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Abstract: Recent studies have highlighted the role of focal or total ischemia in the 
development of post-ischemic brain neurodegeneration. However, despite exten-
sive research, the exact mechanism(s) by which ischemia contributes to brain 
neurodegeneration remains unclear. Therefore, understanding the mechanisms of 
post-ischemic neurodegeneration of the brain may allow us to develop effective 
therapies for the prevention and treatment of neurodegenerative diseases. This 
chapter summarizes the latest research into post-ischemic signaling associated 
with the development of post-ischemic brain neurodegeneration with Alzheimer’s 
disease-type neuropathology and dementia. We focus mainly on the genes associ-
ated with Alzheimer’s disease, which play an important role in the development of 
post-ischemic brain neurodegeneration. Also, the potential role of ischemic  factors 
as new therapeutic targets and prognostic markers in patients with neurodegen-
erative diseases such as Alzheimer’s disease is discussed.
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INTRODUCTION

Post-ischemic brain neurodegeneration is a leading cause of death and disability 
worldwide (1). The incidence of the condition is increasing as the world’s popu-
lation ages. The prevalence of brain ischemia in the elderly is high and the risk 
is 1 in 3 (2). Post-ischemic brain neurodegeneration is a serious neurological 
problem that significantly affects the quality of life of patients and causes a 
heavy burden on the economy and society. Currently, about 17 million people 
suffer from brain ischemia each year, of which 6 million die (3, 4). Worldwide, 
it is estimated that the number of post-ischemic patients is currently around 
33  million (3, 4). The number of cases will increase to 77 million by 2030 
(3, 4). If the trend of ischemic stroke continues, there will be about 12 million 
deaths by 2030, 70 million will survive a stroke, and over 200 million  disability- 
adjusted life years will be recorded worldwide annually (4). In 2010, the annual 
cost of caring for stroke patients in Europe was around €64 billion (4). In the 
UK, treating stroke and loss of productivity results in a social cost of £8.9 billion 
per year, with care costs accounting for about 5% of the total cost of the national 
healthcare system (5).

Symptoms of post-ischemic brain neurodegeneration include memory loss, 
cognitive impairment, and eventually the development of dementia (6–8). 
Despite the wealth of research on brain ischemia over the past decade, there is 
no known effective treatment that would prevent or slow the progression of 
post-ischemic neurodegeneration. Therefore, a deeper understanding of the cel-
lular and molecular mechanisms underlying post-ischemic neurodegeneration 
will be essential for the development of new therapeutic targets. There is grow-
ing interest in studying the potential contribution of ischemic factors to neuro-
nal function and survival, and in identifying potential targets for the development 
of therapeutic and diagnostic strategies, as there is ample evidence for the influ-
ence of ischemia on the development of neurodegenerative diseases such as 
Alzheimer’s disease (7, 9–13). 

Post-ischemic neuropathology shows extensive neuronal death in the hippo-
campus and cortex (14–18), with accumulation of amyloid deposits such as dif-
fuse and senile plaques (15, 19–29) and an increase in total tau protein (30) with 
its hyperphosphorylation (31), resulting in the development of a paired helical 
filaments (32), neurofibrillary tangle-like (33, 34) and finally, neurofibrillary 
tangles (35, 36). Post-ischemic brain studies have shown the disintegration of 
the blood-brain barrier (37–41) and the accumulation of toxic blood-derived 
proteins in the central nervous system, such as amyloid and tau protein (42–59), 
which in turn probably leads to progressive and irreversible damage to the entire 
brain. This then leads to neurodegeneration and ischemic death of neurons 
directly mediated by excitotoxicity (60) and indirectly by the neurotoxicity of 
folding proteins. As a result of the dysfunction of the blood-brain barrier, immune 
cells enter the brain and cause inflammation of the nervous system, which is an 
important factor in the development of neurodegenerative diseases, including 
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post-ischemic neurodegeneration of the brain (61, 62). On the other hand, the 
increased level of amyloid in the post-ischemic brain causes the accumulation of 
amyloid not only in the brain tissue but also in the vessel wall, causing the devel-
opment of cerebral amyloid angiopathy (15, 63). Reduction in the length of cere-
bral vessels post-ischemia, or impaired cerebral blood flow in the brain as a result 
of vasoconstriction (64), and/or the development of cerebral amyloid angiopathy 
(15, 63), limits the transport of energy substrates, hampers the supply of oxygen 
and nutrients to the brain through the blood-brain barrier, and reduces the clear-
ance of potential neurotoxins from the brain, such as amyloid (63). In post-
ischemic neurodegeneration, a lack of acetylcholine in the brain, especially in the 
hippocampus, has been found; acetylcholine is a neurotransmitter that plays a 
key role in neuronal signaling and memory formation, and its lack is a known 
cause of dementia (65). 

Brain ischemia-reperfusion injury shows signs of progressive neurodegenera-
tion that develops slowly over a long period of time during recirculation (15). 
Brain autopsy 1-2 years after experimental ischemia revealed hydrocephalus with 
widening of the ventricles and subarachnoid space (14, 15, 66, 67). This was 
accompanied by complete atrophy of the hippocampus with a very narrow brain 
cortex (14, 15, 17, 18, 66–68). The ultimate consequence of this phenomenon 
was the development of dementia in experimental and clinical cases after tran-
sient and reversible brain ischemia (6, 17, 18, 29, 54, 55, 69–72). An ischemic 
brain episode accelerates the onset of dementia by 10 years (73), and 10% of 
patients develop dementia soon after the first stroke, and 41% after a recurrent 
ischemic stroke (6, 74). In this chapter, we discuss the latest advances in post-
ischemic brain neurodegeneration research, and highlight genes related to amy-
loid protein precursor (APP) processing and tau protein dysregulation, which 
further contribute to neuronal dysfunction and death, neurodegeneration, and 
underlie neurological deficits and cognitive impairment that lead to full-blown 
dementia.

AMYLOID PROTEIN PRECURSOR PROCESSING GENES IN 
POST-ISCHEMIC BRAIN

The basic phenomena associated with amyloid-mediated post-ischemic brain 
neurodegeneration are unclear. Below, we present the existing facts on the amy-
loidogenic metabolism of the amyloid protein precursor to amyloid following 
brain ischemia and reperfusion, which is related to the production and accumula-
tion of amyloid in the brain. The presence of amyloid in serum and post-ischemic 
brain shed new light on the understanding of the role of amyloid in the develop-
ment of post-ischemic brain neurodegeneration with full-blown Alzheimer’s dis-
ease-type dementia.

CA1 area of hippocampus

The expression of APP gene in the CA1 region of the hippocampus is decreased 
2 days after ischemia but increased above the control values on days 7 and 30 
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(Table 1) (75). The BACE1 (β-secretase) gene increased within 2-7 days and 
decreased 30 days post-ischemia (Table 1) (75). The PSEN1 and 2 (presenilin 1 
and 2) genes increased within 2-7 days and decreased after 30 days post- 
ischemia (Table 1) (75). Changes in the expression of the APP gene were statisti-
cally significant between 2 and 7, 2 and 30, and 7 and 30 days after cerebral 
ischemia (75). Alterations in BACE1 gene expression were statistically signifi-
cant between 2 and 7, 2 and 30, and 7 and 30 days post-ischemia (75). Changes 
in PSEN1 gene expression were statistically significant between 2 and 30, and 
7 and 30 days after ischemia (75). Alterations in PSEN2 gene expression were 
statistically significant between 2 and 7, 2 and 30, and 7 and 30 days following 
cerebral ischemia (75). 

TABLE 1 Alzheimer’s disease-associated genes in the CA1 
area of hippocampus in post-ischemia

Survival

Genes

APP BACE1 PSEN1 PSEN2 MAPT BECN1 BNIP3 CASP3

2 days ↓ ↑↑ ↑ ↑↑ ↑↑ ↔ ↑ ↑

7 days ↑ ↑ ↑ ↑ ↑ ↔ ↔ ↑

30 days ↑ ↓ ↓ ↓ ↓ ↔ ↔ ↓
Expression: ↑, increase; ↑↑, increase; ↓, decrease; ↔, oscillation around control values. Genes: APP, amyloid protein 

precursor; BACE1, β-secretase; BECN1, Beclin1; BNIP3, BCL2 interacting protein 3; CASP3-Caspase 3; MAPT, tau protein; 
PSEN1, presenilin 1; PSEN2, presenilin 2.

CA3 area of hippocampus

In the CA3 region of the hippocampus, 2 and 30 days after ischemia, the mean 
expression level of the APP gene was close to the control values (Table 2) (76). 
However, 7 days after ischemia, the expression of the APP gene was above the 
control values (76). Expression of the ADAM10 (α-secretase) gene was below 
 control values at 2, 7 and 30 days after ischemia (Table 2) (76). Expression of 
the mean level of the BACE1 gene in the CA3 area decreased after 2–7 days, 
but increased above the control values 30 days post-ischemia (Table 2) (76). 
The PSEN1 gene increased within 2-7 days and oscillated around control 
 values after 30 days post-ischemia. The expression of the PSEN2 gene after 
ischemia fluctuated around control values within 2 days, while on day 7 it was 
reduced, but on day 30 it was above the control values (Table 2) (76). Changes 
in the expression of the APP gene were statistically significant between 2 and 
7, and 7 and 30 days post-ischemia (76). Alterations in BACE1gene expression 
were statistically significant between 2 and 30 days after ischemia (76). 
Changes in PSEN1gene expression were statistically significant between 2 and 
30, and 7 and 30 days following ischemia (76). Alterations in PSEN2 gene 
expression were statistically significant between 2 and 30, and 7 and 30 days 
after  ischemia (76).
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Medial temporal cortex

Expression of the mean level of the APP gene in the medial temporal cortex 
decreased after 2 days, but increased above the control values 7 and 30 days 
post-ischemia (Table 3) (77). The expression of the BACE1 gene was above 
control values within 2 days, and in 7-30 days post-ischemia, fluctuated around 
control values (Table 3) (77). Expression of the PSEN1 gene fluctuated 
around control values 2, 7 and 30 days post-ischemia (Table 3) (78). The highest 
expression of the PSEN2 gene was noted on the second day post-ischemia, whereas 
on days 7-30 the expression of this gene was within the control values (Table 3) 
(78). Changes in expression of the APP gene were statistically significant between 
2 and 7, and 2 and 30 days post-ischemia (77). Alterations in BACE1 gene expres-
sion were statistically significant between 2 and 7, and 2 and 30 days following 
ischemia (77). Changes in PSEN1 gene were never statistically significant during 
the post-ischemic period (78) whereas changes in PSEN2 gene expression 
were statistically significant between 2 and 7, and 2 and 30 days (78). 

TABLE 3 Alzheimer’s disease-associated genes in the 
medial temporal cortex in post-ischemia

Survival

Genes

APP BACE1 PSEN1 PSEN2 BECN1 BNIP3 CASP3

2 days ↓ ↑↑ ↔ ↑↑ ↑↑ ↓↓ ↓↓

7 days ↑ ↔ ↔ ↔ ↑ ↑↑ ↑↑

30 days ↑ ↔ ↔ ↔ ↑ ↔ ↑

Expression: ↑, increase; ↑↑, increase; ↓, decrease; ↓↓, decrease; ↔, oscillation around control values. Genes: APP, 
amyloid protein precursor; BACE1, β-secretase; BECN1, Beclin 1; BNIP3, BCL2 interacting protein 3; CASP3-Caspase 3; 
PSEN1, presenilin 1; PSEN2, presenilin 2.

TABLE 2 Alzheimer’s disease-associated genes in the CA3 
area of hippocampus in post-ischemia

Survival

Genes

APP ADAM10 BACE1 PSEN1 PSEN2 MAPT BECN1 BNIP3 CASP3

2 days ↔ ↓ ↓ ↑ ↔ ↔ ↔ ↓ ↓

7 days ↑ ↓ ↓ ↑ ↓ ↑ ↓ ↓ ↑

30 days ↔ ↓ ↑ ↔ ↑ ↑ ↑ ↓ ↑

Expression: ↑ increase; ↓, decrease; ↔, oscillation around control values. Genes: APP, amyloid protein precursor; 
ADAM10, α-secretase; BACE1, β-secretase; BECN1, Beclin1; BNIP3, BCL2 interacting protein 3; CASP3-Caspase 3; MAPT, 
tau protein; PSEN1, presenilin 1; PSEN2, presenilin 2.
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TAU PROTEIN GENE IN POST-ISCHEMIC BRAIN

The tau protein is a microtubule-related protein expressed in the brain, espe-
cially in unmyelinated cortical axons. It is mainly noted in neurons and to a 
lesser extent in neuroglial cells. In neurons, it plays a key role in structural sta-
bilization and the formation of the neuronal cytoskeleton. Elevated tau protein 
levels have been detected in the brain and blood following ischemia- reperfusion. 
The mechanisms underlying tau protein dysfunction that influence the develop-
ment of post-ischemic brain neurodegeneration have not been definitively 
 elucidated. In this analysis, we indicate that both the ischemia itself and the 
permeability of the blood-brain barrier after ischemia influence the behavior of 
the tau protein. Tau protein dysfunction starts with hyperphosphorylation 
which results in the development of paired helical filaments, neurofibrillary 
tangle-like, and ultimately neurofibrillary tangles that are hazardous to microtu-
bule activity, especially in neurons, and are involved in the development of 
irreversible post-ischemic brain neuropathology with the Alzheimer’s disease 
phenotype and genotype.

CA1 area of hippocampus

Expression of the mean level of the tau protein gene (MAPT) in the CA1 region 
increased in 2–7 days, but decreased below the control values 30 days after 
 ischemia (Table 1) (79). The statistical significance of alterations in MAPT 
gene expression following ischemia-reperfusion was between 2 and 7, and 2 and 
30 days post-ischemia (79). 

CA3 area of hippocampus

In the CA3 area of the hippocampus, the mean level of the MAPT gene expression 
oscillated around control values within 2 days, but 7–30 days post-ischemia, the 
expression was above control values (Table 2) (76). The statistical significance of 
changes following ischemia-reperfusion brain injury was between 2 and 7, and 2 
and 30 days (76).

GENES INVOLVED IN THE DEATH OF NEURONS IN POST-
ISCHEMIC BRAIN 

As aging is one of the risk factors for ischemic stroke, aging mechanisms are 
believed to be important in stroke development and post-stroke neurodegenera-
tion. Post-ischemic brain neurodegeneration appears to promote the development 
of an irreversible Alzheimer’s disease-like neuropathology through neuronal 
death, neuroinflammation, white matter damage, and hippocampal and brain 
atrophy, probably caused by genes responsible for neuronal death in Alzheimer’s 
disease. Current research indicates that cerebral ischemia leads to Alzheimer’s 
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disease-type neurodegeneration and many end events such as dysregulation 
of genes that are involved in neuronal death in different brain structures at differ-
ent times and with varying severity. Understanding the underlying pathological 
 pathways causing proteomic and genomic changes characteristic of Alzheimer’s 
disease and cerebral ischemia will help elucidate the development of neurodegen-
erative diseases with dementia and develop treatments for them.

CA1 area of hippocampus

Expression of the mean level of the BECN1 gene (autophagy-related gene) in the 
CA1 area of the hippocampus fluctuated around control values on days 2, 7, and 
30 after ischemia (Table 1) (80). The BNIP3 gene (mitophagy-related gene) expres-
sion in the CA1 region increased within 2 days of ischemia, but from 7 to 30 days, 
oscillated around control values (Table 1) (80). Increased expression of the 
 caspase-3 gene was observed between 2 and 7 days but decreased on day 30 
(Table 1) (80). Alterations in BECN1 gene expression were never statistically 
 significant post-ischemia (80). Significant changes in BNIP3 gene expression in 
the CA1 area was noted between 2 and 7, and 2 and 30 days in post-ischemic 
brain injury (80). Changes in expression of the caspase-3 gene between 2 and 7, 2 
and 30, and 7 and 30 days post-ischemia were statistically significant (80).

CA3 area of hippocampus

The mean level of BECN1 gene expression in the CA3 area of the hippocampus 
oscillated around control values within 2 days, in 7 days it was below the control 
value, and on day 30, it increased above control values (Table 2) (81). The expres-
sion of the BNIP3 gene was below control values at all stated times (Table 2) (81). 
Caspase-3 gene expression was below control values within 2 days and increased 
between 7 and 30 days. (Table 2) (81). Changes in BECN1 gene expression were 
statistically significant between 2 and 7, 2 and 30, and 7 and 30 days after isch-
emia (81). Changes in BNIP3 gene were not statistically significant (81). Alterations 
in caspase-3 gene expression were statistically significant between 2 and 7, and 2 
and 30 days post-ischemia (81).

Medial temporal cortex

The mean level of BECN1 gene expression was always increased in the medial 
temporal cortex after brain ischemia (Table 3) (82). Nevertheless, the expres-
sion of the BNIP3 gene decreased on day 2, increased on day 7, and reached a 
value similar to the controls on day 30 (Table 3) (82). Two days post-ischemia, 
the expression of caspase-3 gene decreased but it increased between days 7 
and 30 (Table 3) (82). Changes in BECN1 gene were statistically significant 
between 2 and 30 days post-ischemia (82). Alterations of BNIP3 gene 
 expression were statistically significant between 2 and 7, and 2 and 30 days 
following brain ischemia injury (82). Statistically significant alterations in 
 caspase-3 gene expression were noted between 2 and 7, and 2 and 30 days 
post-ischemia (82).
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CONCLUSION

Loss of neurons, with the accumulation of misfolded proteins in the form of amy-
loid plaques and neurofibrillary tangles, as well as neurological deficits with the 
development of full-blown dementia of the Alzheimer’s disease-type are the main 
features of post-ischemic brain neurodegeneration (Figure 1). In this chapter, we 
present data of amyloid protein precursor, amyloid secretases, tau protein, autophagy, 
mitophagy and apoptosis-related genes induction post-ischemia, all of which play a 
key role in the development of post-ischemic brain neurodegeneration with the 
Alzheimer’s disease phenotype and genotype. We presented the gene expression 
of the APP, ADAM10, BACE1, and PSEN1 and 2 in post-ischemic animals in the 
CA1 and CA3 regions of the hippocampus and the medial temporal cortex. The 
data showed that experimental ischemic brain injury activates neuronal death 
in the hippocampus and medial temporal cortex in a manner dependent on amy-
loid production. A consequence of the above process is the accumulation of 
 amyloid in the intra- and extracellular space and additional neuronal death due to 
amyloid neurotoxicity followed by post-ischemic general brain atrophy, which 
leads to the development of Alzheimer’s disease-type dementia. This evidence 
suggests that post-ischemic amyloidogenic processing of the amyloid protein pre-
cursor, along with amyloid accumulation, play a key role in the acute and chronic 
death of CA1 and CA3 neurons in the hippocampus and medial temporal cortex. 
The formation of amyloid plaques in the hippocampus and medial temporal 

Brain ischemia

Cholinergic
dysfunction Amyloidogenesis

Tau protein
dysfunction Dementia

Alzheimer’s
disease

Figure 1. Relationship between cerebral ischemia and Alzheimer’s Disease. Brain ischemia 
triggers various post-ischemic events including cholinergic dysfunction, amyloidogenesis, 
and tau protein dysfunction, eventually leading to full-blown dementia. These events have 
remarkable parallelism with Alzheimer’s disease.
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cortex is highly likely to be due to increased production, increased plasma influx, 
and decreased clearance of amyloid from the brain parenchyma.

In addition, studies have shown that ischemia of the CA1 and CA3 region of 
the hippocampus also affects the expression of the MAPT gene. It should be noted 
that ischemic overexpression of the MAPT gene during acute neuronal death in 
the CA1 and CA3 region of the hippocampus was accompanied by dysregulation 
of the autophagy, mitophagy and apoptosis genes. The data show a correlation 
between increased caspase-3 levels and the formation of neurofibrillary tangles. 
Post-ischemic overexpression of the MAPT gene indicates an increase in tau pro-
tein translation and subsequent increased hyperphosphorylation. Support for the 
above is elevated Cdk5 levels following ischemic brain injury, eventually leading 
to the development of neurofibrillary tangles. The above evidence indicates isch-
emic neuronal death in the hippocampus in a manner dependent on tau protein 
dysfunction.

Data presented in this chapter show that apoptotic neuronal death coincides 
with dysregulation of autophagy and mitophagy-related genes, suggesting the 
involvement of these genes in ischemic neuronal death in the hippocampus and 
medial temporal cortex. Caspase-3 is highly likely to break down baclin 1 to 
eliminate the cell survival provided by autophagy, which causes apoptosis to dom-
inate. Caspase 3 enhances β-secretase activity, resulting in enhanced amyloido-
genic processing of amyloid protein precursor to neurotoxic amyloid.

Finally, in line with data from literature, it can be concluded that focal and 
total brain ischemia-reperfusion triggers the processing of the amyloid protein 
precursor at both gene and protein levels and leads to the accumulation of neuro-
toxic amyloid in the parenchyma of the brain. An understanding of the post-
ischemic differential expression of Alzheimer’s disease-related genes in the 
hippocampus and medial temporal cortex, and the genes that contribute to neu-
ronal death, amyloid production, and the development of neurofibrillary tangles, 
may be important in unraveling the etiology and future treatment of Alzheimer’s 
disease (Figure 1). 

The parallelism between post-ischemic brain neurodegeneration and 
Alzheimer’s disease, at least at the molecular level, is remarkable (Figure 1). 
Ignoring scientifically validated experimental and clinical data on the links 
between brain ischemia and Alzheimer’s disease will not only hamper proper 
understanding of the mechanism of both diseases, but also the development of 
causal treatments for post-ischemic neurodegeneration and Alzheimer’s disease. 
Since the mere accumulation of amyloid and tau protein, as believed, may not 
lead to the development of Alzheimer’s disease, further research is needed in this 
area, with particular attention to the role of ischemia. Thus, animal models of 
brain ischemia appear to be useful in determining the role of folding proteins and 
their genes in neurodegenerative processes such as post-ischemic brain neurode-
generation and Alzheimer’s disease.
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