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Abstract: Chromatin deregulation is an emerging theme in cancer pathogenesis, 
and bladder cancer stands out among many other cancer types with frequent 
mutations of genes involved in epigenetic regulation. Defects in chromatin-level 
regulation can be manifested at multiple levels such as changes in DNA methyla-
tion, histone methylation patterns, and non-coding RNAs. Chromatin modifiers 
mutated in bladder cancer, such as KDM6A, KMT2D, KMT2C, ARID1A, EP300, 
have been studied in bladder cell line models. Also, there are studies that mapped 
the active regulatory landscape of bladder cancer and histone modification pro-
files. Collectively, existing literature emphasizes the importance of a thorough 
understanding of epigenetic deregulation in bladder cancer. The epigenetic signa-
tures of bladder cancer can be targeted via epigenetic drugs or other genome 
editing tools, ultimately bringing specific treatment options for this cancer. 
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This chapter provides an overview of the epigenetic modifications in bladder can-
cer, and the potential of epidrugs for the treatment of bladder cancer. 

Keywords: chromatin modifiers in bladder cancer; epidrugs for bladder cancer; 
epigenetics in bladder cancer; histone methylation in bladder cancer; mutations 
in bladder cancer

INTRODUCTION

Cancer is a complex disease with many hallmarks (1). During the last decade, 
there has been a tremendous effort to characterize the genomic landscape and 
to identify molecular subgroups of diverse cancer types (2–4). All these molec-
ular studies made it clear that epigenetic deregulation was a common theme 
implicated in tumorigenesis. It became apparent that proper epigenetic regula-
tion is essential for normal cellular homeostasis and any deviation from this 
tightly regulated balance disrupts the cellular states and may result in tumor 
formation (5, 6). Among all the other cancers, bladder cancer has an exception-
ally high rate of chromatin modifier mutations (7), and thus considered as a 
disease where epigenetic deregulatory mechanisms play a fundamental role. 
Bladder cancer mostly originates from the urothelium and causes over 200,000 
deaths each year (8). Its main classification is done based on histopathology as 
non-muscle invasive bladder cancer (NMIBC) and muscle invasive bladder can-
cer (MIBC). Recent studies characterized the mutational landscape of both 
MIBC and NMIBC and further identified the consensus molecular subgroups, 
providing fundamental insights about the pathogenesis of bladder cancer 
(9–12). However, there is still need for further studies to characterize the epi-
genetic deregulation of bladder cancer in detail and use this information for 
specific diagnosis and treatment of bladder cancer. This chapter mainly focuses 
on the chromatin modifiers frequently mutated in bladder cancer, the major 
regulatory mechanisms disrupted, and the potential use of epigenetic therapies 
in bladder cancer. 

EPIGENETIC REGULATION AND CANCER

To understand and explain the origin and characteristics of the cancer, several 
theories have been proposed throughout the years. “Hallmarks of cancer” pro-
posed by Hanahan and Weinberg conceptualizes and organizes the principles in 
a logical framework (1). All hallmarks and characteristics define functional 
properties acquired by normal cells in the way of progressive transformation 
from normal state to neoplastic state (6, 13). Acquisition of hallmarks depends 
on alterations in the genome, epigenetic reprogramming, and microenvironmen-
tal remodeling. In addition to genetic alterations, epigenetic modifications con-
tribute to gene expression deregulation in cancer. Aberrations in epigenetic 
mechanisms, such as DNA methylation, histone modifications, deregulation in 
non-coding RNAs (miRNA, lncRNA), play an important role in tumorigenesis 
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contributing to the different hallmarks of cancer (14, 15). These epigenetic 
deregulations may result in inappropriate activation or inhibition of gene 
expression.

DNA methylation occurs at cytosine residues at CpG dinucleotides. While 
CpG dinucleotides spread throughout the genome, CpG islands (CGIs) are located 
at 5’ regulatory regions, such as promoter of genes. Promoter DNA methylation is 
associated with repression of transcription (16, 17). In human cells, 3 different 
DNA methyltransferases (DNMT1, DNMT3A, and DMT3B) catalyze the transfer 
of methyl group to cytosine residue (18). Aberrations in the maintenance of the 
DNA methylation are critical for tumorigenesis. Global hypomethylation and the 
promoter hypermethylation are the characteristics of the cancer epigenome and 
contribute to the overexpression of protooncogenes and the silencing of tumor 
suppressor genes, respectively (19, 20). Oncogenic signaling pathways also direct 
the activity of global methyltransferases which contributes to the shift from nor-
mal to cancer-specific methylation profile (15). Alterations in the DNA methyla-
tion have been known as early event in bladder cancer development and are 
considered as a hallmark of cancer (21).

In a eukaryotic nucleus, DNA is wrapped around the histone octamers form-
ing nucleosome structure. N-terminal tails of core histone protein (H2A, H2B, 
H3, and H4) are largely targeted for the posttranslational modifications (PTMs), 
such as methylation, acetylation, and phosphorylation (16). Modifications 
in  histone tails affect the chromatin structure which is critical for the gene 
regulation  (22). Chromatin structure is highly dynamic, and orchestrated by 
chromatin remodeling complexes, and histone modifying enzymes. Aberrations 
in histone modification caused by defects in activity of histone modifying 
enzymes and chromatin remodeling complexes may contribute to the neoplastic 
transformation (23). Mutations in histone genes or chromatin modifier proteins 
are frequently detected in many cancer types, resulting in impairments in gene 
expression programs and genomic integrity (24) (Figure 1).

CHROMATIN MODIFIERS FREQUENTLY MUTATED IN 
BLADDER CANCER

To advance our understanding on the molecular landscape of cancer, large-scale 
genome wide studies, especially the TCGA project, collected data on gene expres-
sion, transcript splice variation, protein expression, DNA copy number alterations, 
somatic mutation, DNA methylation, and gene fusion, and also clinicopathological 
data from many cancer types, including bladder cancer (11, 25). Integrated omics 
studies have revealed that, with five or more mutations per megabase, bladder 
cancer has a higher mutational burden compared to the other cancer types (10, 11, 
25, 26). The most common mutations in bladder cancer occur in genes function-
ing in histone modification and chromatin remodeling genes. These include 
ARID1A (25%), KDM6A (24%), KMT2D (27%), EP300 (15%) (27). Globally, 
almost 80% of all bladder cancer patients have mutations in genes involved in 
epigenetic regulation, demonstrating the high degree of epigenetic dysregulation 
in this cancer (28). It is also important to the notice that chromatin modifiers 
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mutated in bladder cancer mostly function in active chromatin organization and 
activation of gene expression. In this context, it might be speculated that chroma-
tin modifier mutations in bladder cancer results in a closed chromatin configura-
tion, likely prohibiting the expression of genes required for urothelial differentiation 
while resulting in gene expression programs supporting proliferation and tumori-
genesis (Figure 2).

EPIGENETIC LANDSCAPE OF BLADDER CANCER

As already mentioned, aberrations in the epigenetic landscape are one of the hall-
marks of cancer and abnormalities in DNA methylation, chromatin modifier muta-
tions, and altered gene expression of chromatin modifiers and non-coding RNAs 
result in changes in cellular characteristics and promote the unfavorable prognosis. 
The association between epigenetic landscape and gene expression in bladder can-
cer has been addressed in several studies (10, 11, 29). One study defined the 
genome-wide chromatin accessibility profiles and cancer-specific DNA regulatory 
elements across 23 cancer types from TCGA (including bladder cancer) and 

Figure 1. The landscape of epigenetic deregulations in cancer. During the tumorigenesis, DNA 
methylation in promoter regions is induced, while genome-wide DNA methylation is 
downregulated. Cancer cells exhibit disrupted histone tail modifications and chromatin 
organization.
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identified significant correlations between gene expression and chromatin 
accessibility, integrating transcriptomics data and ATAC-seq (the assay for trans-
posase-accessible chromatin using sequencing). Besides, this study demonstrated 
impressive similarity between ATAC-seq based clustering and previously 
established mRNA, miRNA, DNA methylation or copy number variation (CNV) 
profile-based classifications. In this study, it has been also revealed that a somatic 
mutation observed in one regulatory region of bladder cancer increases chromatin 
accessibility and changes gene expression in mutant bladder cancer (29).

To further extend the knowledge on epigenomic landscape of bladder cancer, 
van der Vos et al. (10) conducted a study on genome-wide histone methylation 
profiling of MIBC (10). Integrated analysis of the H3K27me3, a repressive histone 
mark, and H3K4me1 and H3K4me3 (gene-activating histone marks) ChIP-seq 
and RNA-seq data indicated that different enhancer regions play critical role in the 
characterization of luminal and basal subtypes of MIBC. 

Non-coding RNAs, such as microRNAs (miRNA), long non-coding RNAs 
(lncRNA), circular RNAs (circRNA), piwi-interacting RNAs (piRNA), small 
nuclear RNA (snRNA), and small nucleolar RNAs (snoRNA), are not translated 
into proteins, but they have still significant functions in every cellular process. 
NcRNAs also contribute to the epigenetic alterations that promote bladder cancer 
development and progression (30). 

Prognostic biomarker potential of DNA hypermethylation has been widely 
investigated in bladder cancer (31, 32). Yet, further investigation is necessary to 
obtain more sensitive and specific biomarkers. It has been identified that CpG-rich 
transposons, such as LINE1, are hypomethylated in bladder cancer types. This 
leads to retrotranspositions inducing genomic instability (33). A recent study 
investigated global histone acetylation levels and its prognostic value in bladder 

Figure 2.  Chromatin modifier mutations contribute to neoplastic transformation of bladder cells. 
Mutations in chromatin modifying genes direct the shift from active chromatin organization 
to repressive state. DNMT, DNA methyltransferase; HAT, histone acetyltransferase; HDAC, 
histone deacetylase; HDM, histone demethylase; HMT, histone methyltransferase; RNA 
pol II, RNA polymerase II; TF, transcription factor.
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cancer patients and reported decreased H3 acetylation level in both NMIBC and 
MIBC patients compared to normal urothelial control group (34).

Histone deacetylases (HDACs) are divided into different classes based on their 
similarity to yeast HDACs (35). Another study reported that HDAC-1, HDAC-2, 
and HDAC-3 expression levels are elevated in urothelial carcinoma. Notably, 
increased HDAC-1 and HDAC-2 levels were associated with high grade tumors. 
Moreover, high grade tumors with high HDAC-1 expression correlated with worse 
prognosis compared to low grade tumors (36). This finding supports the 
therapeutic target potential of HDACs. Another study identified the chromatin 
interactions by Hi-C, integrating it with transcriptome and enhancer profiles in 
luminal and basal types of bladder cancer. Even though the study implicated the 
association between epigenomic landscape and 3D genome structure in a subtype-
specific manner, further studies are needed to comprehensively unveil the 
molecular basis and involved factors (37).

FUNCTIONAL OUTCOMES OF CHROMATIN MODIFIER 
MUTATIONS IN BLADDER CANCER

Given the high rate of chromatin modifier mutations in bladder cancer, there have 
been many studies investigating the functional impact of the mutations in differ-
ent model systems (Table 1) (38–46). Polycomb repressive complex 2 (PRC2)-
dependent epigenetic regulation is critical for cell differentiation and proliferation 
in bladder urothelium (47). SWI/SNF complex acts as an antagonist of PRC2 
complex promoting the expression of genes which are silenced by PRC2 (48). 

TABLE 1	 Key functional outcomes associated with the 
chromatin modifier mutations in bladder cancer

Mutation/loss 
of function Functional outcome Reference

ARID1A Impairments in cell cycle
Genomic stability
Induced cell proliferation

(38, 39)

KDM6A Induced tumor immune escape
Activation of proinflammatory pathways
Induced proliferation
Deregulation in the expression of cell identity related genes

(40–43)

KMT2C Increased chromatin instability
Impairments in DNA replication and repair
Misregulation of apoptosis, and cell cycle control

(44)

KMT2D Impairments in DNA replication and cell cycle 
Induced invasion, migration, and viability

(45, 68)

CBP/EP300 Impairments in histone acetylation
Increased anti-tumor immunity

(46)
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ARID1A belongs to SWI/SNF complex proteins (49), and it is frequently mutated 
in primary human bladder carcinoma (25). ARID1A has role in the tumor sup-
pressor mechanisms regulating cell cycle progression and maintaining genomic 
stability (38).

ARID1A protein loss is predominantly observed in high grade and high stages 
of bladder tumors that indicates association with poorer prognosis (39, 50). The 
potential functions of ARID1A have been investigated in urothelial cells of ARID1A 
knockout mice. It has been shown that loss-of-function mutation in ARID1A 
upregulates urothelial cell proliferation, emphasizing the tumor suppressor role of 
ARID1A in bladder cancer development (39). Additionally, findings implicated an 
antagonistic relationship between ARID1A and PRC2 complex in bladder (51). 
However, function of ARID1A might be context-dependent since different studies 
addressed opposing roles for ARID1A in different cellular processes and cancer 
types (52). 

KDM6A (UTX), lysine histone demethylase, physically interacts with chroma-
tin modifying enzymes, such as KMT2C (MLL3) and KMT2D (MLL4) (53). 
KDM6A protein contains tetratricopeptide repeat (TPR) domains and Jumonji C 
(JmjC) domain. JmjC domain catalyzes the removal of the methyl group from 
H3K27me2 and H3K27me3 (53, 54). TPR domain conducts interaction with 
components of MLL3 and MLL4 complexes (55). The function of KDM6A has 
been the subject of numerous studies. These studies reported that KDM6A regu-
lates gene expression and cellular processes. As a component of the COMPASS 
complex, KDM6A is involved in regulation of gene activation (56–58). Loss-of-
function and inactivating mutations frequently occur in several neoplasms, 
including bladder tumors (59–62). Reduced KDM6A expression and KDM6A 
mutations is correlated with poor prognosis in bladder cancer (40). Furthermore, 
potential roles of KDM6A in immune response have been shown via TIMER and 
CIBERSORT algorithms. Gene set enrichment analyses have indicated that the 
signaling pathways involved in immunity have been repressed in patients with 
mutated KDM6A. These findings imply the relationship between KDM6A muta-
tions and anti-tumor immunity (40). In another study, Kobatake et al. showed 
that decreased expression of KDM6A is associated with the activation of proin-
flammatory pathways (41). Increased proliferation has been observed in two dif-
ferent KDM6A knock-out bladder cell lines (42). Notably, KDM6A has a role in 
safeguarding luminal gene expression program in bladder cancer cell lines (43). 

Studies focused on the function of KMT2C (MLL3, histone lysine methyltrans-
ferase 2C) in normal cells defined its role in regulation of enhancer activity, focus-
ing on the profile of H3K4me1 mark (63, 64). Independent from its H3K4me 
activity, the roles of KMT2C in transcription regulation have been shown in recent 
reports (65, 66). Tumor suppressor role of KMT2C has been reported for urothe-
lial carcinoma. KMT2C silencing in 2 different bladder cancer cell lines has been 
shown to directly or indirectly affect the expression of genes involved in cell cycle 
control, DNA repair, DNA replication, and apoptosis (44). To investigate its fur-
ther effects, genome-wide binding profile of KMT2C has been mapped via ChIP-
seq (44). To evaluate the effects of KMT2C on epigenetic landscape of bladder 
cancer, Rampias et al. (44) also studied the changes in H3K4me3, H3K27ac, and 
H3K9ac histone modifications upon KMT2C silencing. Knockdown of KMT2C 
influences the enhancer activity in bladder cancer cell lines. In parallel with its 
well-established role in deposition of H3K4me1, co-localization of KMT2C with 
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active enhancer mark H3K27ac points out the increased enhancer activity (44). 
Additionally, KMT2C loss affects expression of genes critical for cell adherence, 
extracellular organization, and epithelial differentiation (44).

KMT2D (also known as MLL4) is one of the histone methyltransferases that 
may play a critical role in tumorigenesis and progression of bladder cancer (63). 
KMT2D regulates the activity of H3K4 methylation (67). KMT2D has high 
mutation rates in bladder cancer. Low levels of KMT2D are associated with lymph 
node metastasis (68). KMT2D mRNA and protein expression is decreased in 
4 bladder cancer cell lines (T24, J82, UM-UC-3, and HTB-9) compared to normal 
bladder cell line. Silencing of KMT2D induces invasion in T24, and HTB-9 cell 
lines, while its overexpression suppresses. It has been demonstrated that KMT2D 
regulates level of H3K4me1 in bladder cell lines (68). Interestingly, while Sun et al 
(68) showed association between higher KMT2D expression and higher survival 
rate, Ding et al (45) implied that KMT2D mutations are associated with better 
prognosis in bladder tumors. Gene set enrichment analysis has indicated that 
KMT2D mutations are also significantly associated with cell cycle and DNA repli-
cation processes (45). 

CREB-binding protein (CREBBP or CBP) and E1A binding protein (EP300 or 
P300) are transcriptional coactivators which also have ubiquitin ligase activity 
and histone acetyltransferase activity (69). CBP and EP300 are frequently mutated 
in a variety of human tumors (70). These inactivating alterations resulting in 
deregulation of acetylation and neoplastic transformation have been investigated 
in tumor models and bladder cancer lines (71, 72). Duex et al. (71) defined that 
those mutations are largely enriched at histone acetyltransferase domains of 
EP300 and CBP, implying potential significance of the domain activity on tumori-
genesis. They also postulated that impairments in histone acetyltransferase activ-
ity are more likely to be linked with aggressive, MIBC cases (71). It was also 
identified that mutations in EP300 promote the signaling pathways involved in 
anti-tumor response in bladder cancer (46).

MANIPULATING CHROMATIN MODIFIER MUTATIONS FOR 
TREATMENT OF BLADDER CANCER

New strategies and options for diagnosis and treatment of bladder cancer are 
needed to augment pharmacological outcome. The utilization of epigenetics for 
diagnostic markers and therapy targets is a rapidly developing and promising area. 
The reversibility of epigenetic changes serves a great potential as a therapeutic 
target in bladder cancer. Improvement of epidrugs has great advantage for cancers 
or disease in which epigenetic dysregulation plays a key role (Figure 3) (73).

Inhibiting the DNMT enzymes, gene silencing can be reversed, and in turn 
expression of tumor suppressor genes is recovered. It has been revealed that 
5-Aza-2′-Deoxycytidine (DAC), DNMT inhibitor, induces cell cycle arrest, and 
increases the susceptibility to chemotherapy in bladder tumors (74). 5-aza-2′-
deoxycytidine and 5-azacytidine are approved for treatment of myelodysplastic 
syndrome and myeloid leukemia by the FDA. There are ongoing clinical trials for 
use in bladder cancer therapy (75).
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Several HDAC inhibitors show promise in urological cancers (76). It has been 
demonstrated that cellular growth and proliferation is inhibited upon the treat-
ment of bladder cancer cells with HDAC inhibitors Vorinostat, Romidepsin, and 
Trichostatin A (77, 78). Further analyses showed that changes in the protein 
expression are mostly associated with apoptosis, regulation of cell cycle, and DNA 
damage repair mechanisms in response to treatment with these HDAC inhibitors 
(78). HDAC inhibitors Romidepsin, have been approved by FDA for treatment of 
cutaneous T cell lymphoma (CTCL), while Belinostat and Panobinostat approved 
for the treatment of T cell lymphoma (79). In combination with the other chemo-
therapy agents, HDAC inhibitors synergistically affect the cell cycle arrest, apop-
tosis, and differentiation of malignant cells (30, 80). It has been shown that 
combination of DNMT inhibitor and HDAC inhibitors has also synergistic effect 
on cancer cells (76). 

Increased expression levels of G9a, H3K9 methyltransferase, have been 
detected in bladder cancer. Inhibition of G9a in bladder cancer suppresses the 
proliferation inducing autophagic cell death in bladder cancer cells (81). Treatment 
of bladder cancer cell lines with small molecule UNC064, G9a inhibitor, decreases 
the cell viability, while inducing the apoptosis (82).

As a catalytic subunit of PRC2 complex, histone methyltransferase EZH2 regu-
lates trimethylation of H3K27 (H3K27me3) (83). This histone mark is critical for 
repression of gene expression. An increasing number of evidence demonstrated 
that EZH2 dictates both development and progression of different types of tumors. 

Figure 3.  Epigenetic therapy options for cancer treatment. Epidrugs can be used alone or in 
combination with the other treatments. Epigenome editing technologies are also emerging 
alternatives for cancer therapy. DNMTi, DNA methyltransferase inhibitors; EZH2i, EZH2 
inhibitors; HATi, histone acetyltransferase inhibitors; HDACi, histone deacetylase inhibitors; 
HDMi, histone demethylase inhibitors; HMTi, histone methyltransferase inhibitors.
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Dysregulation in EZH2 expression has been associated with increased cell prolif-
eration, invasion, and metastasis (84). Notably, it has been reported that EZH2 is 
also linked with the chemotherapy resistance (85). Upregulated expression of 
EZH2 plays oncogenic roles in bladder cancer. Since it affects the gene expression 
and regulates the several cellular mechanisms, EZH2 serves a great potential as 
target for treatment (86). Currently, EZH2 inhibitor Tazemetostat is being investi-
gated in ongoing clinical trials for treatment of urothelial carcinoma, in addition 
to lymphomas, and other solid tumors (87–89).

Therapeutic targeting of epigenetic modifiers which are currently in clinical 
trials (https://www.clinicaltrials.gov/) is summarized in Table 2. In a review, 
Ozgun et al. (28) evaluated the combination of EZH2 inhibitors or HDAC 
inhibitors with retinoids in bladder carcinoma. They pointed out the potential 
therapeutic options with retinoic acid and its derivatives and emphasized the 
clinical trials investigating combinatorial use of retinoids with epidrugs (28).

Another type of epigenetic therapy is based on miRNA manipulation. Strategies 
basically focus on regulation of the miRNA expression and activity in cancer cells 
(75, 90). This manipulation is managed via mimicking the specific miRNAs (91) 
or administration of epidrugs, such as EZH inhibitors (92, 93).

CRISPR/Cas9 system has become widely used technology for genome targeting. 
Due to the technical improvements, targeted epigenome editing can be achieved 
using CRISPR platform (94). The fusion of dCas to chromatin-modifying domains 
represents a powerful tool for chromatin editing (95). Epigenome editing is 
achieved in human cells through CRISPR activation and inhibition systems 
(CRISPRa/CRISPRi). These approaches can be applied for epigenetic reprogram-
ing both in vivo and ex vivo, disease modeling, therapeutic targeting, and cellular 
therapies (94). Recent clinical studies have been performed CRISPR-based 
epigenome editing in human hematopoietic progenitor and stem cells for the 
treatment of an immune disease (96). Yet, there is a need for more effort to estab-
lish routine clinical use.

TABLE 2	 Potential epidrugs for bladder cancer

Epidrug Biological effect Clinical trial Combinatory therapies

5-Aza-2′-Deoxycytidine DNMT inhibitor Yes (Phase 2)

5-azacytidine DNMT inhibitor Yes (Phase 1) •	 Carboplatin
•	 Paclitaxel
•	 Pembrolizumab
•	 Docetaxel

Vorinostat HDAC inhibitor Yes (Phase 2)

Romidepsin HDAC inhibitor Yes (Phase 1, 2)

•	 Carboplatin
•	 Paclitaxel
•	 5-Fluorouracil (5-FU)
•	 Pembrolizumab

Belinostat HDAC inhibitor Yes (Phase 2)

Tazemetostat EZH2 inhibitor Yes (Phase 1, 2)

https://www.clinicaltrials.gov/
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CONCLUSION

Mutations in chromatin modifying genes are highly frequent in bladder cancer 
(11). There have been plenty of studies which emphasize that epigenetic dereg-
ulations are critical for understanding of bladder cancer pathogenesis, charac-
terization of phenotype, determination of disease outcome, and also for directing 
the treatment options. Clinical adoption of bladder cancer epigenetics is still in 
a developmental phase. Expanding our limited knowledge on epigenetics of 
urothelial malignancies will contribute to the improvements in diagnosis, and 
development of more precise targeted therapies. Drugs targeting epigenetic 
machinery, epigenetic biomarkers for diagnosis, and tailoring the epigenome 
state of cancer cells are the emerging fields in personalized medicine. Yet, imple-
mentation of epidrugs and epigenome editing to clinic still needs to overcome 
many challenges. 
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