
149

In: Cerebral Ischemia. Pluta R (Editor). Exon Publications, Brisbane, Australia. 
ISBN: 978-0-6450017-9-2; Doi: https://doi.org/10.36255/exonpublications.
cerebralischemia.2021

Copyright: The Authors.

License: This open access article is licenced under Creative Commons Attribution-NonCommercial  
4.0 International (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/

Abstract: Progressive accumulation of misfolded amyloid and tau protein in 
intracellular and extracellular spaces is the most crucial etiopathological feature of 
brain ischemia, synaptic damage, or neural communication impairment. Clinical 
data suggest that dietary intake of curcumin enhances neurogenesis and offers 
neuroprotection. Curcumin is a natural polyphenolic compound with diverse and 
attractive biological properties. It may prevent aging-associated changes in cellu-
lar proteins, such as β-amyloid peptide and tau protein, that lead to protein insol-
ubility and aggregation after ischemic brain damage. Therefore, curcumin seems 
to be a promising supplementary agent against neurodegeneration development 
after brain ischemia. The aim of this chapter is to highlight our current under-
standing of the neuroprotective role of curcumin in cerebral ischemia-reperfusion 
injury. The limitations and adverse events of curcumin are also presented.
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INTRODUCTION

In both developing and developed countries, there is a tremendous increase in the 
prevalence of ischemia-related brain injury (1). Current epidemiological data 
indicate that 17 million patients suffer from ischemic stroke per year, 1.5 times 
higher in men than in women, of whom 6 million die each year (2, 3). Brain 
 ischemia elicits complications, including motor dysfunction, depression, fatigue, 
progressive dementia, and Alzheimer’s disease (AD)-type neuropathological 
changes. Moreover, outcomes after stroke frequently lead to a high risk of early 
rehospitalization and institutionalization, with adverse consequences in terms of 
socioeconomic costs (3).

Recent experimental and clinical data suggest that ischemia-related brain dam-
age causes neurodegeneration of the brain through inflammation (4–9), accumu-
lation of the β-amyloid (Aβ) peptide pathway components (2, 9) outside the 
neurons due to cleavage of membrane-embedded proteins into neurotoxic single 
amyloidal units (10), and formation of neurofibrillary tangles (NFTs) (11, 12) 
inside the neurons due to the accumulation of paired helical filaments of hyper-
phosphorylated tau proteins (10). These changes damage neurons in different 
regions of the hippocampus, leading to brain atrophy and dysfunction (1, 13, 14). 

Currently, thrombolysis is the first choice of treatment during ischemic stroke 
in humans; however, it has a limited therapeutic window regarding the time after 
the incident (15). In addition, it does not affect the progressive changes that 
develop slowly during, and after, recirculation (15). Moreover, there is no avail-
able treatment to prevent brain ischemia and/or delay or stop neurodegeneration 
progression associated with ischemia. Also, the current drugs for AD, such as 
acetylcholinesterase (AChE) inhibitors (galantamine and donepezil), rivastigmine 
(AChE and butyrylcholinesterase (BChE) inhibitor), and N-methyl-D-aspartate 
(NMDA) receptor antagonist memantine have not been able to significantly 
change the pathological process or provide improvements (16). Thus, the primary 
goal of drug discovery is to find or design neuroprotective molecules that are able 
to improve cognitive and motor functions after ischemia-related brain damage in 
AD. Because of the lack of effective pharmacological options, alternative therapeu-
tics such as nutraceuticals are evaluated. Several evidences suggest a significant 
correlation between lifestyle factors, diet, and the onset of dementia and AD 
development (17). The intake of a ketogenic diet, or diets rich in probiotics, 
 antioxidants, and ω-3 polyunsaturated fatty acids, or plant-based food may be 
beneficial to ameliorate the hallmarks of AD and other neurodegenerative diseases 
(17, 18). One of the promising dietary ingredient is curcumin, which displays a 
broad range of pharmacological activities, including antioxidant, anti- inflammatory 
(14), antibacterial, and antitumor actions (19).

Curcumin is a phytochemical extract from Curcuma longa rhizomes (19) of the 
Zingiberaceae (ginger) family. It is commonly used in Indian, Asian, and Middle 
Eastern cuisine. In Ayurvedic, traditional Persian, and Chinese medicines, it is 
used for its blood-purifying properties (20), treatment of skin and muscle inflam-
mation, cough, sinusitis, allergy, bronchial dysfunctions, asthma, and hepatic dis-
ease (20). Chemically, it is known as diferuloylmethane (C21H20O6), with a 
molecular mass of 368.37 g/mol. There are two aryl rings containing orthometh-
oxy phenolic OH-groups, symmetrically linked to a β-diketone moiety, which 
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have an impact on the physicochemical properties, biological functions, and anti-
oxidant activities of curcumin (21). In addition, it shows potential as a therapeutic 
option for cognitive impairment and AD treatment due to the ability to lower Aβ 
levels and inhibit Aβ deposition and aggregation in mice (22), monkeys, bears 
(23), and humans (24). Moreover, it is a promising imaging agent for medical 
diagnostics (14).

NEUROPATHOLOGY AFTER BRAIN ISCHEMIA

Ischemic stroke in humans and animals is characterized by various neurobehav-
ioral changes such as memory deficits, with a gradual decline in intellectual and 
cognitive functions (1). Eventually, it leads to dementia, which is a syndrome (or 
group of symptoms) that causes deterioration in behavior, ability to perform 
everyday tasks, memory, and learning capacity (25). Generally, it is not a normal 
part of aging but affects older groups of people (25). After ischemic brain damage, 
many changes occur in the brain, including the loss of neuronal cells in the CA2, 
CA3, and CA4 areas of the hippocampus (1, 9, 13). In addition, acute and chronic 
neuronal changes are associated with a decrease in acetylcholine levels, suggesting 
insufficient neuronal excitable transmission (26, 27). Also, synaptophysin and 
95-density postsynaptic protein levels changes were observed in the hippocam-
pus after focal cerebral ischemia (27). Of note, transient brain ischemia leads to 
synaptic autophagy and neural loss (28, 29). In addition, this type of ischemia 
causes severe alterations in both the corpus callosum and subcortical white matter 
(30), and activation of glial cells in later stages (31). Brain ischemia results in 
increased permeability of the blood-brain barrier (BBB); thus, inflammatory cells 
may easily invade the brain tissue. Also, it facilitates the leakage of amyloid and 
tau protein from serum into the brain parenchyma (30, 32–35), which is an etio-
logical factor for white matter damage. Inflammatory process is implied to be a 
significant component, which contributes to neurodegeneration progression. 
Inflammation was once considered a secondary process to ischemic neurodegen-
eration, but recent studies present that inflammatory mediators may stimulate 
amyloid protein precursor metabolism by upregulation of β-secretase (9).

Extensive research has revealed that brain ischemia is associated with numer-
ous neuronal alterations, including Aβ peptide production and accumulation, tau 
protein phosphorylation, NFT formation, mitochondrial damage, synaptic disap-
pearance, microglia, and astrocyte activation (1, 2, 7, 9, 11, 36, 37). These deposi-
tions of extracellular Aβ plaques and intracellular accumulation of tau 
protein-containing NFTs are characteristic of neurodegenerative diseases, includ-
ing AD. Characteristic elements of this disease comprise extraneuronal senile 
plaques composed of Aβ peptides 1-40 (Aβ1-40) and 1-42 (Aβ1-42) together with 
intraneuronal NFTs generated by phosphorylation of tau protein in the brain (13). 
The amyloid protein precursor and amyloid peptide are found to be upregulated 
in neurons and in extracellular space (8). Therefore, disruptions in Aβ metabo-
lism and/or Aβ clearance contribute to AD pathogenesis. Noteworthy, in experi-
mental post-ischemic injury in the CA1 and CA3 areas of the hippocampus and 
medial temporal cortex, the expression of genes related to AD is altered, including 
genes of the amyloid protein precursor, α-secretase, β-secretase, presenilin 1, 



Rusek M and Czuczwar SJ152

presenilin 2, and tau protein (38). In addition, vascular damage and reactive glio-
sis are associated with deposits of amyloid in both ischemia-related brain injury 
and AD brain, which indicate the importance of the cerebrovasculature in further 
pathogenesis of AD (8).

AMYLOID AFTER BRAIN ISCHEMIA

The deposition of amyloid plaques, which are dense (39) or diffuse (40), is pro-
posed to be a characteristic feature of the brain neurodegenerative diseases (41). 
These are mainly present in the hippocampus, ischemic cortex, entorhinal cortex, 
corpus callosum, and around the lateral ventricles (39) as well as thalamus (40). 
The Aβ peptide is generated from amyloid protein precursor (APP) via sequential 
proteolytic processing by β-APP-cleaving enzyme-1 (BACE1) and γ-secretase to 
generate multiple Aβ forms of varying amino acid lengths (14) that aggregate 
readily into oligomers and fibrils. The Aβ1-42 form is postulated to be the most 
neurotoxic Aβ species (42). They are mainly found in neurons, microglial cells 
(43), astrocytes (44), and oligodendrocytes (1, 45). The abnormal accumulation 
of Aβ peptide may be involved in the repair of ischemic tissue followed by astro-
cyte cell loss (1, 36, 44) and the development of glial scar (36, 44). Moreover, 
these changes are responsible for the development of leukoaraiosis after ischemic 
brain damage (46). Neurons affected by these deposits undergo synaptic degrada-
tion and neuronal cell death (47). Experimental data have shown that in cerebral 
ischemia, Aβ peptide is generated as a result of neuronal injury and death (48), 
which contributes to the development of dementia with the AD phenotype 
through neurotoxic effects (49, 50).

TAU PROTEIN AFTER BRAIN ISCHEMIA

The major component of NFT is hyperphosphorylated tau protein, which may 
have a critical role in the progression of AD (42). It is observed in neurons, astro-
cytes, microglial cells, and oligodendrocytes after ischemia in both the hippocam-
pus and cortex (51–54). Hyperphosphorylated tau protein is deposited as paired 
helical filaments in brain tissue (55), leading to neuronal apoptosis (56), followed 
by memory dysfunction (55). Interestingly, the concentration of tau protein is 
detectable in plasma after complete brain ischemia in humans within 96 h; thus, 
it is a valuable biomarker of the progression of the neuronal changes during recir-
culation (35). Of note, the tau protein level can be useful as an indicator of neu-
rological outcome after ischemia-reperfusion (35).

RATIONALE FOR USING CURCUMIN AFTER BRAIN ISCHEMIA

Curcumin is a neuroprotective molecule with potent antioxidant and anti- 
inflammatory properties (57). These pleiotropic properties also reveal anti- 
amyloid, anti-tau protein hyperphosphorylation, and anti-apoptotic action, as 
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well as increasing neuronal lifespan and promoting neurogenesis (Figure 1). 
Experimental data show that curcumin may be one of the most interesting and 
promising natural pleiotropic molecules for the treatment of ischemic stroke and 
various brain diseases. Moreover, its physical and chemical properties, such as 
being hydrophobic and lipophilic, are beneficial (58). These properties affect the 
absorption, bioavailability, and half-life profiles of curcumin in the brain tissue 
(59). Moreover, this substance is safe, inexpensive, and easily accessible (1, 60). 

Studies carried out in an animal model of AD (22, 61), and humans (62–65) 
have shown that Aβ metabolism is altered by curcumin. Also, curcumin may 
influence brain function and the development of dementia because of its antioxi-
dant and anti-inflammatory properties, as well as its ability to influence Aβ metab-
olism (14) and the accumulation of misfolded amyloid peptides (2, 11, 13). 

Figure 1. Potential mechanism of action of curcumin. Based on (14). 5-LOX, 5-lipoxygenase; 
AD, Alzheimer’s disease; Aβ, β amyloid; BACE1, β-APP-cleaving enzyme-1; COX-2, 
cyclooxygenase-2; HIF-1α, hypoxia-inducible factor 1-alpha; IL-1, interleukin-1; IL-6, 
interleukin-6; NFT, neurofibrillary tangles; NF-κB, nuclear factor kappa B; PPARγ, peroxisome 
proliferator-activated receptor-gamma; TNF-α, tumor necrosis factor-α.
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Moreover, it inhibits phosphorylation of tau protein, thus decreasing NFT 
(66, 67). The basic strategy for developing treatment of post-ischemic neurode-
generation is to target all these pathways involved in its pathogenesis (68). 
Effective penetration of the BBB and neuronal membranes is necessary. Curcumin 
easily crosses the BBB (68, 69). Also, it binds and disaggregates oligomers and 
fibrils of amyloid peptides (70) and increases the clearance of amyloid (14).

Anti-amyloid properties

The Aβ peptide is a product of amyloid protein precursor (APP). The generation 
of a β-amyloid peptide is catalyzed by enzymes such as β-secretase and γ-secretase. 
Of note, these enzymes are attractive targets for curcumin after cerebral ischemia. 
Curcumin inhibits β-secretase activity; thus, it has the potential to decrease Aβ 
peptide levels (57, 70). Moreover, it inhibits the maturation of the APP and the 
amyloidogenic pathway, which contributes to a reduced Aβ peptide concentration 
(71). Therefore, the modulation of APP by curcumin reduces amyloid levels due 
to the increased retention of the immature APP in the endoplasmic reticulum and 
interference with APP endocytosis (71). In addition, curcumin inhibits amyloid 
aggregation (72, 73), modulates the formation of nontoxic aggregates, reduces the 
toxicity of many amyloid conformers (e.g., monomeric, oligomeric, prefibrillar, 
and fibrillar amyloid), and decreases the permeability of the cell membrane 
induced by amyloid aggregates (74). Curcumin, as well as pyrazoles and isoxa-
zoles (derived from curcumin) are able to destabilize Aβ1-40 and Aβ1-42 and inhibit 
the metabolism of AβPP (75). Of note, the inhibition of Aβ1-40 and Aβ1-42 forma-
tion by curcumin is dose-dependent, where the most effective activity was 
observed with an EC50 of 0.09–0.63 µM (70, 76). Also, the high lipid content of 
brain tissue allows lipophilic curcumin to cross the BBB and inhibit the aggrega-
tion of amyloid proteins (58).

Brahmkhatri et al. found that polymeric nanoparticle-encapsulated curcumin 
conjugates with gold nanoparticles inhibited aggregation of the N-terminal area 
of amyloid and were able to dissolve aggregates (77). Also, Mithu et al. revealed 
that the Aβ1-42 fibrils were disrupted by curcumin, which induced significant 
structural changes in the Asp-23-Lys-28 salt bridge region and near the C termi-
nus (78). Moreover, Garcia-Alloza et al. demonstrated that systemic treatment 
with curcumin for 7 days cleared and reduced existing amyloid plaques in 
APPswe/PS1dE9 mice but also reversed structural changes in dystrophic 
 dendrites, including abnormal curvature and dystrophy size (22). In addition, 
disruption of clearance is associated with the rise of Aβ peptide in brain tissue. 
One way includes the transport of Aβ peptide via LRP1 across the BBB to the 
blood, followed by enzymes that degrade Aβ peptide (79). Curcumin may bind 
to the Aβ peptide and promote receptor-mediated efflux of Aβ peptides (70). In 
addition, it suppresses the RAGE-mediated influx of Aβ peptides across the BBB 
from blood. Moreover, curcumin may stimulate phagocytosis by activating 
microglial cells and increase the presence of phagocytic cells around Aβ peptide 
deposits (68). The presence of two phenolic (OH) groups and one active methy-
lene (CH2) group in curcumin makes it an excellent ligand for metal chelation, 
and may remove metal from amyloid (80).



Curcumin for Post-Ischemic Brain 155

Anti-tau properties

Hyperphosphorylated tau protein as paired helical filaments is a component of 
NFT in brain ischemia (81). They change the cytoarchitecture of brain tissue, 
increase oxidative stress, cause mitochondrial dysfunction, and promote neurode-
generation (82). Therefore, the phosphorylation of tau protein may be a link 
between oxidative stress and cognitive decline. The tau protein hyperphosphory-
lation is modulated by several kinases, including glycogen synthase kinase-3β 
(GSK-3β) and mitogen-activated protein kinase (MAPK) (82), cyclin-dependent 
kinase 5, S6 kinase, protein kinase A, calcium/calmodulin-dependent protein 
kinase II, SAD kinase, extracellular signal-regulated kinase 2, microtubule affin-
ity-regulating kinase, and Src family kinases (Fyn and c-Abl). Therefore, a com-
bined therapy involving these checkpoints could become a viable therapeutic 
option for ischemia-related brain damage and/or AD treatment (83). Curcumin 
has been found to inhibit tau protein aggregation, and disintegrate preformed 
tau protein oligomers and the formation of tau protein fibril (84). Moreover, it 
inhibits GSK-3β activity, diminishing tau protein dimer formation and hyper-
phosphorylated tau protein oligomerization in aged human tau protein transgenic 
mice (66).

Anti-inflammatory action

Another reason for using curcumin in therapy for neurological diseases is its abil-
ity to reduce neuroinflammation. It is a potential anti-inflammatory agent, which 
can downregulate many neuroinflammatory marker proteins, such as nuclear 
 factor kappa B (NF-κB) (85). Curcumin is able to diminish the activity of 
 cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX), the enzymes involved in 
the arachidonic acid metabolism (86). Moreover, it reduces the levels of several 
 cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), and 
interleukin-6 (IL-6) (87). It can activate the peroxisome proliferator-activated 
receptor-gamma (PPARγ) (88). Besides reducing neuroinflammation, Wang et al. 
have shown that curcumin significantly decreased the expression of phosphati-
dylinositol 3-kinase (PI3K), phosphorylated Akt, and mTOR at protein levels 
(89). Curcumin mediates autophagy via PI3K/Akt/mTOR (90), which further sug-
gests its neuroprotective effect (89). Of note, the important feature of curcumin is 
the ability to change the composition of bacterial populations and reduce intesti-
nal inflammation (91). It has been proved that any changes in gut microbiota are 
associated with different pathologies, even with neurological diseases such as AD, 
schizophrenia, brain ischemia, and depressive disorders (92). Curcumin is a mod-
ulating factor of inflammation; thus, it impacts the gut-brain axis (91).

Antioxidant action

Curcumin acts as a powerful antioxidant in post-ischemic brain. High metabolic 
rate of the central nervous system, its increased demand for O2, and large quanti-
ties of membrane phospholipids and polyunsaturated fatty acids significantly 
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contribute to an increase of reactive oxygen species, which may be present in 
chronic progressive neurological diseases (93). Curcumin is able to scavenge 
superoxide anions (O2−) and hydroxyl radicals (OH−), and increase  antioxidant 
levels, such as glutathione (94). In addition, it protects cells from lipid peroxida-
tion, DNA damage, and protein oxidation or protein carbonylation (95).

Antiapoptotic action

Curcumin diminished neuronal apoptosis by increasing the antiapoptotic Bcl2 
protein at the mitochondrial level, and decreasing cytosolic cytochrome c translo-
cation (96). In addition, it reduced apoptosis (97) via caspase-3 mRNA down-
regulation (90), decreased mitochondrial membrane potential (97). stimulated 
neurogenesis (98), and reduced astrogliosis (99). In a recent study, curcumin pro-
tected ischemic neurons from apoptosis through the neuroprotective effect associ-
ated with both autophagy and hypoxia-inducible factor 1-alpha (HIF-1α) 
inhibition (100). In addition, curcumin can inhibit the PP1 and Akt/p70S6K 
pathways to activate extracellular signal-regulated kinases (ERK1/2) and subse-
quent autophagy (101).

Neuroprotective activity and neurogenesis 

Curcumin stimulates brain-derived neurotrophic factor (BDNF), nerve growth 
factor (NGF), glial cell-derived neurotrophic factor (GDNF), and platelet-
derived growth factor (PDGF) (102), which may enhance neurogenesis, syn-
aptogenesis and improve cognition in rats (103). Besides, levels of 
synaptophysin and PSD95 can be restored in animal models of neurodegen-
erative diseases (104). Experimental studies show that curcumin reduced the 
volume of brain infarction and brain edema (99,105). Curcumin improved 
motor and sensory activity; however, improvements in neurobehavioral and 
neurological deficits were minimal (24, 99). Another feature of curcumin is 
neuroprotection against local cerebral ischemia/reperfusion injury via the 
 activation of Notch signaling pathway (98). It stimulated neurogenesis and 
decreased apoptotic index within three days of reperfusion (98). Moreover, 
curcumin played a role in neuroprotection through preventing lipid peroxida-
tion and decreasing peroxynitrite, while increasing endogenous antioxidant 
enzymes in a cerebral ischemia model of rats (106). In  addition, curcumin 
has  been recognized to improve neurological function scores, maintain the 
integrity of the BBB, and reduce the infarct volume of the cerebral cortex 
(1, 107, 108). Moreover, curcumin attenuated glutamate neurotoxicity in the 
hippocampus (107).

Influence on microcirculation

Another role of curcumin includes its impact on cerebral circulation, which can 
be improved by reduced adhesion of platelets in brain microvascular endothelial 
cells (BMECs) and inhibition of inflammation of blood vessels (109). However, 
curcumin may exhibit angiostatic abilities by controlling the expression of genes 
of metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF), 
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which are recognized as suppressors of extracellular matrix organization and ini-
tiating angiogenesis (110). Also, it enhanced the generation of granulation tissue, 
including rapid re-epithelialization and neo-vascularization in wound healing 
through modulation of the expression of TGF-β1, its receptors, and nitric oxide 
synthase (111).

Regulatory role on epigenetics

Curcumin plays significant regulatory roles in modulating the methylation, acety-
lation, ubiquitination, and phosphorylation status of histone and other DNA-
binding proteins (112), mainly by inhibiting histone acetyltransferases (HATs) 
activity and activating histone deacetylases (HDAC) in AD (112). Curcumin has 
been considered a selective inhibitor of the p300/CREB binding protein HAT 
activity (113). Therefore, curcumin can diminish the catalytic activity of HATs and 
inhibit nuclear histone acetylation that reduces the inflammation via the NF-κB 
pathway in some brain diseases (85). 

LIMITATIONS OF CURCUMIN TREATMENT AND SIDE EFFECTS

Toxicological assessments have revealed that curcumin is a pharmacologically safe 
substance. The intake of 8 g daily in the short-term has been shown to exert no 
significant side effects (64). Similar effects were observed in a phase 1 study, with 
8 g of curcumin daily for three months (80). To date, clinical studies of curcumin 
have revealed limited effects, most likely because of curcumin’s relatively low sol-
ubility and bioavailability. Curcumin has poor water solubility, and it is unstable 
in most body fluids (68). In addition, the selection of cohorts with ischemia-
related brain damage or diagnosed AD has an impact on the effectiveness of this 
treatment because of pre-existing major neuropathologies. However, curcumin 
may have potential in targeting early brain ischemia or AD pathology (by treating 
healthy, pre-clinical, and mild cognitive impairment-stage cohorts). New cur-
cumin formulations that increase bioavailability are renewing optimism concern-
ing curcumin-based therapy (14). Several studies have shown that high doses of 
curcumin can cause adverse side effects, including headache, nausea, diarrhea, 
abdominal pain, yellow stool, skin rash, swelling of the skin, and dermatitis (64). 
Moreover, since curcumin may interact with some drugs, it is not recommended 
for people taking blood thinners, reserpine, or nonsteroid anti-inflammatory 
drugs (57).

CONCLUSION

Ischemia-reperfusion leads to neuronal damage and death, with misfolded protein 
deposits. In addition, it results in cognitive deficits and/or impairment of motor 
coordination with probable development of dementia of AD phenotype (28). Due 
to the pleiotropic influence of curcumin on the brain, including anti-amyloid, 
anti-tau protein, antioxidant, anti-inflammatory, and neuroprotective properties, 
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curcumin is a promising candidate for the treatment of post-ischemic neurode-
generation with misfolded proteins (1). Therefore, this multi-functional therapeu-
tic compound may have a potential clinical utility in the treatment of 
neurodegenerative disorders. Currently, the existing data of using curcumin as a 
therapeutic option in the ischemic-related brain diseases seems interesting. 
However, there are limited number of studies performed in humans. Further, it 
requires extensive, multi-center research efforts.
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