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Abstract: Approximately 70% of breast cancer cases are estrogen receptor-alpha-
positive (ERα+). The binding of estradiol to the ligand-binding domain activates 
ERα. ERα can also be activated via the phosphorylation induced by growth  factors. 
Activated ERα functions as a transcriptional regulator with a pro-tumor activity 
in breast cancer cells. In recent years, it has been discovered that some proteins 
can stabilize ERα by inhibiting its degradation via the ubiquitin-proteasome 
 system through several mechanisms, including ERα monoubiquitination, 
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deubiquitination, or phosphorylation, among others. Herein, we review the pro-
teins associated with the inhibition of ERα degradation and discuss the role of 
proteolysis-targeting chimeras (PROTACs) as promising therapeutic strategies for 
breast cancer by inducing ERα degradation. The knowledge of the multiple mech-
anisms that stabilize ERα protein may be central for the development of new 
PROTACs for novel breast cancer treatments. 

Keywords: endocrine resistance in breast cancer; estrogen receptor alpha in breast 
cancer; novel breast cancer treatment; PROTACs; proteolysis-targeting chimeras 
technology

INTRODUCTION

Breast cancer (BC) is a serious health problem and the leading cause of death in 
women worldwide (1–3). Estrogen receptor-alpha (ERα) is a nuclear receptor 
expressed in more than 70% of BC cases (1–4). ERα is localized and functions in 
the nucleus, cytoplasm, and plasma membrane, and the subcellular distribution 
of this receptor is highly regulated by several factors (5) (Figure 1). In the nucleus, 
ERα is a transcription factor that induces the expression of estradiol-dependent 
genes. In BC cells, ERα expression has been related to the upregulation of estra-
diol-target genes that are associated with mammary tumor development (6–8). 
ERα also acts as a transcriptional regulator for other transcription factors, includ-
ing AP1, NF- κB, and Sp1, to modulate gene expression (6, 7). ERα can also be 
localized outside the nucleus, and activate the signaling pathways that contribute 
to BC progression and endocrine resistance (8, 9). Hence, ERα associates with 
diverse transmembrane receptors and cytoplasmic proteins to activate its extra-
nuclear signaling pathways (10, 11). Moreover, ERα can be directly localized at 
the plasma membrane via palmitoylation to activate the signaling that influences 
gene expression (12, 13).

ERα contains four main domains: the activation function domain-1 (AF-1), 
the DNA-binding domain (DBD), the ligand-binding domain (LBD), and the acti-
vation function domain-2 (AF-2) (Figure 2). The canonical signaling pathway of 
estrogen hormones, such as estradiol, is initiated when the hormones are recog-
nized by LBD (14, 15). Enhancer and promoter regions of the estradiol-target 
genes contain specific palindromic sequences named ERE (estrogen response ele-
ments), which bind the DBD of ERα to regulate gene expression. AF-2 recruits 
coregulators in the presence of E2 hormone, whereas AF-1 recruits coregulators 
in its absence (16–19). Furthermore, AF-1 can be modulated by phosphorylation 
(e.g., S118, S167) in response to growth factors (16–22). The recruitment of ERα 
to the enhancer and promoter sequences is also supported by pioneer factors 
(e.g., FOXA1 and GATA3) in BC cells (23, 24). Several studies have shown that 
ERα recruits coregulators, including coactivator and corepressor complexes. In 
BC, there is an increase in the levels of coactivators for ERα that open the chroma-
tin to promote gene expression (25–29).

The targeted drug therapy for ERα+ BC is based on endocrine therapies that 
include aromatase inhibitors (AIs), selective estrogen receptor degraders (SERDs), 
and selective estrogen receptor modulators (SERMs). The AIs inhibit estradiol 
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Figure 1. Signaling of ERα in breast cancer cells. ERα exhibit multiple localizations including 
the nucleus, cytoplasm, and membranes. In the cytoplasm, it is associated with cytoplasmic 
proteins, and in the membrane through palmitoylation or transmembrane receptors (e.g., 
HER2). Estradiol (E2) activates ERα, promoting its accumulation in the nucleus, where the ERα 
regulates the expression of E2-target genes. E2 and growth factors (EGF and IGF) can induce 
ERα phosphorylation and promote its transcriptional activity. Fulvestrant and tamoxifen are 
anti-estrogens that bind to ERα to mediate either its degradation or the repression of its 
target genes, respectively.

Figure 2. ERα structure. ERα contains two activation-function domains (AF-1 and AF-2) that 
interact with coregulators, some specialized sequences (NLS, nuclear localization signal, and 
two NES, nuclear export sequence) necessary for nucleo-cytoplasmic transport of ERα. ERα is 
a target for post-translational modifications (PTMs), including palmitoylation (Palm) and 
phosphorylation (P). ERα phosphorylation at sites S104, S106, S118, and S167, is promoted by 
E2 and growth factors (GF). K302 and K303 are involved in monoubiquitination and 
polyubiquitination induced by E2 or fulvestrant.
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production, whereas SERMs act as antagonists for ERα and induce the recruit-
ment of corepressors, thereby inhibiting the expression of estradiol-target genes 
(30–32). However, endocrine resistance, de novo or acquired, is displayed mainly 
for SERMs owing to mechanisms that are not completely understood (9, 31–34). 
In this context, SERDs appear to be more promising for BC treatment, as is 
 discussed later.

ESR1 MUTATIONS IN BREAST CANCER

Several mutations, including Y537S, Y537N, Y537C, D538G, and E380Q, have 
been detected in ESR1 gene that encodes for ERα, in both DNA from biopsies and 
circulating tumor DNA obtained from patients with metastatic BC, and with 
acquired resistance to AIs and SERMs (35, 36). These mutations are located in 
LBD of ERα, and are related to changes in ERα conformation that promote its 
estradiol-independent activity (37). Moreover, it has been reported that the gene 
signature modulated by ERα wild type and its mutants differ, having few common 
target genes. The ERα mutants can differentially interact with DNA and other 
proteins and modulate gene transcription, indicating their molecular complexity 
(36, 38–40). Moreover, in the induction of acquired endocrine resistance (by 
long-term E2 deprivation) in BC cells, ESR1 mutations (Y537C and Y537S) are 
detected (39, 41).

ERα STABILITY AS A MECHANISM THAT PROMOTES 
PRO-TUMOR ACTIONS AND ENDOCRINE RESISTANCE

ERα is a target for polyubiquitination induced by estradiol, whereas its monou-
biquitination is inhibited by estradiol (42). The polyubiquitination of ERα serves 
as a signal for its degradation by the ubiquitin-proteasome system (UPS);  however, 
ERα monoubiquitination seems to confer receptor stability, and modulates its 
activity (43–45). Furthermore, both modifications are deregulated in mammary 
tumors. In fact, it has been reported that some proteins interact with ERα to inhibit 
their polyubiquitination and degradation via UPS. These ERα-polyubiquitination 
inhibitor proteins (EPIPs) can act by several mechanisms  leading to this receptor 
stability in BC (Table 1) (46–64). The mechanisms that lead to the stabilization of 
ERα include its phosphorylation by specific kinases, association with transcrip-
tion regulators, and regulation by E3-ubiquitin ligases and deubiquitinases 
(DUBs) (Figure 3). In recent years, new EPIPs have been discovered, demonstrat-
ing the relevance of ERα stability in pro-tumor molecular mechanisms associated 
with BC progression and endocrine resistance. Interestingly, several E3-ubiquitin 
ligases inhibit ERα degradation: RNF8, RNF31, and SHARPIN by inducing its 
monoubiquitination (47–49), whereas Smurf1, TRIM56, and HOIL-1 by inhibit-
ing its K48-specific polyubiquitination (50, 51). In addition, RNF181 stabilizes 
ERα, inducing its K63-linked ubiquitination in BC cells (52).

Furthermore, some DUB proteins also confer stability to ERα. Nearly 100 
DUBs have been identified in humans, and are classified into six families: USPs, 
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TABLE 1 ERα-polyubiquitination inhibitor proteins (EPIPs)

Protein Name Activity Reference

cABL Abelson tyrosine-protein kinase Kinase (53)

GSK3 Glycogen Synthase Kinase 3 Kinase (54)

LMTK3 Lemur Tyrosine Kinase 3 Kinase (55)

PIN1 Peptidyl-propyl cis-trans isomerase NIMA-interacting 1 Isomerase (56)

OTUD7B OTU Deubiquitinase 7B Deubiquitinase (57)

USP7 Ubiquitin-specific protease 7 Deubiquitinase (58)

USP15 Ubiquitin Specific Peptidase 15 Deubiquitinase (59)

USP35 Ubiquitin Specific Peptidase 35 Deubiquitinase (60)

HOIL-1 Haem-oxidised IRP2 ubiquitin ligase-1 E3-ubiquitin ligase (51)

RNF8 RING finger protein 8 E3-ubiquitin ligase (47)

RNF31 RING finger protein 31 E3-ubiquitin ligase (48)

RNF181 Ring Finger Protein 181 E3-ubiquitin ligase (52)

SHARPIN Shack-associated RH domain-interacting protein E3-ubiquitin ligase (49)

SMURF1 SMAD ubiquitination regulatory factor 1 E3-ubiquitin ligase (61)

TRIM11 Tripartite Motif Containing 11 E3-ubiquitin ligase (62)

TRIM56 Tripartite Motif Containing 56 E3-ubiquitin ligase (50)

RB Retinoblastoma Tumor suppressor (10)

MUC1 Mucin 1 Transcriptional regulator (63)

ZNF213 Zinc Finger Protein 213 Transcriptional regulator (64)

Induction of K63-linked ubiquitination: RNF181; Inhibition of K48-linked ubiquitination: HOIL-1, TRIM56, 
SMURF2, ZNF213; Monoubiquitination: TRIM11, RNF8, RNF31, SHARPIN.

OTUs, UCHs, MJDs, MINDYs, and JAMMs (65). The DUBs implicated in ERα 
stability are ubiquitin-specific proteases (USPs: USP7, USP15, and USP35), and 
one ovarian tumor protease (OTU: OTUD7B). In general, the proteins that stabi-
lize ERα are upregulated in patients with mammary tumors, revealing their impor-
tance in the progression of this cancer (66). Thus, these results demonstrate the 
importance of understanding the mechanisms of ubiquitination (mono-and poly-
ubiquitination) and de-ubiquitination in the regulation of ERα stability in BC.

SERDS and PROTACs 

Fulvestrant is a SERD that induces ERα polyubiquitination and degradation via 
the UPS (32–34). There is a complete reduction in ERα levels in BC cells after 1 h 
of treatment with fulvestrant (30, 67–69). Fulvestrant has been also approved as 
the first-line endocrine therapy in BC and also in endocrine resistance to SERMs 
or AIs (70). Interestingly, endocrine resistance to SERDs, such as fulvestrant and 
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AZD9496, has not been reported for the majority of ESR1 mutations (36, 39, 40). 
New SERDs that are being studied are AZD9496, bazedoxifene, RAD1901, 
GDC-0810, ZB716, and LSZ102. As fulvestrant exhibits poor bioavailability with 
 intramuscular administration, the challenge is to develop a new generation of 
SERDs that can be orally administered and with better bioavailability (71–76).

Proteolysis-targeting chimeras (PROTACs) technology works by inducing 
the degradation of specific proteins. This activity is due to the bifunctional struc-
ture of PROTACs: one part of these molecules has a ligand for a targeted protein, 
while the other part has the ability to recruit an E3 ubiquitin ligase, thereby 
 stimulating the targeted protein degradation via the UPS. Hence, PROTACs have 
emerged as a promising alternative to control the pro-tumor effect of ERα by caus-
ing its downregulation via UPS (77, 78).

PROTAC technology

PROTACs are bimodular chimeras: they contain a binding module for the target 
protein and another E3 ligase recognition module; a spacer or linker sequence 
links these two modules (Figure 4). The PROTAC binds to its target protein, 
 carrying a signal for its ubiquitination and subsequent degradation (79). A polyu-
biquitinated protein is recognized by the 26S proteasome, transported to the 20S 
core particle, and converted into oligopeptides by a variety of enzymes that 

Figure 3. Modulators of ERα stability in breast cancer cells. EPIPs (ERα polyubiquitination 
inhibitor proteins) have been reported to inhibit ERα polyubiquitination in breast cancer 
cells. These proteins protect ERα from degradation via the UPS. Diverse PTMs confer stability 
to ERα: Monoubiquitination (produced by E3 ubiquitin ligases), the inhibition of K-48 linked 
polyubiquitination, and deubiquitinase (DUB) enzymes, which cut off polyubiquitination 
tails of ERα.



PROTACs for Estrogen Receptor Alpha in Breast Cancer 185

 promote their release from the proteasome; this is followed by the recycling of 
ubiquitin (80, 81). 

Since 2001, the technology based on PROTACs is being developed by utilizing 
heterobifunctional molecules (82). The first ligands for recruiting E3-ubiquitin 
ligases in PROTAC technology were large peptides; however, they had the disad-
vantage of having a low level of cellular penetration owing to their size (81). 
PROTAC technology was developed for the first time using a chimera containing 
ovalicin in one domain and the phosphopeptide IκB in another domain. Thus, 
this chimera had the ability to bind to methionine aminopeptidase 2 (MetAP-2) 
(by ovalicin) and to recruit the SCFβ-TrCP E3-ubiquitin ligase complex (by phos-
phopeptide IκB), thereby promoting its degradation via the proteasome (81, 82). 
Later, other PROTACs were developed using the following E3 ubiquitin ligases: 
MDM2 (murine double minute 2), CRBN (cereblon), VHL (von Hippel-Lindau 
tumor suppressor), and IAPs (inhibitor of apoptosis proteins) (81, 83). PROTACs 
based on IAPs have antitumor functions; however, special care must be taken 
while designing them to avoid collateral effects (80, 84).

PROTACs display some disadvantages, for instance, they are generally large 
molecules, and their pharmacokinetic characteristics are compromised, such as 
bioavailability and solubility. In addition, the routes of administration of these 
chimeric degraders are generally intraperitoneal or subcutaneous. However, in 
recent years, the intravenous and oral routes are also being evaluated (79, 85, 86).

Figure 4. PROTACs are constituted of a region that recognizes its target (ERα) and a region 
that recruits E3-ligase (to polyubiquitinate the receptor) for its degradation via the UPS.
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NOVEL PROTAC TECHNOLOGY FOR BREAST CANCER 
TREATMENT

Several PROTACs have been developed for ERα, including, SNIPER(ER)-3, 
PROTAC-B, PROTAC-2, compound 11, compound 24, lipophilic amino acid 
Boc-Trp motif, C3-linked adamantane motif, monocyclic trifluoromethyl cyclo-
hexane motif, and ERD-148 (87). PROTACs exhibit antitumor activity and the 
ability to degrade ERα through the UPS in breast cancer cells (88). To date there 
are some limitations in the cell-penetrating and target protein degradation ability 
of the PROTACs designed for ERα; however, compound I-6 (a peptide-based 
PROTAC) contributes to cell membrane penetration. As a result, this compound 
can induce degradation of intracellular ERα and inhibit the ERα-dependent tumor 
cell proliferation and growth in in vivo studies, thereby supporting its potential 
use in breast cancer therapy (84). 

Another molecule proposed for ERα + breast cancer based on PROTAC tech-
nology is PROTAC-2. This compound consists of estradiol that is covalently 
bound to the phosphopeptide of IκBα containing an E3 recognition domain, and 
thus recruits SCFβ-trcp, which leads to ERα ubiquitination and subsequent degra-
dation by the 26S proteasome. The disadvantage of this PROTAC is that the IκBα 
peptide is susceptible to phosphatases (89). Another traditional example is 
PROTAC-B, which contains a pentapeptide derived from HIF-1α (hypoxia- 
inducible factor-1α) to be recognized by the E3-ubiquitin ligase, VHL (88, 90). 
Similarly, E2-octa contains a synthetic octapeptide derived from HIF-1α, which is 
very  efficient in the degradation of ERα in human BC cells. Modifications of this 
PROTAC gave rise to E2-penta, which produces a reduction in ERα levels (91). It 
was only after 2011, when E3-ubiquitin ligase ligands were discovered, that major 
progress was made in the development of next-generation PROTACs. The specific 
and non-genetic IAP-dependent protein eraser (SNIPER), composed of a deriva-
tive of estradiol and a bestatin amide (a cIAP1 ligand), also showed a decrease in 
ERα levels (81, 92).

A peptide-based PROTAC design has been shown to degrade ERα through the 
binding of an ERα modulator peptide (TD-PERM; N-terminal aspartic acid 
 cross-linked stabilized peptide ERα modulator) with a pentapeptide that binds to 
the VHL E3 ubiquitin ligase complex (77). This heterobifunctional peptide has 
the ability to recruit ERα and bring it to the VHL E3 ligase complex for degrada-
tion through the proteasome. Thus, this PROTAC (TD-PROTAC) induces the 
 degradation of ERα, reduces the transcription of its target genes such as pS2, and 
inhibits the proliferation of cancer cells. The T47D and MCF-7 breast cancer 
cells that express ERα showed early apoptosis when subjected to high doses of 
TD-PROTAC (77).

Additionally, in a xenograft model of nude mice that received MCF-7 cells, the 
administration of TD-PROTAC promoted tumor regression (77). ARV-471 is 
another PROTAC for ERα that is well tolerated and is currently in phase 2 clinical 
trials. It functions by reducing the ERα levels, and ERα variants such as Y537S 
and D538G (80). ERD-308 is another PROTAC that displays a better ERα degra-
dation capacity, as well as a greater cell proliferation inhibitory capacity than 
 fulvestrant (83).
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DISCUSSION

ERα stability is increased in BC cells, and it has been associated with tumor 
 progression and the development of endocrine resistance (93). New studies are 
emerging, which are demonstrating that many proteins are involved in ERα 
 stability in BC, which emphasizes the pro-tumor potential of Erα, and endocrine 
resistance (Table 1 and Figure 1). Therefore, the mechanisms that control ERα 
stability may be targeted for the development of new drugs and also the improve-
ment of current therapies. Thereby, SERDs and PROTACs are critical therapeutic 
strategies for controlling breast cancer progression. Even though new SERDs are 
being developed, only fulvestrant has been approved thus far (32). To avoid the 
 development of resistance to SERD treatments based on ERα degradation, it is 
important to consider the implications of ERα stability-associated pathways. 
Interestingly, although PROTACs show good promise for BC due to their abilities 
for causing ERα ubiquitination and degradation, the mechanisms that lead to ERα 
stability may also represent a limitation. This is because several USPs participate 
in the inhibition of polyubiquitination and degradation of ERα, and many of them 
are upregulated in mammary tumors. Moreover, although some E3-ubiquitin 
ligases can promote ERα degradation via polyubiquitination, there are others that 
can inhibit the degradation of this receptor by inducing its monoubiquitination 
(Table 1). Thus, ERα stability may also have an impact on the therapies based 
on the degradation of this receptor in BC cells. There is a growing need for the 
development of new SERDS-like molecules and PROTACs that can induce ERα 
degradation in BC, which can block tumor progression. Attention should be paid 
to the improvement of bioavailability and administration routes of SERDs and 
PROTACs, as well as the denominated SERD-like PROTACs (78). 

PROTAC technology is a promising system that is starting to be used in patients 
with BC, as well as in patients with other types of cancer (80, 89). This technology 
shows that when suitable ligands are used to target Erα, they can promote its 
degradation almost entirely, and therefore, nullify its transcriptional activity and 
signaling, and promote the death of BC cells both in vitro and in vivo (77). 
Currently, some PROTACs are already in the clinical stage (80), and it is expected 
that they will exhibit high specificity when administered orally, with good stability 
and cell permeability. Thus, the PROTAC system is currently being evaluated in 
clinical trials conducted in patients with metastatic BC, with the interest of some 
pharmaceutical companies (81). At present, PROTACs are not intended to replace 
traditional cancer therapies, but rather, be included as co-adjuvants in such treat-
ments. This technology could complement current cancer therapy strategies. The 
next step in PROTACs technology would be to improve their pharmacokinetic 
properties for a wider clinical application and consider the implications of the 
mechanisms that stabilize ERα in BC. 

CONCLUSION

Several studies have suggested the existence of a wide range of proteins that  confer 
ERα stability in BC, which is related to tumor progression and endocrine  resistance. 
Under these conditions, the development of treatments focused on the induction 
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of ERα degradation is required. Both SERDs and PROTACs have the ability to 
downregulate ERα via degradation through the UPS with the aim of reducing its 
pro-tumor effects. However, further studies are required to improve these drugs 
for use in the treatment of BC, and also to evaluate the role of ERα stability in 
these treatments.
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