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Abstract: Homocysteine is an intermediate product of methionine metabolism. 
Hyperhomocysteinemia can be caused by high intake of methionine, deficiency of 
vitamin B12, folate, or both. Hyperhomocysteinemia causes cardio- and cerebro-
vascular diseases, including ischemic stroke. Hyperhomocysteinemia-induced 
oxidative stress, inflammation, and endoplasmic reticulum stress play an impor-
tant role in the pathogenesis of several neurodegenerative diseases. Pyramidal 
neurons of the hippocampus are sensitive to prolonged levels of homocysteine 
due to the absence of metabolization by transsulfuration as well as by folate- or 
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B12-dependent remethylation. This chapter highlights the role of hyperhomocys-
teinemia in neurodegenerative changes following cerebral ischemia. An overview 
of how hyperhomocysteinemia by itself, or in combination with ischemia-
reperfusion injury, exacerbates neurodegeneration is presented. The role of hyper-
homocysteinemia in amyloid deposition and hyperphosphorylation of tau protein 
in the brain, along with plasma metabolic alterations in cerebral ischemia-
reperfusion injury is reviewed. Prevention of hyperhomocysteinemia may have 
therapeutic implications in cerebral ischemic stroke and deserves investigation. 

Keywords: cerebral ischemia-reperfusion injury; homocysteine; ischemic brain 
injury; methionine; hyperhomocysteinemia

INTRODUCTION

Many experimental and clinical studies show that co-morbid disorders are risk 
factors for developing vascular pathologies, such as stroke, in humans (1, 2). Mild 
hyperhomocysteinemia (hHcy) may increase the risk of stroke, probably due to 
the pleiotropic biochemical properties of homocysteine (Hcy) (2, 3). Hcy, a critical 
component of the one-carbon methionine (Met) metabolism, has been proposed 
to be an etiological agent of cerebrovascular disorders, such as ischemic stroke 
(2–4). Its toxicity is the result of auto-oxidation and free radical generation (3, 5). 
Intermediates of Hcy metabolism include Hcy-thiolactone and homocysteic acid. 
Increased lipoprotein and protein oxidation are directly involved in neuronal 
degeneration (6, 7). Posttranslational modifications of proteins, homocysteinyl-
ation, and thiolation result in the impairment of functional proteins and enzyme 
inactivation (6). Overstimulation of the NMDA (N-Methyl-D-aspartic acid or 
N-Methyl-D-aspartate) and metabotropic receptors (mGluR), and the reduction 
of glutamate uptake in the cortex (8) and hippocampus (9), induce impairment of 
neuronal functions and the damage of glial cells (5, 10).

Cerebral ischemia induces neural damage through the depletion of cellular 
energy, release of excitatory amino acids, induction of mitochondrial dysfunction, 
and excessive generation of reactive oxygen (ROS) and nitrogen (RNS) species 
(7,  11). Preconditioning is one of the recognized neuroprotective strategies in 
which a period of sublethal insult (ischemia-ischemic preconditioning [IPC]) 
induces robust protection (tolerance) against subsequent injurious/lethal isch-
emic events (7, 11). The clinical relevance of hHcy in the development of human 
stroke and the toxicity of hHcy in the brain has been reported (11–13).

Met is an essential amino acid present in food (14, 15). Intake of diet rich in 
Met, or the dysregulation of Met metabolism in the “Met-Hcy” cycle, can lead to 
the elevation of Hcy in plasma. S-adenosyl homocysteine (SAH), an intermediate 
of metabolic conversion of Hcy, regulates methylation signalling, and causes 
hypomethylation of DNA and proteins (16). Cellular clearance of Hcy is essential 
for genetic protection. Subcutaneous administration of Hcy in rats lead to mild 
hHcy, causes disintegration of neuronal tissue in the cortex and hippocampus, 
and triggers epigenetic changes via impairment in histone acetylation, likely by 
hHcy-initiated DNA hypomethylation (17–20). Met-rich diet induces pathologi-
cal changes in the CA1 hippocampal area of rats.
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NEUROTOXICITY OF HOMOCYSTEINE

Epigenetic mechanisms, such as DNA methylation, RNA editing, noncoding 
RNAs (ncRNAs), and microRNAs (miRNAs) are involved in the pathogenesis of 
ischemic stroke (13). Hcy is toxic to neuronal and endothelial cells (3, 4). A link 
between hHcy and vascular diseases, cardiovascular symptoms, and neurological 
disorders such as cerebral atrophy and seizures has been recognized (21–23). 
Metabolic conversion of Hcy requires the presence of dietary vitamin B12 (cobala-
min) and folic acid for methyl group transfer and re-methylation of N-5-
methyltetrahydrofolate-Hcy methyltransferase activity. Transsulfuration reaction 
of Hcy depends on the presence of vitamin B6. The reaction is absent in the brain, 
and thus, the remethylation pathway depends on exogenous folate and cobala-
min. This fact has clinical relevance due to the lower intake of vitamins in older 
age, decreased absorption by the gastrointestinal mucosa, or low stores of vitamin 
B12 in the brain. The neurotoxicity of Hcy affects neuronal survival, the ability of 
neurons to transmit signals, and alters neural networks and circuitry (24, 25). 
Hcy can be transported through the blood-brain barrier via a specific saturable 
transporter, and accumulate in the brain (4). It induces dysfunction of endothe-
lial, astrocytic, and neuronal cells in brain (3, 24). In the hippocampus, hHcy 
induces lipoperoxidation, apoptosis, and neuronal degeneration (3, 7, 11, 26–28). 
In the cortex, secretary pathway calcium-ATPase 2 and Mn2+ superoxide dis-
mutase activity are reduced (26) and Golgi stress is increased because of redox 
dysbalance (3, 29, 30). hHcy reduces mitochondrial respiration, increases the 
electron transport chain complex II, and inhibits complex IV activity (31). It also 
induces a decline in electron transport chain activities of the heart through 
the  expression of proteins responsible for cellular stress response and redox 
balance (32). 

Met plays a critical role in cell physiology (33). Its plasma level is the result 
of Met metabolism, daily intake, and protein degradation (34). An excess of Met 
could be detrimental and might increase the risk of developing several diseases, 
including toxicity to central nervous system, DNA and dendritic spine density 
damage, and synaptic remodeling (33, 35). Faulty Met metabolism results in the 
accumulation of its metabolites in plasma, mostly Hcy, as part of the Met-Hcy 
cycle. If high dietary intake of Met exceeds the transsulfuration capacity, the 
Hcy blood concentration increases (15, 33). Data suggest that hHcy caused by 
Met diet leads to neuroinflammation, microhemorrhages, apoptosis, and synap-
tic remodeling (33, 35, 36). Furthermore, modifications in the “one-carbon 
metabolism” may exacerbate the toxic potential of Hcy and its metabolites, and 
affect the “methylation index” with an impact on gene regulation (16, 33, 35). 
In our studies, a high-Met diet induced neuropathological changes in the CA1 
hippocampal area and impaired spatial and learning memory acquisition––
likely due to Met-induced changes in “methylation index” of hippocampus and 
participation in the Met-Hcy cycle (37). 1H NMR spectroscopy with 7T MR 
scanner showed alterations in metabolic profile, increased hippocampal vol-
ume, and modifications in the number and morphology of astrocytes and 
neurons of CA1 hippocampus (20, 37). Subcutaneous injection of Hcy in rats 
led to neurodegeneration, altered morphology of the hippocampus, entorhinal, 
parietal and motor cortex, and accumulation of amyloid plaques and hyper-
phosphorylated tau protein (18, 38, 39). Met diet also increases H2S production 
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and inflammatory factors, and decreases mitochondrial function (40). High-Met 
diet-induced mild hHcy (20, 33, 41–43) can cause vascular cognitive impair-
ment, neuroinflammation, and tau protein phosphorylation (44, 45). These can 
in turn affect astrocytes, microglia, and neurons (17, 18, 20, 42, 46). Gestational, 
neonatal, or adult hMet in rats and mice increases autophagosomes, apoptosis, 
and caspase activity (35, 47). 

NMR metabolomic analysis of plasma showed alteration in energy metabolism 
in rats treated with Met diet (37). Decreased utilization of glucose is balanced with 
increased utilization of triacylglycerols to coordinate cellular function and facili-
tate neuronal survival (48–50) and compensate abnormalities in behavioral tests 
(33, 48). Because memory impairment is frequently the earliest symptom of 
dementia (51, 52), we hypothesize that Met induces neuropathological changes in 
the hippocampus which leads to memory impairment at the very early stages of 
Met/Hcy neurotoxicity. The clinical relevance is that a diet, which is high in Met 
and low in B vitamins, is a risk factor for the development of human neurodegen-
erative disorders.

HYPERHOMOCYSTEINEMIA AS A DETRIMENTAL FACTOR IN 
CEREBRAL ISCHEMIA-REPERFUSION INJURY 

Apart from being neurotoxic by itself, hHcy exerts synergistic detrimental toxicity 
in cerebral ischemic experimental models of human stroke (Figure 1) (53). 
Ischemia-reperfusion injury (IRI) induces degeneration of hippocampal neurons 
(17, 54). The synergistic effect of both stressors, hHcy and IRI, leads to the aggra-
vation of neuronal and glial morphological changes in the hippocampus and the 
cortex (17, 42, 54). Astrocytes, as dynamic cells, affect intercellular communica-
tion with surrounding synapses (10, 55). The synergisitc effect of ischemia and 
hHcy modifies the expression of the mitogen-activated kinase (17, 54, 56) and 
enhances the severity of tissue injury (12, 57). hHcy aggravates cortical cell injury 
after ischemia via autophagy, blood-brain barrier disruption, and homocysteinyl-
ation of cytochrome c, which in turn induces autophagy (58). Hcy reduces the 
number of reparatory endothelial cells in stroke patients (59), silences coagula-
tion genes by hypermethylation (60), activates dysregulation of the ubiquitin 
system (61), and suppresses NO synthesis to impair circulation (62). 
Hypermethioninemia (hMet) is linked to memory deficits and morphological 
changes in the hippocampus (63). Chronic hMet and its sulfoxide product, 
induces oxidative stress (64) and contributes to brain pathology (65).

Combination of hHcy and IRI aggravates the neurodegenerative processes and 
might eventually lead to the development of Alzheimer’s disease-like neuropathol-
ogy (18, 38). In rats that were fed a high-Met diet, IRI further increased Hcy 
levels, aggravated the degeneration of the hippocampal neurons, decreased grey 
matter volume, and altered the metabolic ratio (42, 47). Furthermore, many 
studies have shown the deleterious role of hHcy on cognition and cerebral 
microbleeds (45, 66–70). 

Astrocytes activation can precede neuronal loss and aggravate ischemia-
induced brain injury (71). In animals fed Met diet and subjected to IRI, 
short, thicker, and branched processes of astrocytes were found (20, 72). 
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Figure 1.  Mechanisms leading to the neurotoxicity in hHcy + IRI conditions. hHcy+IRI-mediated 
neurotoxicity is the result of a plethora of dysregulated pathways including redox 
dysbalance, lipoperoxidation, protein oxidation, secretory pathway Ca2+/Mn2+-ATPase, and 
p38 MAPK. Together, they cause neurodegeneration through a variety of mechanisms 
including the induction of apoptosis, disruption of the blood brain barrier, β amyloid and Tau 
accumulation, and alterations in metabolome. (↑), increased number of cells and/or activity; 
(↓), decreased number of cells and/or activity. βA, beta amyloid; BBB, blood-brain barrier; 
pTau, phosphorylated tau protein (3, 5, 7, 10, 15, 17–20, 26, 28, 37–43, 46, 53, 54, 58, 62).
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Other studies demonstrate neuroinflammatory and neurodegenerative changes 
in various neuronal cell types (42, 73, 74). A time-dependent decrease of the 
tNAA/tCr ratio (N-acetylaspartate/total creatine [marker of metabolic altera-
tions]) was also observed following IRI (37, 42, 70, 75). Choline, considered a 
marker of membrane integrity (76), i.e., phospholipids synthesis and degrada-
tion, suggests the process of hippocampal re/de-myelination. An increased ratio 
of mlns/tCr (myo-Inositol [mIns]), total creatine [tCreatine]), suggests changes 
in the number and morphology of hippocampal astrocytes and the process of 
de-myelination (75, 77). Collectively, the results of metabolic analysis indicate 
that IRI with Met diet initiates progressive metabolic disturbances with the dys-
regulation of the myelinated tract in the hippocampus (42). While hHcy alone 
leads to an increase in the hippocampal volume (20, 42), in conjunction with 
IRI, it further increases cerebral edema on day 3, followed by a decrease on day 
7––probably a sign of neurodegeneration (69, 78, 79). Sustained edema results 
from the blood-brain barrier disruption caused by hHcy, or its metabolites, or 
the excitotoxic effect of Hcy (47, 62). Most of the blood-brain barrier damage 
usually occurs before 48 h post-stroke, as shown in the embolic ischemic model 
in rats (69, 78). Studies also suggest that mild hHcy impairs cardiac contractil-
ity, alters metabolism, and causes cardiac muscle remodeling and dysfunction 
(32, 80), and abnormally activated MMP-9 (81). Collectively, a mild hHcy in 
combination with IRI generates a toxic environment with detrimental impact on 
neuronal tissue, volume disturbances, attenuated neurites, and activation of 
astrocytes in hippocampus (42).

Hypoxic or ischemic preconditioning is a widely recognized strategy that 
eventually leads to ischemic tolerance (82, 83). As discussed above, ischemia-
reperfusion injury leads to neurodegeneration of hippocampal neurons in the 
CA1 region (46). Preconditioning remarkably reduces neurodegeration and 
confers neuroprotection (17, 28, 54). The combination of hHcy with ischemic 
injury further increases the extent of neurodegeneration, and preconditioning 
suppresses neuronal degeneration (3, 7, 17, 26, 28). Combination of both 
stressors (ischemia+hHcy) leads to the massive activation of phospho-p38 
MAPK (17). A recent study (83), using NMR to assess metabolomic changes in 
rat plasma, showed disturbed glycolysis pathway, and increased ketone bodies 
along with increased utilization of triacylglycerols. A decreased level of glyco-
lytic intermediates (lactate, pyruvate, acetate) with an increased glucose was 
found in ischemic and preconditioned animals (83). HHcy also induced altera-
tions in intracellular signaling, epigenetic dysregulation in methylation or 
acetylation status, microRNAs (13, 84, 85), and one-carbon metabolism, as 
part of Hcy metabolism (3, 5, 13, 84). Remarkably, demethylation of SAM 
(S-adenosylmethionine) to SAH is the sole source of de novo methyl groups for 
the cell. Thus, in hHcy conditions, dysregulation of this step might have an 
implication for many cellular processes, including modulation of gene expres-
sion via epigenetic regulation (13, 84). Collectively, responses of neuronal cells 
to hHcy, IRI, and preischemic challenge in rats suggest a correlation of several 
etiological factors, such as antioxidant defense (3), alterations in the mecha-
nisms of Ca2+ transport (26), DNA methylation, and chromatin remodeling. 
In summary, the combination of hHcy with ischemic injury increases the extent 
of neurodegeneration and preconditioning reduces neuronal degeneration 
(3, 7, 17, 26, 28, 83). 
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CONCLUSION 

The prevalence of hHcy and its role in the pathogenesis of cerebrovascular 
disorders is still not fully explored. hHcy has a role in the etiology of neurological 
damages due to its toxic effect on neurons, glia and vascular endothelium. 
Furthermore, hHcy can cause hippocampal edema, metabolic depletion, and 
cognitive decline, which is subsequently exacerbated by ischemia-reperfusion 
insult. However, most of our current knowledge is largely based on experimental 
findings and strategies to decrease plasma Hcy level did not reach conclusive clini-
cal outcomes (6, 66, 86). The efficacy of combined folic acid, B6, and B12-vitamin 
supplementation to reduce hHcy is clinically inconclusive. Prevention of hHcy 
has the potential to prevent human stroke and Alzheimer’s disease incidence, and 
deserves further investigation. Epigenetic DNA methylation as a consequence of 
hHcy by endogenous (polymorphism of Hcy and folate pathways genes) and/or 
exogenous factors (dietary Met intake or/and deficiency of folate and vitamins) 
might be involved in hHcy pathogenesis. Exploration of the methyl balance and 
understanding the pathophysiology of diseases from a “methylation point of 
view”, although challenging, is a worthwhile effort. 
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