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Abstract: Ischemic stroke is a destructive vascular disease that carries the risk of 
high mortality, disability, and eventually the development of full-blown dementia. 
Despite the continuous development of new prognostic methods, the prediction 
of ischemic sequelae and early and late prognosis of stroke is still much easier said 
than to apply in practice. Cell-to-cell communication between neuronal, glial, and 
vascular cells are essential for normal functioning of the brain, and in cerebral 
ischemia, this communication is interrupted. New research has demonstrated the 
important role of exosomes in cell-to-cell communication via microRNA transfer, 
playing an integral role in multicellular crosstalk. Following a stroke, harmful 
and/or beneficial microRNAs are released into the circulation, significantly affect-
ing the severity and prognosis of a stroke. This chapter provides an overview of 
the current literature on the possible harmful and beneficial roles of cargo derived 
from exosomes in ischemic stroke. A snapshot of experimental evidence for the 
role of exosome-derived microRNAs in ischemic stroke followed by clinical 
 studies exploring the diagnostic and prognostic potential of exosomes in stroke 
patients are presented. Finally, the promises and pitfalls along with future direc-
tions are discussed. 
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INTRODUCTION

Human ischemic stroke is a leading cause of morbidity, mortality, irreversible 
dementia, progressive increase in healthcare costs, and a burden on families and 
caregivers around the world. Early diagnosis of cerebral ischemia, and the predic-
tion of ischemic sequelae and prognosis are often difficult. Currently, the treat-
ment for ischemic stroke is thrombolysis and/or thrombectomy, but a strict time 
window is required for these procedures (1). Nowadays, the diagnosis of acute 
ischemic stroke is based mainly on advanced neuroimaging techniques, including 
computed tomography and magnetic resonance  imaging, but it should be empha-
sized that the use of these techniques has numerous limitations. Computed 
tomography is not sensitive enough in the very early stages of a cerebral infarc-
tion, because 40–50% of all acute ischemic stroke cases show no abnormalities on 
admission (2). Magnetic resonance imaging has also some disadvantages in its 
application, such as limited availability (3), the high cost of scanners, and the long 
duration of the procedure (4). Therefore, a faster and simpler tool is essential for 
the rapid diagnosis of acute ischemic stroke.

It is known that neurons, neuroglia, and cells associated with cerebral vessels 
are involved in the development of pathological processes after ischemic stroke, 
with each cell type contributing differently to the post-ischemic mechanisms of 
development of neurodegenerative changes in the brain. Exosomes are newly 
defined structures of interaction between these cells due to their involvement in 
signaling and intercellular communication. The exosome load, i.e., the microRNA, 
which is single-stranded non-coding RNA, can be released into the systemic cir-
culation, indicating that it may be a promising diagnostic marker due to its easy 
detection, serum stability, and cell-specific expression patterns (5). It has been 
shown that microRNAs may be associated with the mechanisms underlying the 
occurrence and development of post-stroke neuropathology, including neuronal 
apoptosis, oxidative stress, and the occurrence of neuroinflammation (6, 7). 
Previous studies have found abnormal accumulation of microRNAs in patients 
with acute ischemic stroke, suggesting a potential diagnostic value of the 
microRNA (8, 9). It should be emphasized that inadequate sample size, inconsis-
tent subject matter or different microRNA detection techniques lead to significant 
discrepancies between studies as well as inconsistent results (8–10). Nevertheless, 
the data suggest that exosomes, which are 30–150 nm vesicles, may be useful 
therapeutic, diagnostic, and prognostic biomarkers in ischemic stroke (11). 
Exosomes, microvesicles (10–1000 nm), and apoptotic bodies (50–5000 nm) are 
the three important subtypes of extracellular vesicles (12). Exosome biogenesis 
involves four stages: initiation, endocytosis, development of multivesicular body, 
and release through the joining of multivesicular bodies with the cell membrane 
(13). After being released from source cells, exosomes interact through endocyto-
sis, fusion, or ligand-receptor interactions with target cells (14). Secreted by most 
cells, exosomes contribute to intercellular signaling through cell-to-cell commu-
nication in a variety of brain diseases including ischemic stroke (15, 16). They can 
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also cross the blood-brain barrier and affect the exchange between the brain and 
the systemic circulation (17). Their water core and lipid bilayer envelope enable 
the transport of various substances, such as nucleic acids, lipids, and proteins in 
an autocrine or paracrine manner (18). Proteins that are exclusively present in 
exosomes, such as certain heat shock proteins, proteins involved in membrane 
transport and fusion, and tetraspanins, or that are involved in the biogenesis of a 
multi-vesicle body, or that associated with phospholipases and lipids, are consid-
ered as exosome biomarkers (19). Exosomes are abundant in body fluids such as 
serum, urine, breast milk, cerebrospinal fluid, amniotic fluid, nasal discharge, 
saliva, semen, synovial fluid, bile, watery fluid, and fluids produced during devel-
opment various pathologies (20, 21).

Valadi et al. were the first to demonstrate exosome-mediated transfer of 
microRNA as a new way of exchanging genetic material between cells (22). 
Exosomes are freely available, have different expression patterns, are more stable, 
and act as nanocarriers that transmit microRNA and siRNA in brain tissue. In 
addition, the structure and function of the brain can be directly influenced by 
exosomal microRNAs that are transmitted between normal and damaged parental 
neurons (14).

Growing evidence points to the crucial role of functional interactions between 
neurons, microglia, astrocytes, oligodendrocytes, vascular pericytes, extracellular 
matrix, endothelial cells, and vascular smooth muscle cells that work to maintain 
homeostasis in the brain microenvironment after a stroke (23–25). Following 
ischemia, these cells coordinate a response to restore adequate cerebral blood 
flow, thus reducing neuronal damage and death (26). Activation of these cells trig-
gers transfer of markers to the plasma, extracellular space, and cerebrospinal fluid 
that are probable indicators of the state of the brain (26). Moreover, the complex 
interactions between various cells and factors integrate vascular repair processes, 
response to neuroinflammation, control of the blood-brain barrier, and the sur-
vival of various cells in the post-stroke period (27). Release of exosomes from all 
the above cells has been reported, and some exosomes release neuroprotective 
factors after ischemia (28, 29).

The multifactorial development of ischemic brain injury after ischemic stroke 
is not only a potential source of identifying diagnostic markers but also for discov-
ering new therapy protocols. This chapter highlights the roles of exosomes in 
ischemic brain injury. An overview of our current knowledge on the topic, 
 followed by the diagnostic and prognostic role of exosomes in clinical trials 
involving patients after stroke are presented. A better understanding of the role of 
exosomes in post-ischemic neurodegeneration could contribute to faster stroke 
diagnosis, predict stroke outcomes and prognosis, help develop new therapies, 
improve patient care, and reduce healthcare costs (30). 

EXOSOMES IN THE BRAINS OF PATIENTS AFTER 
ISCHEMIC STROKE

Numerous studies have assessed the diagnostic and prognostic role of exosomes 
and their cargo in patients after acute ischemic stroke (11, 31, 32). One of the 
most common contents tested in exosomes is microRNAs, which play a distinct 



Pluta R and Jabłoński M76

role in different molecular pathways involved in stroke. Plasma levels of exo-
somal microRNA-9, -15a, and -124 are elevated in ischemic stroke patients, and 
 correlate with infarct volume and blood interleukin-6 concentration (9, 31). 
Thus, mircoRNAs may be promising markers for assessing the degree of brain 
damage caused by ischemic injury (31). Another exosomal microRNA that is 
elevated in ischemic stroke patients and correlates with stroke severity and poor 
short-term prognosis is microRNA-223 (32). Exosomal levels of microRNA-134 
are significantly increased in patients within 24 hours of ischemic stroke, and 
these levels are associated with infarct volume, poorer post-stroke prognosis, 
increased blood levels of interleukin-6, and serum high-sensitivity C-reactive 
protein (33). On the other hand, blood levels of exosomal microRNA-152-3p 
were remarkably lower in ischemic stroke patients. In addition, the lowest levels 
of microRNA-152-3p were observed in cases with large artery atherosclerosis, 
and these levels were lower in the acute phase of stroke than in the chronic phase 
of stroke (34). In summary, microRNAs 9, 124, 134, 152-3p, and 223 are associ-
ated with stroke severity; microRNAs 134 and 223 with poor prognosis; 
 microRNAs 9, 124 and 134 with infarct volume; and microRNAs 9, 124 and 134 
with interleukin-6 level increase. Two other microRNAs that are present in the 
exosomes of ischemic stroke patients are 21-5p and 30-5p. These microRNAs are 
associated with apoptosis that distinguish the acute phase of ischemic stroke 
from the subacute phase and the recovery period (35). In addition, it has been 
shown that exosomal microRNA-422a and microRNA-125b-2-3p in the blood 
can be diagnostic biomarkers in stroke patients, and that the combined use of 
these two microRNAs can be effective in determining the severity of stroke (36). 
The progression of asymptomatic carotid artery stenosis with more than 
50%  lumen stenosis is a potential risk factor for stroke or transient ischemic 
attacks of the brain. Clinical studies confirmed significantly higher expression of 
exosomal microRNA-199b-3p, -27b-3p, -130a-3p, -221-3p and -24-3p in these 
patients (37). It has also been reported that, in addition to microRNAs, exosomes 
released into the bloodstream after stroke contain pro-inflammatory proteins, as 
well as C reactive protein (38).

EXOSOMES FROM NEURONS

Neurons release exosomes from their somatodendritic compartments to modu-
late transsynaptic communication, local synaptic plasticity, post-stroke tissue 
remodeling and regeneration (29). MicroRNA-181c-3p from cortical neurons 
has been shown to inhibit neuroinflammation in rats with post-ischemic brain 
injury (39). The beneficial effect is explained by the reduction of the CXCL1 
chemokine in astrocytes, a target gene for microRNA-181c-3p that was sup-
pressed by this microRNA in astrocytes (39). In addition, microRNA-98, derived 
from the exosomes of neurons, acts as an endogenous post-ischemic protective 
factor by inhibiting microglial phagocytosis and thus mitigating ischemia-
induced neuronal death (40). Moreover, neurons have been shown to secrete 
microRNA-132 from exosomes into endothelial cells, which regulates the integ-
rity of cerebral vessels (41).
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EXOSOMES FROM ASTROCYTES

Astrocyte-derived exosomes have been shown to attenuate ischemic damage and 
inhibit apoptosis by suppressing autophagy in neurons (42). Further studies 
showed the role of exosome-derived microRNA-190b in the inhibition of the gene 
related to autophagy (43). Subsequently, circSHOC2 derived from ischemic pre-
conditioned astrocytes exosomes was shown to regulate neuron autophagy and 
apoptosis via the microRNA-7670-3p/SIRT1 axis (44). Other microRNAs derived 
from astrocyte exosomes with similar properties include microRNA-361 and 
microRNA-34c (45). Both of these microRNAs inhibit cell apoptosis in rats fol-
lowing ischemic brain injury: microRNA-361 regulating AMP-activated protein 
kinase/mammalian target of the rapamycin signaling pathway and cathepsin B 
(45) while microRNA-34c is neuroprotective against ischemic brain injury by the 
Toll-like receptor 7 and the nuclear factor-kappa B/mitogen-activated protein 
kinase pathways (46). In addition, it has been shown that astrocyte-derived 
 exosomes treated with a semaphorin 3A inhibitor suppress the activation of astro-
cytes and their microRNA-30c-2-3p and microRNA-184-5p leading to improved 
function after ischemic stroke in rats (47). Furthermore, synapsin 1 carrying 
 glycoprotein has been found to act as oligomannose which, by binding lectin, 
promotes neuronal survival when released by astrocyte-derived exosomes during 
ischemia and influences the interaction between neurons and neuroglia (48). It 
has been found that the improvement in neuron survival by astrocyte-derived 
exosomes during post-ischemic injury is also dependent on prion protein (49). 
Furthermore, microRNA-92b-3p, transported by exosomes to neurons, protects 
post-ischemic neurons from damage due to oxygen and glucose deficiency, and 
apoptosis (50).

EXOSOMES FROM MICROGLIA

It has been shown that microRNA-124, derived from microglia M2 exosomes, has 
a neuroprotective effect by limiting apoptosis, thus promoting the survival and 
activity of neuronal cells (39). Moreover, three days after reversible focal cerebral 
ischemia, exosomal microRNA derived from microglia M2 was found to be 
 elevated in ischemic penumbra (39). M2 microglia-derived exosomes also 
reduce glial scar development and improve post-ischemic regeneration via the 
microRNA-124/STAT3 pathway and inhibit astrocyte migration and proliferation. 
Moreover, this exosomal microRNA has been suggested to be involved in the 
transition of the astrocyte to the neural progenitor cell via increasing Sox2 and 
decreasing Notch1 expression (51). IL-4-polarized microglial cells have been 
found to promote post-ischemic angiogenesis by enhancing endothelial cell tube 
development via the secretion of exosomes containing microRNA-26a (52). 
A  recent study has shown that microglial vesicles improve stroke recovery by 
preventing immune cell senescence and promoting oligodendrogenesis (53). 
These exosomes are likely to have a beneficial effect on the maturation of oligo-
dendrocyte precursor cells through the tumor necrosis factor-α/tumor necrosis 
factor receptor 2 axis (53).
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EXOSOMES FROM OLIGODENDROCYTES

Exosomes from oligodendrocytes promote neuronal survival through gene 
regulation and signal transduction in in vitro cerebral ischemia (54). These 
exosomes carry antioxidant enzymes such as superoxide dismutase 1 and 
 catalase into neuronal cells, thereby increasing their tolerance to oxidative 
stress (54). Moreover, they stimulate survival mechanisms by regulating extra-
cellular signal-regulated protein kinases 1 and 2 and Akt axis (54).

EXOSOMES FROM ENDOTHELIAL CELLS

Vascular endothelial exosomes have been found to be essential for the protec-
tion of neural stem cells in post-ischemic brain injury (55). The above study 
showed that the injection of exosomes derived from endothelial cells into the 
ischemic brain promotes neurogenesis by activating neuronal progenitor cell 
proliferation and migration into the infarct area, reducing infarct volume, and 
improving neurological outcomes in rats (55). Exosomes derived from brain 
endothelial cells induce neuroplasticity, function of synapses, and ultimately 
improve motor regeneration following ischemic brain injury (56). MicroRNA-
126-3p influences neuroplasticity in the brain by increasing neurite outgrowth 
and protecting neurons from injury and apoptosis (56). Another study found 
that exosomes derived from ischemic brain endothelial cells promote the growth 
of axons of cortical neurons by modulating microRNAs 19a, 27a, 195 and 298, 
and by influencing axon inhibitory proteins such as phosphatase, semaphorin 
6A and tension, and Ras homolog family member A (57). Interestingly,  exosomes 
derived from ischemic endothelial cells have a strong influence in mediating 
axonal plasticity and homeostasis (57).

Endothelial cell-derived exosomes display neuroprotective effects after 
cerebral ischemia in type 2 diabetic mice by increasing the number of microves-
sels, axons and myelin density in the ischemic border zone, as well as polariza-
tion of M2 macrophages, which improved neurological and cognitive outcomes 
possibly mediated by microRNA-126 (58). Another study confirmed the above 
observations that microRNA-126 from exosomes derived from endothelial 
progenitor cells reduce infarct volume, maintain normal cerebral blood flow 
and microcirculation, and improve neurological outcomes by increasing angio-
genesis and neurogenesis by lowering caspase-3 levels and increasing vascular 
regulation of endothelial growth factor receptor 2 (59). In addition, it was 
found that moderate exercise has a beneficial effect on circulating exosomes 
derived from endothelial progenitor cells rich in microRNA-126, which have a 
 protective effect on post-ischemic brain damage (60). It was also shown that 
exosomes derived from femoral artery endothelial cells had a protective effect 
on neurons after ischemia-reperfusion brain injury (61).
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CONCLUSION

Neurons, neuroglia, and endothelial cells have been found to influence overall 
brain function following ischemia. Exosomes derived from these cells and 
their behavior are newly described processes of interaction between these cells 
due to their involvement in signaling and cell-to-cell communication. Many 
studies talk about the role of exosomes and the microRNAs secreted by them 
(Figure 1); however, these experimental results are not supported by relevant 
clinical evaluation. Human ischemic stroke is a leading cause of morbidity and 
mortality worldwide. Despite advances in understanding the underlying 
pathophysiological mechanisms of stroke, resumption of circulation is the 

Figure 1. Exosome cargo as a possible prognostic factor of poor prognosis after cerebral ischemia 
in humans. IL-6-interleukin 6; miR-microRNA.
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only immediate treatment choice for patients with this condition. This indi-
cates a good reason for the clinical need for further research to develop new 
treatments in this field. 

Recent advances in experimental approaches to drug discovery, including 
high-throughput screening (62) and computer-aided drug design (63), may pro-
vide new insight into the identification and validation of potential therapeutic 
targets for various neurodegenerative diseases, including ischemic stroke. 
Moreover, these techniques could also serve as the basis for targeted exosome 
 validation in future research. In addition to the above, in vitro models can help 
improve our understanding of the complex interactions between various struc-
tures and elements of brain tissue following an ischemic stroke. Organ-on-chip 
microfluidic models, such as the perfused blood-brain barrier on-chip (64) and 
the human brain microvessel on-chip (65), have shown to be suitable for advanced 
imaging of different phenomena, making them useful in studying the mechanisms 
of molecular transport involved in transcytosis of nanoparticles or biological 
agents across the blood-brain barrier. These platforms allow real-time monitoring 
of permeability changes, thus offering the possibility to study exosome release and 
penetration during and post-ischemic cerebral ischemia as well as ischemia-
induced neuroinflammation. In addition, 3D cultures and organoids are also 
capable of mimicking blood-brain barrier dysfunction and have the potential to 
be used in modeling cerebral ischemia and designing therapies (66). Recent pre-
clinical evidence has emerged that brain organoids transplant may be an effective 
intervention in the treatment of ischemic stroke (67). 

We have known for a long time that early diagnosis of stroke and prognosis 
of post-stroke are often amazing challenges. Cerebral ischemia is a heteroge-
neous process that cannot be characterized by a single marker. Consequently, 
diagnostic panels should be composed of multiple biomarkers representing 
various  pathophysiological molecular processes, including neuroinflammatory 
response, damage to the blood-brain barrier and brain edema, oxidative stress, 
and necrotic and apoptotic neuronal death (68). A better understanding of 
the physiological and pathological aspects of exosomes and their cargos will 
 contribute to the precise diagnosis of ischemic stroke, the prediction of its 
 consequences and treatment, and thus to the improvement of patient care and 
treatment outcomes. In the future, comprehensive stroke diagnostic protocols 
should include not only clinical and neuroradiological symptoms, but also bio-
markers representative of all structures and components of brain tissue. Ischemic 
stroke in developing and developed countries continues to be an increasing 
health problem that affects millions of people worldwide. 

Despite tremendous progress in ischemic stroke research in understanding the 
molecular processes of early and late sequelae, we still lack drugs or measures to 
delay or prevent progression, especially post-stroke, and we have still not identi-
fied the biomarkers needed for early detection of this condition. A significant 
breakthrough in the development of such biomarkers is the discovery that 
microRNAs connect the missing link between cell changes and disease progres-
sion. There are many questions about microRNAs in cerebral ischemia that need 
to be answered, including which specific microRNAs are involved in the cellular 
changes associated with the pathogenesis and progression of stroke; which  specific 
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microRNAs are involved in cellular changes associated with other neurodegenera-
tive disorders and aging; can stroke be prevented, delayed, or arrested through 
strategic alteration of microRNA expression; and whether and how serum and 
imaging tests can be developed that will focus on identifying microRNA changes 
that are responsible for the onset and progression of stroke. Comprehensive 
microRNA studies are urgently needed to help develop microRNA-based diagnos-
tic tools. At present, because clinical examination may not be decisive and neuro-
imaging may not be feasible in some cases, non-invasive blood markers are 
essential in acute ischemic stroke diagnosis. Currently, no commonly recognized 
markers are available for routine use in the diagnosis, differentiation or stratifica-
tion of acute stroke risk and its sequelae (69). Thus, microRNAs that are abun-
dantly present in the brain and involved in various neuropathological cellular 
processes may act as prospective markers that reflect the state and situation of the 
brain following ischemia (Figure 1) (70). Although many studies have found 
abnormal levels of microRNAs in acute ischemic stroke patients, a systematic 
review and meta-analysis is needed to collect and synthesize the available data 
and thus answer some of the questions. This should be done in addition to many 
meta-analyzes to comprehensively analyze and summarize the evidence on the 
influence of circulating microRNAs in the diagnosis and especially in the assess-
ment of the consequences of ischemic stroke. It is expected that the results of 
these studies will provide clinical evidence as well as the possibilities and future 
directions of diagnosing and predicting the consequences of ischemic stroke in 
humans (10).

Also, research suggests that exosomes can be engineered to modify the 
microRNA content to obtain therapeutic benefits (71, 72). For that reason, 
research to characterize and optimize the content of exosomes is necessary. 
Moreover, it is necessary to define the principles of safety of exosome therapy, 
standardize their isolation, optimize the dose or volume of administration, and 
determine the routes and frequency of administration during therapeutic applica-
tion. Optimizing the treatment protocols, procedures, and patient responses, 
which may vary between with old and young patients, as well as between men 
and women, is necessary. These require further pre-clinical and clinical research. 
These investigations will be crucial in translating exosome-based treatments into 
a clinic for treating the aftermath of ischemic stroke.
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