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Abstract: Paroxysmal alteration of neurological function caused by an excessive 
hypersynchronous neuronal discharge in the brain is known as seizure. Non-
epileptic seizure is short-lived while epilepsy is a neurological condition charac-
terized by two or more provoked seizures. The hippocampus, amygdala, frontal 
cortex, temporal cortex, and olfactory cortex are the common areas involved in 
seizures. According to the ‘dormant basket cell’ theory, loss of excitatory input 
from the dentate mossy cells makes inhibitory basket cells dormant while accord-
ing to the ‘mossy fiber’ theory, mossy fibers induce the formation of excitatory 
circuits resulting in hyperexcitability. Amygdala is present at the anterior end of 
the inferior horn of the lateral ventricle; basolateral part plays an important role in 
temporal lobe epilepsy. The thalamus is an ovoid mass of grey matter; midline 
nuclei of the thalamus is involved in memory function and arousal, while it plays 
a crucial role in controlling seizures. Dendrites are short post-synaptic neural 
 processes; in pathological conditions dendrites can cause hyperexcitability in 
neuronal circuits and lead to decreased seizure thresholds and progressive epilep-
togenesis. Regions specialized for learning/memory are most prone to seizures, 
particularly, the neocortical regions and the hippocampus.
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INTRODUCTION

Excessive hypersynchronous neuronal discharge in the brain leading to paroxys-
mal alteration of neurologic function is known as a seizure. Non-epileptic seizure 
is short-lived with single occurrence provoked by a reversible insult, whereas 
epilepsy is a neurological condition characterized by two or more unprovoked 
seizures (1). About 1% of the population is affected by epilepsy and approxi-
mately 75% of epilepsy begins during childhood, reflecting the heightened sus-
ceptibility of the developing brain to seizures (2). Hyperexcitability of neurons 
and hypersynchrony of neural networks are the hallmarks of seizures. 
Hyperexcitability means that a certain level of excitability, or a threshold, must be 
exceeded for a seizure to be generated. In other words, when excitation exceeds 
inhibition, seizures occur. Hypersynchrony is a state where a group of neurons 
fire at the same time at a similar rate. While individual neurons might be in a state 
of hyperexcitability and fire rapid, repetitive, paroxysmal discharges, a seizure is 
a coordinated event, involving numerous neurons firing synchronously. While a 
plethora of mechanisms have been implicated in the development of seizures, in 
its simplest form, the primary mechanism may be summarized as the loss or 
abnormalities of cells that normally inhibit excitatory cells and limit the spread of 
electrical discharges, or an overproduction of chemicals that causes cells to abnor-
mally discharge electrical signals, or both. Apart from these, to understand the 
origin of the electrical activity, it is necessary to study the structure and function 
of those cells in the brain which are generating the activity (2–6). This chapter 
provides an overview of the anatomical basis of epilepsy.

The anatomical areas related to seizures are important for classification and 
treatment. The revised classification of the International League Against Epilepsy 
correlates seizure semiology (signs of clinical manifestation) with anatomical 
 origin (Figure 1) of the seizures (focal vs. generalized) (4). In a study by Fayerstein 
et al. (4), semiologic features were correlated with the seizure onset zone localiza-
tion (temporal, prefrontal dorsolateral, prefrontal ventro-mesial, parietal, insular). 
It showed that dystonia, integrated behavior, and bilateral or unilateral  hyperkinetic 
movements were statistically significant according to localization, and represented 
parietal, temporal, and prefrontal ventro-mesial seizures. Epilepsy centers around 
the world have recently reinitiated trials with deep brain stimulation such as vagus 
nerve stimulation and transcranial magnetic stimulation in different intracerebral 
structures such as the thalamus, the hippocampus, and the subthalamic nucleus 
for the treatment of patients with medically or surgically refractory epilepsy (5). 
The neuroanatomic circuitry is involved in the production of the cardiovascular 
manifestations of seizures (6).  

THE HIPPOCAMPUS AND EPILEPSY 

The hippocampus, buried deep in the medial part of the thalamus, plays an impor-
tant role in memory processing, emotions, spatial navigation, and learning (7). The 
hippocampal formation comprises part of the uncus, hippocampal proper, gyrus 
fasciolaris, longitudinal striae, and indusium griseum (8, 9). The hippocampus 
plays an important role in epilepsy. Sensory impulses from the posterior 
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cingulate cortex, contralateral hippocampus, occipital, temporal, and parietal lobe 
converge on the hippocampus through the lateral and medial perforant pathways 
(9, 10). Seizures have been known to cause abnormal neurogenesis in the hippo-
campus and form faulty circuits that disrupt its function (11). The term hippocam-
pal sclerosis (HS) and mesial temporal lobe epilepsy (MLTE) are used synonymously 
and is involved in epilepsy-related cognitive dysfunction (12). Sclerosis is a macro-
scopic and descriptive one, indicating shrinkage and induration of the structure 
and selective neuronal loss with secondary astroglial proliferation that affects vari-
ous sectors of hippocampus. The International League against Epilepsy in 2004 
proposed there should be neuronal cell loss and gliosis at CA1 and end-folium 
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Figure 1. The anatomical basis of epilepsy. A, Structures (marked in red) affected in focal and 
generalized seizures. B, Semiological signs by symptomatogenic areas affected in seizure.
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areas of the hippocampus with relative sparing of the transitional cortex measured 
at the mid-body of the anterior-posterior axis as the minimum criteria of MTLE-HS 
(13). It often involves the amygdala, uncus, and parahippocampal gyrus. Thom 
(14) classified hippocampal sclerosis into: (i)  classical––neuronal loss and gliosis 
mainly in CA1, CA3, and end-folium; (ii) total––severe neuronal loss in all hip-
pocampal subfields and the dentate gyrus; and (iii) end-folium––neuronal loss and 
gliosis restricted to the hilum of the dentate gyrus. 

Theories 

The two theories associated with hippocampal sclerosis in epileptogenesis is the 
‘dormant basket cell’ and ‘mossy fiber’ theory. According to the ‘dormant basket 
cell’ theory, loss of excitatory input from the dentate mossy cells makes inhibitory 
basket cells dormant. This excitatory input can cause excessive firing and neuro-
nal death and initiate epileptic focus in the absence of inhibitory (GABA) action 
(15–17). The ‘mossy fiber’ hypothesis suggests that sprouts of aberrant mossy 
fiber originating in the dentate granule cells and terminating in the supragranular 
area of the inner molecular layer of the dentate induce the formation of excitatory 
circuits resulting in hyperexcitability (15, 18). Kainic acid epilepsy models in rats 
and human epilepsy surgery resections of the sclerotic hippocampus have shown 
mossy fiber sprouting (19, 20). However, the role of various hippocampal changes 
in epilepsy is still the subject of ongoing research. 

Pathophysiology 

The part having the least seizure threshold is the hippocampus. Hippocampal 
sclerosis is presented as tissue shrinkage, loss of cells, and reactive gliosis in the 
hippocampus. Neuronal losses involve the hilar mossy cells, and hilar somatosta-
tin containing interneurons (16–20). When the CA3 cells burst, the bursting 
spreads from cell to cell and results in a synchronisation leading to tonic depolar-
ization. In the cortex, epileptiform discharges originate near histological layer IV. 
The capacity of some populations of neurons to generate high-frequency synchro-
nous discharges underlies the development of focal cortical epileptogenesis 
(16–20). Neurons surrounding the epileptogenic focus are hyperpolarized and 
GABAergic, inhibiting the neurons within the focus. Seizure spread probably 
depends on any factor or agent that activates neurons in the focus or inhibits those 
surrounding it. Once the intensity of the seizure discharges exceeds a certain 
point, it overcomes the inhibitory influence of surrounding neurons and spreads 
to neighboring cortical and subcortical regions via short cortico-cortical synaptic 
connections. The spread of excitation to the cortical, thalamic, and brain stem 
centers correspond with the tonic phase of the seizure and loss of consciousness, 
as well as with the signs of the autonomic nervous system (16–20). 

THE TEMPORAL LOBE, THALAMUS, AMYGDALA AND EPILEPSY 

Temporal lobe epilepsy (TLE) is the commonest form of focal epilepsy and repre-
sents almost 2/3 of cases of intractable epilepsy managed surgically. Temporal lobe 



Anatomical Basis of Seizure 19

epilepsy can be classified as mesial temporal lobe epilepsy (mTLE) and neocorti-
cal temporal lobe epilepsy (nTLE); nTLE is also called extrahippocampal, nonle-
sional or lateral neocortical epilepsy. The mTLE is associated with cortical atrophy 
and loss of volume in the hippocampus and the anterior thalamus. Aberrant white 
matter tracts and connections may be observed TLE in addition to the grey matter 
abnormalities. Fronto-temporal, fronto-occipital, fornix or temporo-occipital fas-
ciculus may present diffuse network in TLE. (21, 22). 

The anterior thalamus is involved in memory processing, spatial navigation, 
and communication with the hippocampus. The mediodorsal thalamic nucleus 
plays a major role in goal-directed behavior, and the intralaminar thalamic nucleus 
and the perifascicular thalamus are involved in behavioral flexibility (23). Studies 
have shown that baseline thalamic volumes are lower in patients with TLE. The 
thalamic lesion in seizure is associated with the limbic system atrophy (24). 

Amygdala is primarily associated with emotions. Stimulation of the lateral 
amygdala has shown experiential symptoms in patients with TLE (24). Lesions 
of the lateral amygdala may lead to deficits in emotional appraisal in TLE. In 
 children with temporal lobe epilepsy, grey matter thinning has been reported in 
the hippocampus, lateral temporal lobes, thalamus, posterior cingulum, and 
 cerebellum. Neuronal injury to lateral septal nuclei, amygdala, ventral subiculum/
CA1 is seen in neonatal or early life seizures (25).

Autosomal dominant lateral temporal lobe epilepsy (ADLTE) is a genetic con-
dition characterized by onset in early adulthood or in adolescence of temporal 
seizures. The condition presents auditory auras triggered by external noises with-
out any visible pathological finding in conventional magnetic resonance imaging. 
About 50% of ADLTE families and 2% of sporadic cases show LGI1 gene (one of 
the ion channel gene) mutation on chromosome 10 q24 (26). 

OLFACTORY CORTEX AND EPILEPSY 

Piriform cortex (primary olfactory cortex) is an epileptogenic structure and 
increased glial cell densities in the layers of piriform have been noted in post-
mortem cases with epilepsy (8, 9, 27). Seizures involving the olfactory cortex 
present reduced olfactory functioning, confusion in test, and unpleasant auras. 
Olfactory auras in the pre-ictal period are associated with hyperresponsiveness of 
neurons (27). 

FRONTAL CORTEX AND EPILEPSY 

The frontal lobe is divided into dorsolateral, medial orbital, and inferior orbital. 
Dorsolateral frontal lobe is further subdivided into primary motor, premotor and 
prefrontal cortex. Frontal lobe seizures originating in the primary motor area has 
early motor manifestations, it may occur during sleep, and lack post-ictal phase. 
It consists of unilateral spreading clonic activity beginning on face, spreading to 
arm, and speech arrest. Frontal lobe epilepsy is one of the commonest types of 
focal epilepsy (27, 28). The premotor cortex is further subdivided into the frontal 
eye field, secondary motor cortex and Broca’s language area (Figure 1) (28, 29). 
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Seizure affecting the frontal eye field leads to lateral deviation to eyes. Involvement 
of Broca’s language area represents aphasic seizures. Involvement of premotor area 
represents versive seizures with forced head turn characterized by involuntary 
head deviation. Frontal lobe pathology may lead to atrophy of the rostral corpus 
callosum in juvenile myoclonic epilepsy (30). Frontal lobe epilepsy is presented as 
contralateral clonic movement, unilateral or bilateral tonic activity or complex 
automatism. Locus foci in medial frontal lobe in frontal lobe epilepsy may be 
responsible for paradoxical lateralization. Abnormal thalamus and frontal lobe 
volumes are seen in children with idiopathic generalized epilepsies (30). 

CEREBELLUM AND EPILEPSY

Patients with epilepsy often have cerebellar atrophy. Cerebellar stimulation in the 
anterior lobe is found to be effective in patients with intractable epilepsy (31). The 
concept of cerebellar stimulation is based on that Purkinje cell inhibition can 
be prosthetically induced to modify neurologic activity that is abnormally and 
undesirably heightened by pathologic facilitation or disinhibition (31). Cerebellar 
biopsies taken at the time of stimulation showed reduced molecular layer, 
decreased stellate cells and Purkinje cells. 

DENDRITIC PATHOLOGY AND EPILEPSY

Dendritic spines are thin protrusions from the surface of neurons that make point 
of contact between the neurons. They are indeed postsynaptic structures that 
establish synaptic contact with axon terminals (32). They are major targets of 
excitatory synapses in the brain. Dendritic spine density indicates the cellular 
process involved in neural plasticity, and cognitive functions such as memory and 
learning (33). The dendritic spine undergoes changes in pathological conditions 
and can cause hyperexcitability in neuronal circuits which leads to decreased sei-
zure thresholds and progressive epileptogenesis (34). Neurons show a wide range 
of firing patterns and dendritic morphology and play an important role in modu-
lating firing patterns. Computational models of neocortical pyramidal cells 
showed that total length of apical dendrite and branching pattern significantly 
influences the burst spike intervals and determines if a cell exhibit burst firing. 
Either reducing or enlarging the dendritic tree or modifying its topological struc-
ture without changing total dendritic length, can transform a cell’s firing pattern 
from bursting to tonic firing (35). Alterations in size or topology of pyramidal cell 
morphology in epilepsy could change neuronal burst firing and affect information 
processing and cognition (35). 

CONCLUSION 

Epilepsy is a neurological condition characterized by two or more unprovoked 
seizures. About 75% of epilepsy occurs during childhood, reflecting the height-
ened susceptibility of the developing brain to seizures. Brain regions specialized 
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for learning and memory, particularly the neocortical regions and the hippocam-
pus, are comparatively more prone to seizures. Epilepsy is associated with ana-
tomical changes in the hippocampus, amygdala, frontal cortex, temporal cortex, 
and olfactory cortex. Knowledge of the anatomical basis of epilepsy will enable 
the understanding of the origin of the electrical activity, help accurate diagnosis, 
and guide appropriate management strategies.
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