Canonical transient receptor potential channels (TRPC) are a family of 
calcium-permeable cation channels that have emerged as novel molecular targets 
for epilepsy and other human diseases in recent years. Cryogenic electron micro-
scopic structures for the majority of TRPC have been resolved and these structures 
have provided new insights regarding the gating mechanisms of TRPC and aided 
the developments of small molecule modulators of these channels. Small mole-
cule modulators target several TRPC and show promise as anti-seizure drugs. 
However, the pharmacokinetics need improvement, and better understanding of 
native TRPC will facilitate future drug development.
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INTRODUCTION

Most current anti-seizure drugs target either voltage-gated ion channels or ligand-
gated ion channels (1–4). These drugs are effective in reducing either focal or gen-
eralized seizures. However, a third of epilepsy patients have refractory seizures 
which are resistant to current drug treatment (5). Therefore, there is an urgent need 
to identify novel molecular targets to develop new therapeutics for epilepsy.

Canonical transient receptor potential channels (TRPC) , which are a family 
of distinct calcium permeable cation channels (6–8), are the focus of this chap-
ter. There are seven members in the mammalian TRPC family, TRPC1, 2, 3, 4, 
5, 6, and 7, and based on sequence homology, they can be divided into three 
subgroups: TRPC1, 4, 5; TRPC3, 6, 7; and TRPC2. Structurally, they are highly 
similar to voltage-gated cation channels with six transmembrane domains and a 
pore loop but lack voltage sensors. However, they are gated by G-protein cou-
pled receptors via the phospholipase C signaling pathway. All TRPC family 
members are capable to form functional homo-tetrameric channels in artificial 
expression system. They can also form heterotetramers with other TRPC family 
members or members of the broader transient receptor potential (TRP) super-
family. The exact subunit composition of native TRPC in various cells or tissues 
remains hotly debated.

The functional roles of TRPC have also been subjects to controversy (6, 9). The 
initial lack of good pharmacological tools has limited the study of the functional roles 
of TRPC, and genetic knockout mouse lines became indispensable for revealing the 
specific roles of each TRPC family member. Initial reports suggested that TRPC1 and 
TPRC4 may be involved in store-operated calcium (SOC) influx (10–14). Another 
ion channel, Orai, was later cloned and identified to be the core component of SOC 
(15, 16). However, the debate about the precise role of TRPC in SOC is still ongoing 
(17). An emerging consensus is that TPRC are polymodal, and their roles include 
receptor-operated calcium influx (ROC) (18), sensors for stretch in vasculatures (19, 
20), and oxidative stress (21). Altogether, TRPC knockout mouse lines have pro-
duced over 30 proposed roles of TRPC in native tissues (17, 19) 

The fact that such a wide variety of potential functional roles have linked to TRPC 
(17) showed that these channels potentially are promising molecular targets for drug 
developments. In the last decade, a new generation of small molecule modulators for 
TRPC3, 4, 5, 6 has been developed and some of these compounds have progressed 
into early clinical trials for a host of diseases (8, 22–24). The recent cryogenic elec-
tron microscopic (cryo-EM) studies of TRPC3, 4, 5, and 6 have revealed new insights 
regarding the structure and gating of these channels, and identified new modulatory 
sites that can be exploited for the developments of a next generation of small mole-
cule modulators (25–35). The pace of the development is anticipated to further 
accelerate and brings a degree of optimism about the therapeutic potentials of TRPC. 
At the same time, the rapid pace has also generated some concerns about unresolved 
controversy regarding the functional roles of various types of TRPC. 

The goal of this chapter is to review the current literature and discuss why and 
how TRPC3, 4, 5, and 6 could be targeted for the development of new antiepilep-
tic drugs. Although TRPC7 are involved in seizure generation (36), the lack of 
recent progress on small molecule modulators for TRPC7 has diminished the 
need for further review.
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TRPC: SUBUNIT COMPOSITION, STRUCTURE, AND GATING

TRPC are the first group of cloned mammalian homologues of drosophila TRPC, 
and are part of the TRP superfamily of calcium permeable cation channels (37–39). 
TRPC are activated by a wide range of stimuli including intra- and extracellular 
messengers, chemical, mechanical, and osmotic stress (40, 41). TRPC are calcium 
permeable cation channels but with complex rectifications in their I-V relationship. 
All homomeric TRPC show a double rectification in most studies in artificial expres-
sion systems. TRPC exhibit enhanced activity up to approximately -50mV holding 
potential and drastically reduced activity between 0-40 mV positive holding poten-
tials. Heteromeric channels formed by TRPC1, and other TRPC family members 
showed a simpler I-V relationship. The rectification at the positive potential is lost 
whereas the rectification at the negative holding potential becomes more pro-
nounced. This I-V relationship closely resembles the calcium-activated non-selec-
tive cationic current in hippocampal pyramidal neurons and other neurons (42, 
43), which has been postulated to be involved in epileptiform discharges (44–46).

The subunit composition of native TRPC in various tissues and cell types is an 
issue that is critical for the understanding of TRPC functions but remains unset-
tled. The tissue expression pattern of each TRPC family member is unique. TRPC1 
is ubiquitously expressed in all cell types and tissues (47–51). TRPC2 is a pseu-
dogene in humans but critically involved in the olfactory function in rodents (52). 
For the rest of TRPC family members, there are broad overlapping low to moder-
ate expressions in many tissues and unique high expression in certain cell types. 
In the central nervous system, TRPC3 is highly expressed in cerebellar Purkinje 
cells (49, 50, 53). TRPC4 is highly expressed in the lateral septal neurons and 
CA1 pyramidal neurons (54–56). TRPC5 is highly expressed in CA3 pyramidal 
neurons and amygdala neurons (57–60). TRPC6 is highly expressed in dentate 
granule cells (61, 62). TRPC7 is moderately expressed in cerebellum and hippo-
campus (63). The distinct patterns of expression for each TRPC argue for the 
existence of functional homomeric receptors in at least some cell types in the 
brain. Since mRNAs for several TRPCs can often be detected in a single cell type, 
it is likely that heteromeric TRPC receptors exist in vivo. However, it is difficult to 
distinguish heteromeric TRPC from homomeric TRPC in native tissues and assign 
functional roles to them. The first reason is the uncertainty about all possible per-
mutations of functional heteromeric TRPC. Although it is generally believed that 
TRPC1 forms heteromeric channels with closely related TRPC4 and TRPC5, 
Storch and colleagues reported that TRPC1 formed functional heteromeric chan-
nels with all other members of the TRPC family (64). Another case of heteromeric 
TRPC formed by members from different subfamily is the TRPC3/4 heteromeric 
channels in porcine aortic endothelial cells (21). The second reason is the techni-
cal limitations of the current approaches used to demonstrate the existence of 
heteromeric receptors in native cells or tissues (65). There is an urgent need for 
innovative tools that can be used in native tissues.

Structurally, all TRPC resemble voltage-gated ion channels. They are all tet-
rameric, i.e., each functional channel is composed of four subunits. Each sub-
unit has six transmembrane domains and one pore loop, flanked by an 
intracellular N-terminal domain and an intracellular C-terminal domain 
(Figure 1). Using cryo-EM approach, David Julius’ group resolved the structure 
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of TRPV1 (66, 67). This technical breakthrough opened a flood gate, and the 
same approach have been used to resolve structures for many ion channels, 
including homomeric TRPC3, 4, 5 and 6 (25–35). The overall structures of 
these TRPC are very similar, showing a series of conserved domains. Embedded 
in the membrane is the core of the ion channel which includes the pore domain 
(i.e., the ion conducting pathway) and a voltage sensing-like domain (VSLD). 
The pore domain is formed by the re-entrant pore loop and TM5 and TM6 from 
each subunit. The VSLD is formed by TM1-TM4 and interacts with the pore 
domain. An elbow-like structural component is embedded in the lipid bilayer 
and makes hydrophobic contacts with the intracellular half of TM1. The ion 
conducting pathway consists of a selectivity filter formed by pore loop helixes 
near the extracellular side and a gate formed by distal TM6 near the intracellular 
side. All TRPC also have a large cytosolic domain, which is assembled through 
interactions between the ankyrin repeat domain at the N-terminus and the rib 
helix and coiled-coil at the C-terminus. Adjacent to TM6, the highly conserved 
TRP domain is a α-helix running parallel to the rib helix, and both are consid-
ered to be involved in the gating of TRPC.

These structures have provided some insights into the gating of TRPC. Three 
conserved binding sites for small molecule modulators or endogenous ligands 
have been identified (27, 33–35). The first site is the lipid binding site in the pore 
domain, formed by the re-entrant loop and TM5 of one subunit with the TM6 of 
the adjacent subunit (red star in Figure 1). It is accessible from extracellular side. 
Diacylglycerol (DAG), an endogenous agonist of TRPC, binds to this site. Small 
molecule modulators of TRPC4/5 (HC-070, pico145), and a small molecule 

Figure 1.  Cryo-EM Structure of TRPC4 (PDB: 7B0S). A top view is shown. Note the lipid binding 
site (red star) in the pore domain between each subunit, and the modulatory site (green star) in the 
VSLD domain occupied by GFB-8438



TRPC as Novel Targets for Antiepileptic Drugs 83

agonist of TRPC6 (AM-0883), also bind to this site. The second modulatory site 
is located in the VSLD of each subunit (green star in Figure1) and is accessible 
from the intracellular side. Small molecule modulators of TRPC4/5 (clemizole, 
GFB8438, GFB8749, and GFB9289) and a small molecule inhibitor of TRPC6 
(AM1473) bind to this site. The third site is located between the pore domain and 
the VSLD, and is formed by TM3, TM4, TM4-TM5 linker of one subunit and TM5 
and TM6 of the adjacent subunit. In human TRPC6, this site is either occupied by 
BTDM or a phospholipid (33). Although no small molecule modulators are known 
to occupy this site for other TRPC, point mutations of the TM4-TM5 linker in 
TRPC4/5 result in constitutively active channels (68), indicating a critical role of 
this region in gating. In addition to these small molecule modulator sites, there are 
two conserved cation binding sites (one in the VSLD for calcium and another one 
in the cytoplasmic domain for zinc), and the  calmodulin/IP3-receptor binding 
(CIRB) site in the cytoplasmic domain. The calcium binding site is formed by 4 
negatively charged or polar residues in the TM2 and TM3, and the zinc binding 
site is formed by 4 histidine and cysteine residues adjacent to the LH1 helix. The 
CIRB site is located at the proximal end of the rib helix and adjacent linker (27). 
The exact roles of these sites in gating need to be further investigated.

TRPC4 and TPRC5

TRPC4 and TRPC5 belong to the TRPC1/4/5 subgroup, and are thought to be 
activated by G-protein coupled receptors via phospholipase C signaling pathway 
(69). In artificial expression systems, TRPC4 and TRPC5 can form homomeric 
receptors and the channel properties are remarkably similar (68, 70–72). TRPC1 
cannot form functional channel alone in artificial expression systems, and behaves 
more like a modulator when it forms heteromeric channels with TRPC4 or TRPC5 
(64, 73–75). One notable property of the heteromeric TRPC1/4 or TRPC1/5 is the 
lack of double rectification normally seen for homomeric TRPC (57, 68, 74). 
However, the I-V relationship of recombinant heteromeric TRPC1/4 or TRPC1/5 
appear to be somewhat variable. Some laboratories observed a very renowned 
negative slope region between -80 to -40 mV membrane potential (57, 76), 
whereas others showed only a marginal non-linearity (74, 77).

The subunit composition of native TRPC comprised by TRPC1/4/5 subgroup 
have been investigated with a panel of TRPC1, 4, 5 single knockout, TRPC1/4, 
TRPC1/5 double knockout and TRPC1/4/5 triple knockout mice. The evidence 
for the existence of native TRPC1/4 heteromeric channels is clear and convincing 
(54, 78, 79). In lateral septal neurons where the TRPC4 expression level is very 
high, activation of group I mGluRs elicits a prolonged epileptiform burst firing 
with an underlying plateau potential (80–82). This plateau potential was thought 
to be mediated by a calcium-activated non-selective conductance and has been 
confirmed later as largely mediated by heteromeric TRPC1/4. This mGluR ago-
nist-induced response can be abolished by either knockout TRPC1 in mice (54) 
or TRPC4 in mice (79) and rat (54). This is in clear contrast to the comparison of 
TRPC1 and TRPC5 KO in the hippocampus (78), where Schafer-collateral-CA1 
LTP is reduced by genetic ablation of TRPC5, but not reduced by genetic ablation 
of TRPC1. Thus, TRPC involved in CA1 LTP is likely homomeric TRPC5, not 
heteromeric TRPC1/5. The I/V relationship of heteromeric TRPC1/4 in lateral sep-
tal neurons shows a pronounced negative slope region (54, 83, 84), similar to 
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heteromeric TRPC1/4 or TRPC1/5 in artificial expression systems. If one infers 
from the existence of a negative slope region in mGluR1/5-induced current, het-
eromeric TRPC1/5 could be abundant in CA3 pyramidal neurons. Heteromeric 
channels comprised of all three members of the TRPC1/4/5 subgroup may also 
exist in some neurons (85). There are also evidence for the existence of homo-
meric TRPC4 or TRPC5 (78). The unique C-terminal PDZ domain in TRPC4 or 
TRPC5 suggests that homomeric TRPC4 or TRPC5 may be localized into synapses 
and modulate synaptic plasticity. 

Since the initial report of the activation of TRPC1 by metabotropic glutamate 
receptor 1 (mGluR1) (86), TRPC1/4/5 subgroup has always been linked with 
mGluR signaling and often assigned a role in the generation of epileptiform dis-
charges (42, 43, 54, 78). These studies suggest that selective blockers of TRPC1/4/5 
may have high therapeutic potentials as antiepileptic drugs (87, 88). ML204 
emerged as the first selective blocker of TRPC4/5 (89). However, it is a poor can-
didate for antiepileptic drug because it failed to effectively block the plateau 
potential mediated by TRPC1/4 in lateral septal neurons (79). Its therapeutic 
potential has also been hampered by poor pharmacokinetics. A new generation of 
TRPC1/4/5 small molecule modulators began to emerge in 2015 when (-)-Englerin 
A was identified as a TRPC4/5 agonist (90, 91). A few years later, Pico-145 was 
identified as a highly potent inhibitor of TRPC1/4/5 (77). More importantly, pico-
145 is effective against heteromeric TRPC1/4 and TRPC1/5. AM-237, which acti-
vates homomeric TRPC5 but inhibit homomeric TRPC4 and heteromeric TRPC1/4 
and TRPC1/5 (92), is another intriguing compound for in vivo testing. These new 
tools (23, 92) provided a golden opportunity to evaluate the therapeutic potential 
of small molecule modulators of TRPC1/4/5 as antiepileptic drugs.

A future challenge is to find small molecule modulators that can differentiate 
TRPC4 and TRPC5. Despite the initial claims (93), all current TRPC4/5 inhibitors 
blocks both TRPC4 and TRPC5 with similar potency (Personal communication, 
R.Bon). The lipid binding site in the pore domain could be further exploited as 
the presence of gadolinium cation Gd3+ could turn pico-125 from an inhibitor to 
activator of TRPC4 (77). The zinc binding site and CIRB site in the more variable 
cytosolic domain may also be promising for developing drugs that can differenti-
ate TRPC4 and TRPC5.

Another challenge is to determine whether homomeric TRPC4 and TRPC5 are 
pharmacological and functionally distinct from the heteromeric TRPC1/4 and 
TRPC1/5. This is a critical question with implications for future development of 
antiepileptic drugs. The poor efficacy of ML204 for TRPC1/4 suggest that homo-
meric TRPC4 and heteromeric TRPC1/4 are pharmacologically distinct. Assuming 
they are also functionally distinct, a selective inhibitor for TRPC1/4 may be a bet-
ter antiepileptic drug than pico-145, which blocks both homomeric TRPC4 and 
heteromeric TRPC1/4. 

TRPC3

TRPC3 is the most prominent member of the TRPC3/6/7 subgroup and has been 
implicated in CNS (94–96) and cardiovascular diseases (97). TRPC3 is expressed 
widely at moderate levels in the brain and is a downstream effector of brain-derived 
neurotrophic factor (BDNF) signaling pathway (98–100). Since BDNF signaling is 
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critical for epileptogenesis (101–103), the involvement in BDNF signaling makes 
TRCP3 a promising target for the development of antiepileptic drugs.

Pyr3 is the first identified TRPC3-prefering inhibitor (104). Using Pyr3 and 
TRPC3 global knockout mice, it has been shown that TRPC3 are directly involved 
in the generation and propagation of pilocarpine-induced status epilepticus (SE) 
(105). The seizure severity was reduced both by genetic ablation of TRPC3 and by 
intraperitoneal administration of Pyr3. This reduction is due to a specific reduc-
tion of the theta activity induced by pilocarpine. However, SE induced neuronal 
cell death is not significantly reduced either by genetic ablation of TRPC3 or by 
Pyr3. Pyr3 has been reported to reduce SE-induced neuronal cell death in rats 
(106). The reason for the different effects of Pyr3 on neuronal cell death in rodents 
remains unclear. 

TRPC3 expressed in vasculatures are also involved in epilepsy. SE upregulate 
TRPC3 expression in cerebrovascular endothelial cells and intraventricular infu-
sion of Pyr3 reduces SE-induced edema and neuronal cell death (107). A follow-
up study from the same group showed the involvement of ETB receptors and 
PI-3K in these pathological processes (108). TRPC3 expressed in smooth muscle 
cells also contribute to the pilocarpine-induced SE (109). SMC-specific and 
inducible TRPC3 knockout shortened the duration of pilocarpine-induced SE, 
due to the elimination of a secondary phase caused by SE-induced inverse hemo-
dynamic response (109). This surprise finding suggests that targeting vascular 
TRPC3 may be a viable novel strategy to develop antiepileptic drugs.

Although Pyr3 is relatively selective for TRPC3, it suffers from instability and 
cellular toxicity in vivo (104, 110). A better TRPC3 inhibitor with reduced toxic-
ity and improved stability has been developed (111). This compound needs to be 
tested to determine whether TRPC3 is a viable molecular target for future devel-
opments of antiepileptic drugs.

TRPC6

In the brain, TRPC6 is highly expressed in dentate granule cells in the hippocam-
pus. Dentate granule cells (DGCs) receive excitatory input from entorhinal cortex 
via the perforant pathway and they send out mossy fibers that innervate CA3 
pyramidal cells (112). Mossy fibers also innervate excitatory mossy cells, which in 
turn innervate GABAergic ‘basket’ interneurons in the hilar region to reduce gran-
ule cell excitability (113–117). One of the early signs of temporal lobe epilepsy is 
the loss of normal paired-pulse inhibition and granule cell hyper-excitability, 
which is caused by the loss of mossy cells (116, 118). The unique high expression 
pattern of TRPC6 in dentate granule cells naturally prompted heightened interests 
in investigating whether TRPC6 played a role in epileptogenesis.

An initial report described a decrease of TRPC6 in DGCs after pilocarpine-
induced SE in rats (106). Intraventricular infusion of a TRPC6 agonist, 
hyperforin (119), prevented the down regulation of TRPC6 expression and reduced 
SE-induced neuronal cell death in the hilar, CA3 and CA1 regions (106). Subsequent 
study from the same group showed that knockdown of TRPC6 using siRNA increased 
seizure susceptibility (120). A more notable finding was that TRPC6 knockdown 
made the normally resistant DGCs susceptible to SE-induced excitotoxic cell death, 
but reduced SE-induced cell death in downstream CA3 and CA1 region (120). So, 
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both activation and inhibition of TRPC6 activity in rats reduced the SE-induced hip-
pocampal neuronal cell death, which appear to be contradictory. Brain samples from 
temporal lobe epilepsy (TLE) patients and pilocarpine-treated mice showed opposite 
results, and the TRPC6 expression in both human cortex and mouse hippocampus 
were increased (95). TRPC6 KO mice showed no detectable changes either in seizure 
susceptibility or SE-induced neuronal cell death in any region of the hippocampus 
(Unpublished data. F. Zheng). Thus, the precise roles of TRPC6 played in epilepto-
genesis remain uncertain.

Despite these somewhat inconsistent results, the recent advances in small 
molecule moderators have provided an opportunity to revisit the role of TRPC6 
in epilepsy. There are two pressing questions that need to be answered: (i) does 
a selective TRPC6 inhibitor reduce SE-induced neuronal cell death in the hilar, 
CA3 and CA1 region? and (ii) Does a selective activator of TRPC6 reduce or 
exacerbate seizure susceptibility? TRPC6 belong to the subgroup of TRPC3/6/7 
which are directly activated by DAG and highly permeable to calcium ion 
(62, 121). The previous TRPC6 knockdown data appears to be more consistent 
with what are known about the TRPC6 function than the previous results with 
hyperforin. It is likely a highly selective TRPC6 inhibitor will be protective 
against SE-induced neuronal cell death and will have therapeutic potential for 
epilepsy. On the other hand, a selective activator of TRPC6 may increase excit-
ability of DGCs. The hyper-excitability of DGCs will likely propagate along the 
tri-synaptic pathway and lead to increased susceptibility to seizures.

CONCLUSION

Overall, there are good reasons to be optimistic regarding the prospect of new 
therapeutic agents emerging from small molecule modulators of TRPC, and epi-
lepsy should be among the primary diseases targeted for drug development. 
Current literature suggests that heteromeric TRPC1/4 and TRPC1/5 may be highly 
promising targets for developing new antiepileptic drugs. A more provocative idea 
is to target TRPC3 in cerebral vasculature as a treatment option for epilepsy. The 
detailed understanding of the structure of these TRPC will help to accelerate the 
development of small molecule modulators for them. A major obstacle for target-
ing TRPC to develop novel therapy for epilepsy is the limited understanding of 
subunit composition and function of native TRPC. Current approaches are not 
adequate and new tools are needed.
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