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Abstract: Distant metastasis is the primary driver of breast cancer-associated mor-
tality, and research into the mechanisms underlying hematogenous tumor cell dis-
semination could give rise to the development of novel and more effective therapeutic 
agents and strategies. Platelets are activated directly by tumor cell interaction and 
indirectly by tumor-secreted factors to trigger platelet aggregation, degranulation, 
and the subsequent release of pro-tumorigenic factors. Platelet presence within the 
primary tumor, bloodstream, and metastatic sites allows for continuous exposure of 
breast cancer cells to these factors, making platelets a powerful partner in tumor cell 
dissemination. Platelet-tumor cell crosstalk contributes to hematogenous breast 
cancer metastasis by providing physical and biochemical support to metastasizing 
cells via mechanisms including protection from shear forces, anoikis, and immune 
attack, and enhancement of angiogenesis, migration, and pro-tumorigenic inflam-
mation. Here, we review platelets and their many benefits to metastatic breast can-
cer, their role in facilitating paraneoplastic thrombosis, and current research 
regarding their potential as a breast cancer therapeutic target.
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INTRODUCTION

One hundred and fifty years ago, Armand Trousseau first drew the insightful con-
nection between platelets and cancer when he noted an increased incidence of 
thrombosis in patients with visceral cancer (1). Ninety years later, Gabriel and 
Tatiana Gasic observed that neuraminidase, a potent inducer of thrombocytope-
nia, reduced pulmonary metastasis in mouse models of cancer (2–4). Since then, 
the contribution of platelets to the progression and dissemination of cancer has 
been established across cancer types and tissues of origin. In breast cancer (BC) 
specifically, where patients with advanced, distantly metastatic disease face a 
5-year survival rate of only 30% (5), the ability of platelets to support tumor cell 
survival and aggressiveness throughout the metastatic cascade is an important 
area of research and therapeutic consideration. Furthermore, high co-incidence of 
coagulopathies and cancer—acknowledged by Trousseau—poses an additional 
risk to patients and may be mitigated by platelet-directed therapies (6, 7). Herein, 
we review the role of platelets in promoting growth and invasion in primary breast 
tumors, enhancing circulating tumor cell (CTC) survival and extravasation from 
the bloodstream, enabling the seeding and growth of distant metastatic lesions, 
and fostering BC-associated coagulopathy.

PLATELETS

With their tremendous abundance (1.5–3.5 × 108/mL of human blood) and 
unique ability to rapidly aggregate and release hundreds of factors in response to 
activation, platelets are the first responders to arrive on the scene of vascular 
injury and begin the process of clot formation and healing (8). Though small 
(~2 μm in diameter) and anucleate, platelets contain ribosomes, mitochondria, a 
cytoskeletal network, in addition to distinct α-granules, lysosomal granules, and 
dense-granules, which store biologically active factors essential to injury response 
and hemostatic maintenance (9). These factors can be fully synthesized within 
platelet precursor megakaryocytes, acquired by receptor-mediated endocytosis or 
pinocytosis, or even synthesized within the platelets themselves using pre-mRNA 
generated in megakaryocytes; this allows for flexibility and diversity in platelet 
storage contents (9, 10). Release of granular contents is mediated by platelet acti-
vation and degranulation, which can be triggered by a variety of agonists (e.g., 
adhesive proteins such as Von Willebrand Factor (VWF) in the vascular wall, 
soluble factors such as thrombin, adenosine diphosphate (ADP), or thromboxane 
A2 (TXA2)) (8).

Unfortunately, platelets are unable to discern between vascular injury and  cancer, 
which has been described as the “wound that does not heal” (11). Cancer cells 
secrete several platelet agonists, including ADP and TXA2, which induce constitu-
tive reciprocal signaling with platelets that not only supports cancer growth and 
metastasis, but also induces a hypercoagulative state throughout the body (12). 
Cancer-specific signals stimulate changes in nearby platelet storage contents, 
 creating “tumor-educated platelets” that may be useful as surrogate biomarkers for 
identifying tumor type, location, and even mutational profile (13, 14).
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PLATELETS AND THE PRIMARY TUMOR

Primary breast tumor cells are exposed to platelets and platelet signals, as demon-
strated by robust platelet marker CD42b staining of patient BC samples at the 
tumor’s leading edge (15, Figure 1A). As a result, platelets secrete factors within 
the primary tumor compartment which contribute to tumor cell survival, prolif-
eration, and aggressiveness (discussed below). Accordingly, retrospective analysis 
of tumor biopsies from BC patients who subsequently received treatment and 
neo-adjuvant chemotherapy revealed that patients with CD42b-rich tumors 
were  significantly less likely to achieve pathological complete response to 
 chemotherapy (15).

Tumor growth and dissemination are dependent on the acquisition of 
 intratumor vasculature to provide oxygen and nutrients to rapidly dividing cancer 
cells. Angiogenesis, the process by which tumors create new or co-opt existing 
endothelial vasculature, is mediated by a complex balance of numerous pro- and 
anti-angiogenic factors (16). Platelets are an important source of these factors, 
which they store in α-granules until agonists trigger their release. When cancer 
cells secrete agonists such as ADP and thrombin, nearby platelets are activated 
and release pro-angiogenic factors including vascular endothelial growth factor 
(VEGF), angiopoietin-1, and tumor necrosis factor-alpha (TNF-α) (17). Platelet-
depleted tumors show hyperpermeable vasculature and poor tumor perfusion 
due to increased angiopoeitin-2 levels and diminished pericyte recruitment to 

Figure 1. Platelets aid BC cells throughout the metastatic cascade. A, Platelets help primary tumor 
cells migrate and intravasate by secreting factors that promote epithelial-to-mesenchymal 
transition and remodeling of the extracellular matrix (ECM; (20, 23)). B, Platelets protect BC 
cells from shear-induced apoptosis and encourage resistance to anoikis caused by loss of 
ECM attachment (55, 58, 59). C, Platelets contribute to BC immune evasion by directly 
inhibiting local immune cell activation, masking immune ligands on tumor cells, and 
conferring “pseudo-expression” of immune-inactivating molecules to tumor cells 
(26, 31, 34, 60–64). D, Platelets support arrest and trans-endothelial migration of BC 
cells and help establish the pre-metastatic niche by recruiting granulocytes to the area 
(72–75). Figure created with biorender.com.

http://biorender.com
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hemorrhagic blood vessels (18). On the other hand, tumor cell-activated platelets 
enhance endothelial tube formation in vitro, and increase tumor vascularization 
and metastatic burden in vivo (19, 20). Patients with BC display significantly 
increased levels of systemic platelet-sequestered angiogenic factors VEGF, platelet-
derived growth factor (PDGF), and transforming growth factor-beta (TGF-β; 
Figure 2) compared to healthy controls; this upregulation is correlated with higher 
incidence of lymph node metastasis and advanced disease stage (21).

To disseminate, tumor cells must invade the surrounding tissue and extracel-
lular matrix (ECM) and penetrate the vasculature (Figure 1A). In one form of 
metastatic progression, tumor cells undergo epithelial-to-mesenchymal transi-
tion (EMT), wherein single epithelial tumor cells acquire invasive mesenchymal 
morphology and behavior (22). Breast tumors showing greater platelet presence 
tend to show more EMT-like characteristics (e.g., loss of apical-basal polarity, loss 
of E-cadherin expression, gain of vimentin expression) than those with less plate-
let activity (15). This is mediated largely through increased concentrations of 
intratumor TGF-β, which is abundantly secreted via platelet α-granules and acti-
vates transcription of EMT-related genes across cancer types (20, 23, 24). Platelets 
also engage EMT through direct interaction with cancer cell α2β1 surface integ-
rins, which activates the Wnt-β-catenin pathway and upregulates autocrine 
TGF-β production by cancer cells (25). Furthermore, platelets constitutively 
express the cell surface TGF-β-docking Glycoprotein A Repetitions Predominant 
(GARP) receptor, which is essential for the conversion of TGF-β from its latent to 
active form and increases the pool of active TGF-β within the primary tumor 
(Figure 2) (26).

Whether mediated by EMT or collective cell migration (CCM), in which cells 
retain epithelial characteristics and invade as a group (27), remodeling of the 
ECM in the primary tumor compartment is an essential step in metastasis and is 
stimulated by bidirectional signaling between platelets and tumor cells (20). 
Platelet-stimulated paracrine and autocrine TGF-β signaling upregulates BC cell 
expression of matrix metalloproteinases-2 and -9 (MMP-2 and -9) (18, 20, 25), 
plasminogen activator inhibitor-1 (PAI-1) (18), and various proteases (18, 20, 25), 
which encourage the degradation of the ECM to enable cellular migration and 
invasion. Conversely, sustained TGF-β activity enhances tumor cell production of 
pro-tumorigenic ECM molecules like fibrin, fibronectin, and collagen, which 
enable cellular communication and migration (20, 25, 28).

To survive and spread, BC cells must evade immune detection and destruction 
(29). Many cancers avoid immunosurveillance by acquiring expression of pro-
grammed death-ligand 1 (PD-L1), which negatively regulates CD8+ T cell func-
tion; as a result, PD-L1 checkpoint blockade treatments have become an attractive 
therapeutic approach in recent years (30). Zaslavsky et al. observed that platelets 
express PD-L1—particularly after activation by tumor cells—and can confer 
PD-L1 “pseudo-expression” to PD-L1-/- mouse tumors, resulting in decreased 
T  cell-driven cytotoxicity and increased tumor burden (31). Likewise, patients 
with PD-L1-negative lung cancer who responded to PD-L1 checkpoint inhibition 
tended to have greater platelet infiltration in biopsied tumors, suggesting that 
platelet presence sensitizes PD-L1-deficient cancers to PD-L1-directed therapies, 
though these results need to be confirmed on a larger cohort of patient samples 
(31). Other groups have observed that platelets also suppress cytotoxic T cell 
function in the tumor microenvironment through platelet-GARP driven activation 
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of TGF-β (Figure 2B) (26), which inhibits T cell proliferation and activity through 
a diverse array of mechanisms reviewed by Gorelik and Flavell (32) and Thomas 
and Massagué (33). Furthermore, platelets provide well-documented protection 
of tumor cells from natural killer (NK) cells (34). Though this phenomenon likely 
exists within the primary tumor, it has been most thoroughly documented in cir-
culating tumor cells (CTCs) and will be described in more detail below.

Figure 2. Platelets increase the local pool of active TGF-β. A, Platelets are the single greatest 
source of TGF-β in blood plasma, secreting huge amounts of latent TGF-β (LTGF-β) complexes 
in α-granules upon activation, which are then processed and activated by factors found on 
platelets and other cell types as shown in B (24). B, Platelets constitutively express the 
“Glycoprotein A Repetitions Predominant” (GARP) receptor, which docks LTGF-β (derived 
from platelets or other cell types) for activation. This substantially increases the local 
reservoir of active TGF-β (26). C, Direct contact between platelets and tumor cells via the 
cancer cell surface integrin α2β1 stimulates the Wnt-β-Catenin signaling pathway. This 
upregulates downstream transcription of tgfb1, resulting in increased TGF-β secretion by 
tumor cells (25). Active TGF-β secreted by platelets and tumor cells is bound by the TGF-β 
receptor on tumor cells, driving SMAD phosphorylation and downstream signaling that 
increases transcription of genes related to EMT, ECM remodeling, and more. TGF-βR, TGF-β 
receptor; pSMADs, phosphorylated “Suppressor of Mothers against Decapentaplegic” 
factors. Figure created with biorender.com

http://biorender.com
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PLATELETS AND CIRCULATING TUMOR CELLS

BC cells metastasize to distant organs by directly intravasating into blood vessels 
or indirectly entering into the lymphatic system which drains into the blood-
stream (35). Upon hematogenous entry, an array of threats create a survival bottle-
neck for metastatic cells, and very few CTCs survive and successfully seed 
metastases (36). To survive these dangers, CTCs rapidly recruit platelets to pro-
vide physical protection and biochemical enhancements (37). In fact, platelets are 
the first cells in circulation to adhere to CTCs, forming microthrombi in seconds 
which then recruit fibrin, neutrophils, monocytes, and macrophages for addi-
tional aid (38).

Under normal physiologic conditions, platelets are recruited to sites of injury 
upon disruption of the basement membrane, which exposes subendothelial pro-
coagulation factors (e.g., tissue factor (TF), VWF, collagen) typically unavailable 
in circulation (8). CTCs co-opt platelet activity by expressing these same factors. 
For example, widespread TF overexpression by cancer cells is driven by signaling 
programs associated with oncogenic transformation and EMT (39, 40). As a 
receptor for key components of the coagulation cascade, TF expression by cancer 
cells encourages localized thrombus formation and is associated with increased 
metastatic success and worse patient outcomes (41, 42). Likewise, aberrant 
expression of the adhesive glycoprotein VWF has been observed in BC (43) and 
other cancer types (44, 45). Tumor cell VWF secretion increases overall plasma 
VWF concentrations, contributing to paraneoplastic hypercoagulopathy; further-
more, tumor cells can directly bind VWF via αvβ3 integrins (46) or glycoprotein 
Ib/V/IX complexes (47), allowing them to self-aggregate, adhere to platelets, and 
arrest under flow conditions (45, 46).

In addition to the indirect modes of platelet-CTC aggregation described above, 
where cells need not interact directly but aggregate through mutual binding of 
coagulation factors, direct platelet-CTC binding can occur through a variety of 
receptor-ligand interactions. Platelet P-selectin interaction with CTC mucins 
(48–50), platelet glycoprotein VI (GPVI) interaction with CTC galectin-3 (51), 
and platelet receptor FcγRIIa interaction with CTC immunoglobulin G (IgG) (52) 
have all been described (53). While these unique receptor-ligand dynamics pres-
ent enticing therapeutic targets for inhibition of platelet-CTC interactions, the 
sheer number of molecules which can redundantly promote CTC binding and 
platelet activation may thwart these attempts.

BC cells in circulation are susceptible to anoikis, a type of programmed cell 
death triggered by loss of attachment to the ECM (54). Secreted platelet proteins 
promote anoikis resistance by upregulating CTC expression of the GTPase RhoA, 
thereby activating the transcription co-activator YAP1 and inducing expression of 
downstream genes involved in proliferation and apoptotic resistance (55). It is 
also widely believed that platelets physically guard CTCs from the shear forces of 
the bloodstream, which can induce cell cycle arrest (56), apoptosis, and necrosis 
(57). Although limited experimental evidence exists to support platelet-mediated 
shear force protection (58), in silico modeling of CTC-platelet interactions under 
shear indicates that platelets may reduce the total shear force magnitude applied 
to any single region of a tumor cell, decreasing deformation and damage of the 
membrane and preventing apoptosis (59, Figure 1B).
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Perhaps the most widely studied benefit conferred by platelets to tumor cells 
is NK cell evasion, which is achieved by manipulating the behavior of both tumor 
cells and the NK cells themselves. Kopp and colleagues observed that platelet-
secreted TGF-β downregulates expression of the activating immunoreceptor 
NKG2D by NK cells, diminishing their cytotoxic effects (60). Platelets also impair 
NK cell production of interferon gamma (IFNγ), which is a key effector molecule 
through which NK cells induce an adaptive immune response (61, 62). In addi-
tion, platelets release sheddases ADAM10 and ADAM17 which cleave NK ligands 
from the surface of tumor cells and prevent them from being targeted (63). 
Platelets can also confer “pseudo-expression” of the major histocompatibility 
complex (MHC) class I to tumor cells, which allows tumor cells to avoid NK tar-
geting without triggering T-cell surveillance (64, Figure 1C).

Soon after entry into the bloodstream, CTCs travel to distant sites where they 
arrest and begin to extravasate. Vascular arrest occurs through both passive means 
(i.e., size-restricted arrest, where CTCs are physically trapped within small capil-
laries) (65) and active mechanisms (i.e., adhesion to the endothelium or subendo-
thelial matrix) (66, 67); platelets have been implicated in both processes, though 
their roles are controversial (68). While platelets have been observed in CTC clus-
ters mechanically arrested by size-restriction, it is unclear whether platelets are 
necessary for this entrapment, or if they simply pile up around CTCs that are 
blocking their passage (69). Likewise, direct CTC binding to both the endothe-
lium (70) and the subendothelial matrix (67) has been noted even in the absence 
of preliminary platelet thrombus formation, suggesting that platelets are not 
strictly necessary for initial arrest. However, platelets have been implicated in 
tumor cell tethering, rolling, and adhesion to the endothelium via P-selectin inter-
actions (71), suggesting that they may provide stability to CTC attachment.

PLATELETS AND DISTANT METASTASIS

Regardless of their role in vascular arrest, platelets significantly bolster the process 
of extravasation. In addition to the migratory advantage platelet-induced TGF-β 
signaling confers to tumor cells (23), platelets potentiate tumor cell-induced 
endothelial retraction (72) and induce the loss of endothelial tight junctions (73). 
These changes support trans-endothelial migration by tumor cells, which is fur-
ther evidenced by observations that platelet inhibition significantly reduces tumor 
cell extravasation (73, Figure 1D).

Because they are rare and transient in vivo and difficult to model in vitro, rela-
tively little is known about the initial stages of BC metastatic colonization, and 
specifically how these events are impacted by platelets. It is likely that many of 
the same platelet-tumor cell signaling programs that occur during primary 
tumor growth and intravasation are useful to disseminated tumor cells (e.g., 
platelet-induced tumor cell MMP secretion for ECM degradation, platelet 
expression of pro-angiogenic factors, etc.), though few of these dynamics have 
been demonstrated specifically during early metastatic colonization. On the 
other hand, platelets have been specifically implicated as early founders of the 
“pre-metastatic niche”. Labelle et al. observed that granulocytes are recruited to 
the vicinity of CTC-platelet aggregates arrested in the vasculature, where they 
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help prepare a microenvironment amenable to tumor cell seeding (74, 
Figure 1D). Granulocyte recruitment is dependent on chemokine signaling by 
activated platelets, and metastatic success is significantly attenuated by deple-
tion of either cell type. Another study found that by inhibiting platelet activa-
tion, deposition of fibronectin in metastatic sites in the lung was significantly 
decreased, resulting in a less hospitable metastatic environment and fewer 
lesions (75). These results support the notion that while platelets may be dis-
pensable for initial vascular arrest, they are necessary for successful vascular 
retention and metastatic outgrowth (68).

PLATELETS AND PARANEOPLASTIC COAGULOPATHY

BC cells express high levels of pro-coagulant factors like TF and phosphatidylser-
ine on their surfaces, or secrete them in extracellular vesicles (76). BC is also 
associated with increased platelet counts overall, likely stimulated by increased 
cytokine-driven thrombopoiesis, creating a positive feedback loop of platelet 
hyperactivation and systemic hypercoagulation (77). Consequently, patients with 
BC are at significantly higher risk than healthy patients of venous and arterial 
thromboembolism, myocardial infarction, and ischemic stroke, particularly fol-
lowing chemotherapeutic treatment (7). In fact, thromboembolic complications 
are one of the leading causes of death in patients undergoing chemotherapy (78). 
To mitigate the thrombotic risk associated with cancer and cancer treatment, clini-
cians regularly prescribe prophylactic anticoagulants like heparin as a supplement 
to cancer treatment regimens (79).

PLATELETS AS A THERAPEUTIC TARGET IN BREAST CANCER

Given their well-established localization to and support of BC metastases, plate-
lets are an attractive anti-cancer target. In one approach, platelets are directly 
inhibited through antagonism of platelet receptors (e.g., P-selectin, GPVI, P2Y12) 
via antibodies or small molecules (80). Numerous such drugs exist and several 
have been approved for the treatment of cardiovascular disease (81), though their 
use in BC treatment is largely limited to pre-clinical studies. However, administra-
tion of anti-platelet agents alone or in combination with standard-of-care thera-
pies has shown promise in metastatic prevention across studies and cancer types, 
as reviewed by Xu et al. (80).

One anti-platelet drug that has been thoroughly studied in the context of 
cancer is aspirin. Aspirin is a cyclooxygenase inhibitor that acts by inhibiting 
synthesis of platelet prostanoids, which promote activation of other nearby 
platelets. Aspirin treatment prevents BC cell-induced platelet activation and 
subsequent release of pro-tumorigenic factors in vitro (82), and leads to reduced 
metastasis in an in vivo mouse model of metastatic BC by suppressing platelet-
enhanced anoikis resistance (83). In the clinic, observational studies of BC 
patients prescribed aspirin after cancer diagnosis show mixed effects on patient 
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outcomes, though meta-analyses indicate that aspirin use is associated with 
reduced risk of BC death (84). Strikingly, in randomized controlled trials of 
aspirin for the prevention of cardiovascular disease, allocation to the aspirin 
group reduced the incidence of distantly metastatic adenocarcinoma by nearly 
half during trial follow-ups (85). This translated to significantly higher patient 
survival, regardless of whether the trials tested high or low-dose aspirin. These 
results suggest that low-dose aspirin may be useful in the prevention of distant 
metastasis, though therapeutic success may depend on preventative rather than 
responsive administration.

In another therapeutic approach, platelet localization to the tumor is exploited 
to allow enhanced delivery of therapeutic molecules into the intratumoral space. 
Bahmani et al. found that by encapsulating the toll-like receptor agonist resiqui-
mod in platelet membrane-coated nanoparticles (PNPs), they enhanced uptake 
and retention of the drug in the tumors of a 4T1 mouse BC model, increasing 
intratumor immunity and decreasing tumor growth better than the drug alone 
(86). PNPs have also been used in vitro to effectively deliver chemotherapeutic 
agents, siRNAs, and photosensitizers to primary tumors and CTCs (87). Though 
PNPs are not currently being used in the clinic, they present a promising new 
method to increase the efficacy of existing therapeutics.

CONCLUSION

Platelets are essential partners to BC cells throughout the course of hematogenous 
metastasis. Through a multitude of reciprocal signaling events, tumor cells acti-
vate platelets, encouraging their aggregation and degranulation. In return, plate-
lets secrete factors which enhance tumor cell survival and aggressiveness. This 
crosstalk threatens patients not only by its ability to foster metastatic disease, but 
also in its induction of a systemwide hypercoagulative state. Therapies which tar-
get the platelet-tumor cell interaction have the potential to mitigate the danger of 
BC metastasis, while also preventing cancer-associated thromboembolism. 
Therapeutic options for the prevention and treatment of distantly metastatic BC 
will be increased as researchers work to better understand and target the unique 
mechanisms of cancer-platelet cooperation.
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