
41

In: Czuczwar SJ, editor. Epilepsy. Exon Publications, Brisbane, Australia. 
ISBN: 978-0-6453320-4-9. Doi: https://doi.org/10.36255/exon-publications-epilepsy

Copyright: The Authors.

License: This open access article is licenced under Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0) https://creativecommons.org/
licenses/by-nc/4.0/

Abstract: Patients with epilepsy often experience comorbid cognitive and behav-
ioral problems. These problems are often caused by neurodevelopmental disor-
ders such as autism spectrum disorder and attention-deficit hyperactivity disorder. 
Although the etiology of epilepsy is unclear in many patients, there is increasing 
evidence for the existence of genetic traits common to both epilepsy and 
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neurodevelopmental disorders. These include chromosomal abnormalities, copy 
number variations, and single gene diseases. This chapter examines several genetic 
disorders that may underlie epilepsy and several neurodevelopmental disorders. 
There is substantial evidence that the same gene mutations are associated with 
both epilepsy and neurodevelopmental disorders. Alternative biological models 
are considered that could explain the association and causal links between the two 
disorders. It is likely that epilepsy and neurodevelopmental disorders both lie on 
a single continuum, and that greater understanding of the overlap between these 
disorders and epilepsy would help to provide more tailored interventions. 

Keywords: attention-deficit hyperactivity disorder; autism spectrum disorder; 
epilepsy; genetics; neurodevelopmental disorder

INTRODUCTION

Epilepsy is characterized by recurrent seizures caused by intense electrical exci-
tation of neurons in the brain, and can occur regardless of age, sex, or race. 
Epilepsy is a common disease, with an incidence of 61.44 per 100,000 person-
years (95% confidence interval [CI] 50.75–74.38) and a lifetime prevalence of 
7.60 per 1,000 persons (95% CI 6.17–9.38) in many countries (1). The epilepsy 
classification published by the International League Against Epilepsy in 2017 
categorizes epilepsy into three levels (2). At the first level, seizures are broadly 
classified into focal, generalized, and unknown onset. At the second level, epi-
lepsy is categorized into four main types: focal epilepsy, generalized epilepsy, 
combined focal and generalized epilepsy, and unknown epilepsy. The third level 
defines epilepsy in terms of epilepsy syndrome, when a specific syndrome diag-
nosis is possible. The etiologic categories of epilepsy are structural, genetic, 
infectious, metabolic, immune, and unknown. Despite the widespread use of 
advanced diagnostic techniques such as magnetic resonance imaging, the etiol-
ogy of epilepsy in most patients remains unclear. However, with recent advances 
in gene sequencing technology, there is growing evidence that genetics plays an 
important role in the development of epilepsy (3). Important comorbidities of 
epilepsy include cognitive and behavioral disorders. In some patients, such 
comorbidities may have a greater effect than the epilepsy (4, 5) and may severely 
affect daily life. The disorders that most often cause cognitive and behavioral 
impairments are neurodevelopmental disorders. In the Diagnostic and Statistical 
Manual of Mental Disorders, Fifth Edition (DSM-5), neurodevelopmental disor-
ders as a diagnostic category are defined as a group of conditions with onset in 
the developmental period, inducing deficits that produce impairments of func-
tioning (6). Neurodevelopmental disorders include autism spectrum disorder 
(ASD), attention-deficit hyperactivity disorder (ADHD), and intellectual dis-
abilities. Many studies, particularly in the field of genetics, have reported 
that neurodevelopmental disorders have a common biological background (7). 
A substantial number of cases of neurodevelopmental comorbidities occur in 
clinical practice (8). The diagnostic criteria of earlier versions of the DSM (e.g., 
DSM-IV) did not include combinations of neurodevelopmental disorders, such 
as the combination of ASD and ADHD. However, DSM-5 recognizes the 
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diagnosis of combined ASD and ADHD. The concept of neurodevelopmental 
disorders in the International Classification of Diseases 11th Revision (ICD-11), 
published in 2018, generally aligns with that of DSM-5, and ICD-11 also recog-
nizes the comorbidity between ASD and ADHD. These developments highlight 
the importance of considering the substantial overlap between neurodevelop-
mental disorders, at least in their clinical aspects. Furthermore, some research-
ers have proposed that these neurodevelopmental disorders are on a dimensional 
continuum, rather than being separate diagnostic categories (9).

Interestingly, neurodevelopmental disorders and epilepsy often co-occur. The 
incidence of neurodevelopmental disorders in patients with epilepsy is higher 
than that in the general population, and the incidence of ADHD varies from 11% 
to 46% (10-13). One study showed that children with epilepsy had a fully adjusted 
incidence rate ratio of 2.72 (95% CI 2.53–2.91) for ADHD compared with chil-
dren without epilepsy (14). In addition, 18-30% of children with epilepsy meet 
the criteria for ASD (15, 16). The frequency of epilepsy complications in neuro-
developmental disorders is also high, ranging from 8-77% of patients with ADHD 
(17), and approximately 5-46% of ASD patients have epilepsy (15). 

The combination of epilepsy and neurodevelopmental disorders has several 
characteristics. One is the distribution of epilepsy onset. Patients with ASD show 
two peaks of epilepsy onset, one in infancy and the other around puberty, with 
most cases occurring around puberty (18). Presumably, the former group devel-
ops epilepsy in childhood as a result of the presence of a common neuropatho-
physiological antecedent that causes epilepsy and neurodevelopmental disorders; 
in the latter group, the accumulation of abnormal brain functions that cause 
neurodevelopmental disorder may trigger seizures. Another feature is that both 
epilepsy and neurodevelopmental disorders are prone to electroencephalogram 
(EEG) abnormalities. EEG abnormalities are often observed in epilepsy patients, 
and are found in 4-86% of ASD patients (15) and 16-30% of ADHD patients 
(19–21). These EEG abnormalities are strongly associated with earlier epilepsy 
onset, inattentive subtype, and intellectual disability (21, 22). The presence of 
epileptic discharges in EEG correlates with cognitive decline, as reported in 
patients with Alzheimer’s disease (23). Epilepsy or epileptic EEG changes may 
exacerbate neurodevelopmental disorders. It is important to recognize that these 
relationships between epilepsy and neurodevelopmental diseases are not recipro-
cally exclusive or unidirectional. Recognizing the co-occurrence of these disorders 
and understanding the mechanisms by which they interact could lead to indi-
vidualized treatment and better management. This chapter provides an overview 
of the genetic disorders that commonly cause epilepsy and neurodevelopmental 
disorders, and proposes an etiological perspective on epilepsy and neurodevelop-
mental disorders as lying on a continuous biological spectrum.

THE GENETIC BACKGROUNDS OF NEURODEVELOPMENTAL 
DISORDERS AND EPILEPSY

In recent years, owing to the rapid progress of genome technologies, several 
genetic traits have been identified that cause both neurodevelopmental disorders 
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and epilepsy. The most frequently reported traits include chromosomal abnor-
malities, copy number variations (CNVs), and single gene diseases. The following 
are typical examples of each of these conditions.

Chromosomal abnormalities and copy number variations

Chromosomal variations and anomalies can be broadly divided into numerical 
and structural aberrations. There are several types of numerical abnormalities, 
including monosomy, in which there is only one chromosome when there should 
be two; trisomy, in which there are three chromosomes; and tetrasomy, in which 
there are four chromosomes. Structural chromosomal abnormalities include 
translocations and inversions, partial deletions and duplications, ringed circular 
chromosomes, and isochromosomes with only a long or short arm. These struc-
tural variants affect the number of stretches of DNA that are replicated. In some 
people, the original two copies may be reduced to one copy, or conversely tripled 
or quadrupled; these abnormalities are called copy number variations (CNVs). 
CNVs can affect gene expression levels, although they are also found in healthy 
individuals. There is some evidence that CNVs affect comorbid epilepsy and neu-
rodevelopmental disorders. For instance, the following CNVs are known to be 
associated with ASD, intellectual disability, and/or epilepsy: 2p16.1-p15 duplica-
tion, 6p25.3-p25.1 duplication, 8p23.3-p23.1 deletion, 9p24.3-p23 deletion, 
10q11.22-q11.23 duplication, 12p13.33-13.2 duplication, 13q34 deletion, and 
16p13.2 duplication (24). Regarding other CNVs, the 15q11-q13, 22q11.2, and 
16p11.2 loci are associated with ASD, and patients with ASD who have CNVs 
have a higher rate of epilepsy complications (25). In addition to the above regions, 
the three genomic regions 5q14.3, 11q23.2, and 7p22.3 are known to contribute 
to psychiatric disorders, including ASD and ADHD (26). Of these regions, 5q14.3 
and 7p22.3 are also associated with epilepsy (27, 28). In the following, we use 
examples to discuss typical chromosome number abnormalities and CNVs.

Trisomy 21 (Down syndrome)

The most well-known numerical chromosomal aberration is trisomy 21, known 
as Down syndrome (DS). Its incidence ranges from 1 in 319 to 1 in 1,000 live 
births, depending on maternal age (29, 30). The prevalence of epilepsy in DS 
patients is approximately 8-13% (31, 32). Of affected individuals, 40% have sei-
zures in early childhood and another 40% experience seizures after their 30s. 
Regarding epileptic seizure type, 47% of individuals with DS and epilepsy have 
partial seizures, 32% have infantile spasms or West syndrome, and 21% experi-
ence generalized tonic-clonic seizures (32, 33). It is widely known that patients 
with DS often have comorbid intellectual disabilities and that 7-19% of such 
patients meet the criteria for ASD (34–38). It has been also reported that 43% of 
DS patients have comorbid ADHD (39). Notably, in patients with DS, only autism 
and epilepsy are known to be associated with cognitive function decline; physical 
comorbidities have no association with cognitive outcomes (40). Several hypoth-
eses have been proposed to explain the increased susceptibility to epilepsy and 
neurodevelopmental disorders in DS. These include congenital structural abnor-
malities of the brain, including abnormal cortical lamination, persistent fetal den-
dritic morphology, and underdevelopment of synaptic profiles (33, 41).
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Chromosome 15q11-q13 duplication syndrome 

Maternal duplication of chromosome 15q11-q13, the region responsible for 
Prader-Willi and Angelman syndromes, is the most common chromosomal abnor-
mality (0.5%–3%) in patients with ASD (42, 43). This region, known as the 
imprinting region, is phenotypically variable depending on whether the etiologic 
allele is of paternal or maternal origin. Patients with maternal 15q11-q13 duplica-
tion have a high incidence of childhood seizures (44). Paternal duplication is 
associated with a variety of phenotypes, including sleep disorders such as para-
somnias. Up to 50% of affected individuals with paternal duplication also have 
autistic traits, but these traits are more common in patients with maternal dupli-
cation (45). Developmental delay/intellectual disability, ASD, and ADHD are fre-
quently observed in cases of duplication of the CHRNA7 gene, which encodes a 
protein that mediates fast signal transmission at synapses and is located in 15q13.3 
(46). Several genes that encode γ-aminobutyric acid receptor subunits (GABRA5, 
GABRB3, GABRG3) are located in the 15q11-q13 region, and it has been hypoth-
esized that dysregulation of inhibitory synapses mediates the etiology of the epi-
lepsy and ASD phenotypes (47).

22q11.2 deletion and duplication syndrome

Manifestations of 22q11.2 deletion syndrome (OMIM #611867) include con-
genital cardiac disease, cleft palate, characteristic facial features, reduced para-
thyroid gland size (causing hypocalcemia), absence or dysplasia of the thymus 
gland (causing immunodeficiency), and psychiatric manifestations such as 
intellectual disability, ADHD, schizophrenia, and ASD. The physical symptoms 
of patients with 22q11.2 duplication syndrome (OMIM #608363) include 
hypotonia and growth retardation leading to short stature. Psychiatric symp-
toms include intellectual disability, learning disability, and ASD. Studies of 
22q11.2 deletion syndrome and epilepsy have shown that focal seizures are the 
most common epilepsy type, followed by genetic generalized epilepsy, mainly 
juvenile myoclonic epilepsy (48, 49). The 22q11.2 deletion is associated with a 
high incidence of schizophrenia, but is also frequently associated with neurode-
velopmental disorders. The complication rate of ADHD is 16-37% and that of 
ASD 13-27% (50). The following candidate genes have been identified as 
responsible for neurological symptoms in 22q11.2 deletion syndrome (51): 
RTN4R, which encodes a protein that mediates axonal growth inhibition (52), 
DGCR8, the transcript of which is involved in the early stages of microRNA 
biogenesis (53), COMT, which encodes a protein that inactivates catecholamine 
neurotransmitters in cortical neurons (54), and PRODH, which encodes a pro-
tein involved in L-glutamate synthesis.

Single gene diseases

Single gene diseases such as fragile X syndrome (FXS), tuberous sclerosis (TSC), 
myocyte enhancer factor 2 (MEF2C)-related disorders, and methyl-CpG binding 
protein 2 (MECP2)-related disorders (Rett syndrome and MECP2 duplication syn-
drome) are associated with complications including epilepsy, intellectual disabil-
ity, ASD, and/or ADHD. The following genes are also associated with ASD, 
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intellectual disability, and/or epilepsy: NRXN1, SCN1A, SCN2A, SYNGAP1, RELN, 
CNTNAP2, SMARCA2, PTEN, CACNA1C, COL4A1, UB3A, ABAT, BCKDK, 
RBFOX1, NF1, SHANK3, CDKL5, SYN1, and KIAA2022 (15,24,55).

Fragile X syndrome

FXS (OMIM #300623) is an X chromosome-linked mental retardation syn-
drome characterized by craniofacial features (long face, prominent forehead, 
large ears, long palpebral fissures, and prominence of the jaw) and psychiatric 
symptoms such as mental retardation, ASD, and ADHD (56). FXS is caused by 
CGG trinucleotide repeat expansion in the 5′ UTR of the FMR1 gene. Fewer 
than 54 CGG repeats in the FMR1 gene are normal; 55–200 CGG repeats are 
permutation sizes that can cause X-associated tremor/ataxia syndrome and frag-
ile X-associated primary ovarian insufficiency. More than 200 CGG repeats con-
stitutes a full mutation, which causes FXS (57). Epilepsy has been reported in 
approximately 10-20% of FXS patients. The seizure pattern in FXS typically 
resembles that of childhood benign focal epilepsy. Of individuals with FXS 
without clinical seizures, 23% show centrotemporal spikes on EEG (58). 
Complications of neurodevelopmental disorders have been frequently reported 
in patients with FXS. Of such patients, 54-59% meet the diagnostic behavioral 
criteria for ADHD based on parent or teacher reports (59). Approximately 60% 
of male patients with FXS have ASD, and approximately 2-5% of all individuals 
diagnosed with ASD have FXS (60, 61).

According to a review by Bagni and Zukin, proposed developmental mecha-
nisms for these neurological symptoms in FXS patients include reduced expres-
sion of γ-aminobutyric acid type A receptors in the hippocampus, reduced 
frequency and amplitude of miniature and spontaneous inhibitory postsynaptic 
currents in the mature amygdala, developmental delay of inhibitory networks, 
excitatory–inhibitory ratio imbalance of neuron networks, and dysregulation of 
mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase/
extracellular signal-regulated kinase signaling cascades (62).

Tuberous sclerosis complex

TSC1 (OMIM # 191100) and TSC2 (# 613254) are autosomal dominant multisys-
tem diseases characterized by multiple hamartomas in various organ systems 
including the brain, heart, lungs, skin, and kidneys. The causative genes are TSC1 
and TSC2, respectively (63). These genes encode hamartin and tuberin, respec-
tively, which are proteins involved in the regulation of mTOR. Most patients with 
TSC are affected by epilepsy (64–66). In one retrospective chart review of 291 
TCS patients, 38% had a previous history of infantile spasms, 85% had a seizure 
history, and 54% had seizures of multiple types, not including infantile spasms 
(66). Another study found that pediatric seizures occurred in approximately 
20-38% of patients with TSC, and generally had a poor prognosis (67). Intellectual 
disability (68), ASD (69), and ADHD (70) are other complications of TSC. An 
estimated 20-60% of TSC patients have ASD, and it occurs with almost equal 
frequency in both sexes (71). Up to 50% of TSC patients have ADHD, and it is 10 
times more common in such patients than in the general population (72).
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mTOR signaling is not only a pivotal regulator of cell growth, proliferation, cell 
cycle, ribosome biogenesis, autophagy, protein synthesis, and the actin cytoskele-
ton, but also modulates protein synthesis, which plays a central role in synaptic 
plasticity (62). Interestingly, mTOR dysregulation has also been observed in mouse 
models of FXS, in ASD patients with 15q11-q13 duplication, and in mouse models 
overexpressing Cyfip1, a homolog of a gene located in the human 15q11-q13 region 
whose coding protein interacts with synaptic functional regulator FMR1 (62).

MEF2C-related disorders

Patients with loss of function mutations and MEF2C deletions were first reported 
to have severe intellectual disability, epilepsy, and atypical movements in 2010 
(73). This disorder is also known as neurodevelopmental disorder with hypoto-
nia, stereotypic hand movements, and impaired language, or chromosome 
5q14.3 deletion syndrome (OMIM #613443). Epilepsy in patients with MEF2C-
related disorders is variable: 20% of patients have infantile spasms, 33% have 
myoclonic epilepsy of infantile onset, and 24% have generalized epilepsy of 
childhood onset. However, 23% have no epilepsy (74). Some patients have 
autistic features (75), and genetic variant analysis has shown that MEF2C is a 
risk gene for ADHD (76). Mef2c haploinsufficiency mice, a model of human 
MEF2C haploinsufficiency, exhibit autistic-like behaviors associated with 
decreased neurogenesis, increased neuronal apoptosis, and an increased ratio of 
excitatory–inhibitory balance in the hippocampus (77). In another mouse 
model of ASD induced by fetal valproate exposure, Mefc2 expression in the 
embryonic brain was reduced, suggesting that this gene may be important for 
fetal brain development (78). Notably, the symptoms characteristic of ASD in 
these haploinsufficiency mice were ameliorated by postnatal administration of 
NitroSynapsin, a modified form of memantine (77). These findings suggest that 
the identification of mechanisms of autism pathogenesis may lead to the devel-
opment of therapeutic agents for ASD.

MECP2-related disorders

Loss of function variants in MECP2 are known to cause MeCP2 deficiency, which 
contributes to the pathogenesis of classical Rett syndrome (OMIM # 312750). 
There are various manifestations of Rett syndrome, including partial or complete 
loss of acquired purposeful hand skills, loss of spoken language or other language 
skills, gait abnormalities, stereotypic hand movements, breathing disturbances 
when awake, abnormal muscle tone, peripheral vasomotor disturbances, scolio-
sis/kyphosis, and growth retardation (79). MECP2 duplication syndrome (OMIM 
# 300260) is a severe X-linked mental retardation syndrome first described by 
Lubs et al. in 1999 (80). In addition to the characteristic facial features, the clini-
cal manifestations of this disease include absent speech, loss of ambulation, 
microcephaly, and recurrent infections; psychiatric symptoms include autistic-
like features and epilepsy, which are observed in more than half of patients (81). 
Epileptic seizures associated with MECP2 duplication syndrome are usually treat-
ment refractory and comprise epileptic encephalopathy. Lennox–Gastaut syn-
drome occurs in 55% of MECP2 duplication syndrome patients (82). It has been 
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reported that almost all boys with MECP2 duplication syndrome have character-
istics similar to idiopathic ASD when evaluated with the Autism Diagnostic 
Observation Schedule (83). A study of Mecp2-null mice has shown that MeCP2 is 
involved in upward regulation of transcription of various genes in the hypothala-
mus, including MEF2C (84).

MODELS OF OVERLAP BETWEEN EPILEPSY AND 
NEURODEVELOPMENTAL DISORDERS

As described above, epilepsy and neurodevelopmental disorders such as ASD 
and ADHD co-occur in many disorders owing to mutations in the same gene(s). 
Three biological interpretive models provide possible explanations for this asso-
ciation: (i) neurodevelopmental and epileptic phenotypes arise from the same 
genetic risk and biological pathways; (ii) neurodevelopmental-like symptoms 
arise as secondary symptoms of epileptic seizures; and (iii) the two phenotypes 
arise independently by chance without causality. Interestingly, some epilepsy 
syndromes (e.g., infantile spasms and Lennox–Gastaut syndrome), appear to be 
risk factors for later diagnosis of ASD (18). This indicates that, at least for some 
epilepsy syndromes, neurodevelopmental-like symptoms may be caused by epi-
leptic seizures. However, it remains unclear which of these biological models 
best explains the co-occurrence of neurodevelopmental disorders and epilepsy, 
and which model is most appropriate for each genetic disorder. The neurobio-
logical basis of neurodevelopmental disorders comprises many biological dimen-
sions, including genes, epigenomes, cells, brain function, behavior, and clinical 
manifestations. The biological background of epilepsy and neurodevelopmental 
disorders comprises complex multifactorial interactions across these multiple 
biological dimensions (85) (Figure 1). The model in Figure 1 assumes that the 
core clinical symptoms (represented at the top of the model) are not common 
across disease categories, whereas the disease risk genes (at the bottom of the 
model) are shared by multiple psychiatric disorders. This model also suggests 
that mutations of the same disease risk gene may result in different clinical phe-
notypes according to the outcome of the interactions between biological 
dimensions. 

In recent years, a variety of new methods have enabled the comprehensive 
analysis of biological factors known as omics data analysis. This has produced 
some unexpected findings and contributed to the acquisition of new knowledge. 
Comprehensive studies that focus on the elucidation of the connections and feed-
back mechanisms between biological dimensions are called transomics or mul-
tiomics analyses (86, 87). Such analyses are needed to comprehensively examine 
the possibility of biological overlap between neurodevelopmental disorders and 
epileptic seizures. However, few studies have directly examined the overlap 
between the different dimensions, and this remains an important issue for future 
investigation.

Currently, psychiatric diagnoses are usually defined categorically. However, 
interest has recently increased in the concept that mental illness exists on a spec-
trum or continuum ranging from health to disease. For example, in the case of 
neurodevelopmental disorders, DSM-5 introduced the concept of ASD. 
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Therefore, the clinical and genetic overlap between neurodevelopmental disorders 
and epileptic seizures suggests the need to re-examine the possibility that these 
disorders can be defined along a single spectrum.

CONCLUSION

In this chapter, we reviewed recent findings related to the co-occurrence of neu-
rodevelopmental disorders and epilepsy. Future analyses will contribute to a 
growing body of knowledge, as previously unidentified pathological mechanisms 
common to both diseases are identified. Evidence for a biological overlap between 
these diseases is likely to lead to a comprehensive understanding of these disor-
ders and the future discovery of new therapeutic targets.
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Figure 1. The neurobiological basis of neurodevelopmental disorders and epilepsy. It comprises 
several biological dimensions, including genes, epigenomes, cells, brain functions, behaviors, and 
clinical symptom levels. The relationship between a particular biological dimension and other 
biological dimensions may be characterized by complex multifactorial interactions. This model 
shows that core clinical symptoms are not common to each disease category, whereas disease risk 
genes are common to multiple psychiatric disorders.
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