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Abstract: Breast cancer represents 16% of all malignant tumors diagnosed and is 
the leading cause of mortality in women worldwide. While significant advances in 
the diagnosis and treatment of breast cancer have been made over the years, the 
management of advanced stages of the disease and treatment-related adverse 
events continue to be a challenge. There is a need to develop tools for target-
specific delivery of drugs to improve efficiency and decrease non-specific drug-
induced toxicity. The field of nanotechnology has undergone a rapid revolution 
and nanostructures of carbon have produced some promising results in the 
treatment of breast cancer, at least in experimental settings. This chapter provides 
an overview of the emerging role of carbon nanomaterials for the treatment of 
breast cancer with emphasis on graphene, fullerenes, carbon nanotubes, nano 
diamonds, and carbon dots. The promises and challenges are also discussed.
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INTRODUCTION

Breast cancer is the most common cancer type diagnosed in women and is the 
primary cause of mortality due to cancer in women around the world (1). 
According to GLOBOCAN 2018, more than 2.05 million new cases were diag-
nosed, and incidence is expected to increase by more than 46% by 2040 (2). The 
type and severity of breast cancer depends on the cell of origin. The breast is made 
up of three main parts: connective tissue, lobules, and ducts. Most breast cancers 
start in the lobes and the ducts (Figure 1). Based on its molecular subtypes, breast 
cancer can be categorized as luminal A, luminal B, human epidermal growth 
factor receptor 2 (HER2) type, and estrogen (ER)/progesterone receptor (PR)-
positive (3). Among these categories, the ER/PR positive subtypes contribute 
approximately 70% of all reported cases (4). On the other hand, 20% of the 
reported cases are associated with triple-negative breast cancer (TNBC), a specific 
subtype of breast cancer that does not express estrogen receptor (ER), progester-
one receptor (PR) or human epidermal growth factor receptor 2 (HER-2), making 
this class not sensitive to endocrine therapy or HER2 treatment (5). TNBC shows 
specific clinical features that include high invasiveness, high metastatic potential, 
proneness to relapse, and poor prognosis. Approximately 46% of TNBC patients 
will have distant metastasis at the time of diagnosis (6).

The list of drugs used in the clinic to treat breast cancer is extensive and 
includes tamoxifen, paclitaxel, doxorubicin, and epirubicin, among several others. 
The side effects caused by the direct application of these drugs include neutrope-
nia, lymphedema, hair loss, nausea and vomiting, trouble thinking, pain, blood 
clots (deep vein thrombosis) and others. These effects also occur when therapy 
involves radiation, which is a cancer treatment that uses high doses of radiation to 
kill cancer cells and shrink tumors (7). Some open questions for investigation are: 
How to correct side effects? How to deliver drugs directly to the cancer cell? How 
to know if the drug is in the right place? Nanotechnology offers a possibility to 
address these questions. Now, we can design and manufacture various types of 
nanoparticles, including metallic or their oxides, as well as nanocomposites that 

Figure 1.  Breast anatomy. The main parts of the breast are indicated. This figure was created 
by using BioRender.com

http://BioRender.com
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can deliver drugs to a specific target place. In the case of cancer, part of its diag-
nosis and treatment has been done by using gold nanoparticles, silica nanoparticles 
coated with gold, nanopolymers that carry the drug and/or carbon nanostructures 
showing easy penetration into the cell due to their hydrophobicity (8). This chap-
ter provides an overview of the emerging role of carbon nanomaterials for the 
treatment and diagnosis of breast cancer.

CARBON NANOSTRUCTURES

Since the discovery of fullerene C60 (9), carbon-derived nanostructures have 
become one of the most prominent research areas, and most of these studies 
have focused on C60 and carbon nanotubes. Their ability to present in different 
allotropic forms has led to a great diversity of nanostructures with fascinating 
geometries and properties (10). This includes nanostructures such as fullerenes, 
graphenes, carbon nanotubes, nanodiamonds, and nano-onions, all of which 
are allotropes of carbon (Figure 2). Fullerenes are carbon molecules that can take 
different geometric shapes such as sphere, ellipsoid, tube, or ring. Graphene is a 
structure with atoms arranged in a regular hexagonal pattern. Carbon nanotubes 
are cylindrical structures that can be single-walled or multi-walled. Nanodiamonds 
are nanostructures that have the crystalline phase of diamond. And finally, 
nano-onions have a multilayer graphene structure. In principle, all of these nano 
compounds can undergo modifications in their structure through acid attacks 
mainly, which allows the generation of carboxyl or hydroxyl radicals that 
facilitate their functionalization with different molecules through different 
types of bonds.

The properties of nanostructures are characterized using various techniques 
including X-ray photoelectron spectroscopy (XPS used to determine the type 
of  bonds), X-ray diffraction (XRD to determine crystallinity), TEM and SEM 
(to  determine size and agglomeration level), and FT-IR and RAMAN (to find 
functional groups). The functionalization of a carbon nanostructure involves sev-
eral synthesis steps. It must include a recognition entity such as a monoclonal 
antibody or another molecule that recognizes a site expressing a signal to which 
it can bind to (Figure 3), a molecule that can be detected by a specific wave-
length, and finally, the specific drug for the type of cancer (e.g., breast cancer). 
Recent studies indicate that early detection and targeted therapy can help 
decrease deaths due to breast cancer, representing a way in which carbon nano-
structures can be applied (11). Next, we cite carbon nanostructures and their 
uses against breast cancer.

Figure 2.  Carbon nanostructures. Examples of carbon nanostructures and their differences. 
This figure was created by using BioRender.com

http://BioRender.com


Orrantia-Borunda E et al.152

Graphene in breast cancer

A bioactive multifunctional CePO4/CS/GO scaffold––formed by the combination 
of graphene oxide (GO) nanoparticles, CePO4 nanobars and bioactive chitosan 
(CS)––shows characteristics of photothermal therapy in killing tumors, generat-
ing macrophage polarization, promoting blood vessels formation, and induction 
of bone formation. This scaffold may become a promising platform for the treat-
ment of breast cancer bone metastases by destroying residual bone tumor cells 
after photothermal therapy and subsequent healing of the bone defects (12). 
Similarly, graphene oxide (GO) nanocomposites, loaded with superparamagnetic 
iron oxide nanoparticles spliced with polyethylene glycol (PEG) and grafted with 
methotrexate and stimulus-sensitive linkers (GO-SPION-MTX), have been devel-
oped for photothermal and chemotherapy of breast cancer. GO-SPION-MTX 
nanocomposites are internalized by folate receptor-positive cancer cells and 
induce high cytotoxicity when exposed to near infrared (NIR) lasers (13). Table 1 
summarizes some of the key studies on the use of graphene in breast cancer.

Stimulus-sensitive polyelectrolyte nanoparticles have been developed for the 
chemo-photothermal destruction of breast cancer cells. This novel system, called 
layer by layer (LBL) Lipo-graph, is composed of alternating layers of graphene 
oxide (GO) and poly (L-lysine) conjugated to graphene oxide (GO-PLL) depos-
ited on cationic liposomes that encapsulate doxorubicin. Toxicity tests showed 
that LBL Lipo-graph can effectively kill MD-MB-231 cells after NIR irradiation. 
The presence of GO-PLL in the outer layer of LBL Lipo-graph can increase cell 
uptake and can also increase drug accumulation within cells (23). In a study 
reported in 2021 (24), graphene oxide nanoparticles (HA-GO-Met) loaded with 
metformin grafted with hyaluronic acid (HA) exhibited anticancer efficacy at 
much lower doses compared to metformin alone. HA-GO-Met nanoparticles 
induced apoptosis and inhibited cell migration of triple negative breast cancer 
cells by targeting the miR-10b/PTEN axis through NFκB-p65. Treatment with 
HA-GO-Met nanoparticles reduced tumor burden and abolished tumor-borne 
toxicity in peripheral organs, exhibiting anticancer efficacy in TNBC cells both in 
vivo and in vitro as well.

Complexes that include photoluminescent graphene quantum dots with glu-
cosamine as a targeting agent, and with curcumin as an anticancer agent, have 
been proven to inhibit cells of the MCF-7 breast cancer line, a result that sounds 

Figure 3.  Functionalization of carbon nanostructures. Example of the functionalization of 
carbon nanostructure adding an antibody and a drug. First, carbon nanostructure suffers an 
acid attack to carboxylate the structure, after that, antibodies are added in some carboxile 
groups to recognize the target cells, and finally, the drug is added to functionalize the 
nanostructure. This figure was created by using BioRender.com

http://BioRender.com
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promising due to the observed behavior pH-sensitive, sustained release for nano-
assembly (25). Graphitic carbon nitride (g-C3N4) Quantum Dots synthesized 
through the usual calcination method served as nanoplatforms for dual two-
photon excited photodynamic therapy (TPE-PDT) and two-photon imaging 
(TPI) (26). In a recent review, it has been discussed that the combination of carbon 
nanomaterials, including carbon nanotubes, fullerenes, graphene and nanodia-
monds, in combination with nuclear medicine isotopes, can be useful for the 
diagnosis of various types of cancer including breast cancer (27). In contrast, in a 
study aimed at following the targeting of doxorubicin conjugated with gold-doped 
mesoporous silica nanoparticles and graphene quantum dots, it was observed that 
cell viability was lower when doxorubicin alone was used. (28).

Fullerenes in breast cancer

Molecular coupling studies have shown that letrozole, a drug commonly used for 
the treatment of breast cancer, has greater biological activity and improvement 
when forming a self-assembly with sheets of graphene and fullerenes compared to 
the single molecule (29). Studies indicate that targeted hyperthermia has a high 
potential to become a cancer treatment modality, although it must be precisely 
controlled to avoid damaging adjacent healthy tissues. The use of an array 
consisting of emitters of quantum dots arranged in a buckyball shape demonstrated 
that it is possible to control super-radiance using an external electric field, which 
indicates that the use of a series of super-radiant pulses can improve breast cancer 
hyperthermia by minimizing damage to adjacent healthy tissues (30). Table 2 
presents some of the most recent studies of fullerenes used for the diagnosis and 
treatment of breast cancer.

TABLE 2	 Fullerenes in breast cancer

Nanostructure
Cell line / 
Experimental model Parameters and outcome Reference

Fullerene-Docetaxel 
conjugate

Cancer cells MCF-7 
and MDA-MB23

Enhanced the bioavailability of 
docetaxel by 4.2 times and 
decreased the drug clearance 
by 50%.

(31)

Glycine-tethered C60-
fullerenes conjugated with 
N-desmethyl tamoxifen

Cancer cells MCF-7 Availability of tamoxifen in 
a biological system for 
prolonged duration.

(32)

Fullerene-Doxorubicin 
conjugate

Biophysical methods Release of DOX from fullerene 
at different pHs. At pH 5.25, 
all DOX had been released 
and 43 % at pH 7.5.

(33)

Fullerene C60 DMBA-induced breast 
cancer in rats

Fullerene C60 decreases MDA 
level, increases GSH level 
and Catalase activity and 
thus it protects breast tissue 
against cancer.

(34)
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Carbon nanotubes

Breast cancer causes metabolic disturbances and thus, volatile metabolites in the 
breath of patients can be used to diagnose the disease. Yang et al., developed an 
electronic nose composed of carbon nanotube sensors resulting in 86% sensitivity 
and 97% specificity, while the area under the receiver operating curve was 0.99. 
These electronic nose breath tests can be applied intraoperatively to discriminate 
breast cancer and/or identify molecular subtypes, helping medical staff choose the 
best treatment decision (35).

Oxidized graphene nanoribbons, decorated with folic acid and loaded with a 
selective estrogen receptor modulator (tamoxifen citrate), were prepared from 
multi-walled carbon nanotubes, the results showed a drug loading efficiency of 
56%, concentration and time-dependent apoptosis, and a preferential cellular 
internalization, which might represent a promising platform for the efficient and 
selective delivery of tamoxifen to breast cancer cells (36).

Similarly, Adabi et al. designed and developed an electrochemical 
immunosensor, based on an electrospun carbon nanofiber mat, for the detection 
of Her-2. The sensor was modified with Au nanoparticles, cysteamine molecules, 
carbon nanotubes, and specific antibodies. The results indicated that the designed 
immunosensor has a high potential for the determination of Her-2 given its non-
invasive, precise, and fast analysis (37).

Dopamine and mucin-1 functionalized electroactive carbon nanotubes have 
also been synthesized as signal generating probes for the construction of 
electrochemical immunosensors for the early diagnosis of breast cancer. The 
developed immunosensor permitted the detection of MUC-1 in the linear range of 
0.05-940 U/mL, with a detection limit of 0.01 U/mL (38). Table 3 shows some of 
the most recent studies of carbon nanotubes used for the diagnosis and treatment 
of breast cancer.

Nanodiamonds

Nanodiamonds are one of the most promising carbon nanostructures in 
biomedicine due to their unique properties: they are biocompatible, have low 
toxicity, are mechanically and chemically stable, show stable photoluminescence, 
and have a multifunctional and easily modifiable surface, among others (46). 
Hyperthermia is one of the methods to attack malignant tumors (47). Therefore, 
a group of researchers synthesized nanodiamonds using high pressure and 
temperature, doped them with boron and tested them on MCF7 cells. These 
nanostructures were proven to be more efficient than nanodiamonds obtained by 
detonation due to their significant capacity to absorb infrared light, which hold 
promise for their use in hyperthermia and thermoablation of tumors. (48). 
In other studies, drugs such as melittin, the main component of bee venom, have 
been tested. When administered alone, melittin’s toxic effects on cancer cells were 
lower than when administered using a carbon nanostructure (49). Polyglycerol-
coated nanodiamonds-conjugated doxorubicin were pH-sensitive to hydrazone 
bonding. When the complex was compared to DOX in free form, the complex 
induced endoplasmic reticulum stress without substantial DNA damage, 
while DOX caused massive damage in DNA, as well as stress in endoplasmic 
reticulum (50). Table 4 summarizes some of the latest reports on the use of NDs 
in the treatment and diagnosis of breast cancer.



Orrantia-Borunda E et al.156

TABLE 3	 Carbon nanotubes in breast cancer

Nanostructure
Cell line / Experimental 
model Parameters and outcome Reference

SWCNTs and MWCNTs Cancer cells MC4L2 and 
mice

CNTs decreased the tumor 
volume. BCL2 gene was 
down-regulated, and BAX 
and Caspase-3 were up-
regulated in the treated 
groups with CNTs.

(39)

Cisplatin Loaded 
Multiwalled Carbon 
Nanotubes

Cancer cells MDA-MB-231 Significant decrease of 
caspase-3 and p53 
expression after 48 h, 
accompanied by a down-
regulation of NF-κB in 
cells exposed to MWCNT-
COOH-CDDP

(40)

Hyaluronic acid (HA)-
modified amino 
single-walled carbon 
nanotubes (NH2-
SWCNTs) conjugated 
with Doxorubicin 
(DOX)

Cancer cells MDA-MB-231 Inhibiting proliferation and 
inducing apoptosis of 
cells.

(41)

Glycopolymer decorated 
multiwalled carbon 
nanotubes conjugated 
with Doxorubicin 
(DOX)

Cancer cells MCF-7 and 
MDA-MB-231

The glycopolymers improve 
transportation of Dox 
into the cells, causing 
boosted effects of the 
chemotherapeutic drug.

(42)

MWCNTs) functionalized 
using Hyaluronic 
acid (HA) and 
α-Tocopheryl 
succinate (α-TOS) 
and loaded with 
Doxorubicin (Dox) 
(α-TOS-HA-MWCNTs/
Dox conjugate)

Cancer cells MDA-MB-231 Growth inhibition effect 
and high total apoptotic 
ratio in the MDA-MB-231 
cells treated using 
α-TOS-HA-MWCNTs/
Dox as compared to other 
formulations

(43)

Novel-formulated 
platinum nanoparticles 
(Pt-NPs) supported 
on polybenzimidazole 
(PBI)-functionalized 
MWCNT (MWCNT/
PBI/Pt-NPs)

Cancer stem cells (CSCs) Decrease in the proliferation 
rate of CSCs but not bone 
marrow mesenchymal 
stem cells

(44)

Carbon nanotubes 
(CNT)-loaded 
ginsenosides Rb3

Cancer cells MDA-MB-231 
and BT-549

Rb3 suppresses the PD-1/
PD-L1 pathway in triple-
negative breast cancer

(45)
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Carbon dots

Carbon dots (CDs) are an emerging subset of nanomaterials, defined by 
characteristic sizes of <10 nm. CDs possess a carbon core that is functionalized by 
various groups at the surface (55). These materials possess physicochemical 
properties, such as photo-induced electron transfer and photoluminescence, high 
biocompatibility, and low toxicity, making them potential materials for biosensing, 
drug delivery and bioimaging, making them useful for the diagnosis and treatment 
of breast cancer (56).

For the treatment of breast cancer, CDs were synthesized and functionalized with 
doxorubicin (CDs-DOX), finding that, compared to free doxorubicin, the CDs-DOX 
complex had a higher cellular uptake and better anti-tumor efficacy on MCF-7 cells 
(57). Recently, the development of N-hydroxyphthalimide-derived carbon dots 
doped with gadolinium, Fe3+ and Mn2+ was reported. Normal and cancerous cell 
lines were treated with doped carbon dots, and cell viability was measured, obtaining 
that Mn2+ doped Carbon Dots (Mn-CDs-NHF) presented antitumor properties, 

TABLE 4	 Nanodiamonds in breast cancer

Nanostructure
Cell line / 
Experimental model Parameters and outcome Reference

Nanodiamond-based 
layer-by-layer 
nanohybrids

TNBC cells and xenograft 
TNBC tumors

Delivery of miR-34a remarkably 
suppressed cell proliferation, 
migration and induced the 
apoptosis of TNBC cells in vitro 
and inhibited tumor growth in 
vivo via down-regulating Fra-1 
expression

(51)

Paclitaxel- and 
cetuximab-
conjugated 
nanodiamond 
nanocomposite

Cancer cells MDA-
MB-231, MCF-7 
and BT474

Enhanced mitotic catastrophe and 
apoptosis by targeting EGFR of 
TNBC cells

(52)

NDs conjugated with 
immunoglobulin 
G (IgG–gFND)

Breast cancer/natural 
killer/monocyte 
co-culture system 
and breast cancer 
mouse model.

In vitro studies demonstrated the 
targeted immune cell uptake of 
IgG–gFND, resulting in significant 
immune cell activation and no 
compromise in immune cell 
viability. IgG–gFND remained 
at the tumor site following 
intratumoral injection compared 
to uFND which migrated to the 
liver and kidneys

(53)

NDs functionalized 
with 
benzoquinone

Cancer cells MDA-
MB-231 and MCF-7

Induction of cell death (54)
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without affecting the cell viability of normal cells, and reduce the volume of primary 
mammary tumors while allowing magnetic resonance imaging. Suggesting that they 
can be used as theranostic agents in preclinical models (58).

The use of biomarkers for the diagnosis of breast cancer is of great significance, 
among them is microRNA-21, whose expression is increased and is a biomarker 
for early-stage breast cancer detection. Recently, a 3D hydrogel based on carbon 
dots and chitosan was fabricated for sensitive quantification of micRNA-21 in 
MCF-7 cancer cells. The DNA hydrogel bioassay strategy revealed a great stability 
and a superb sensitivity for microRNA-21, with a suitable linear range (0.1–125 
fM) and a detection limit (0.03 fM). Thus, it is suggested that nanocomposite 
hydrogels can be used for multicolor imaging of MCF-7 cancer cells (59).

Carbon dots have a tissue penetration that varies according to their 
luminescence and are ideal for imaging. However, their drawback is that they 
degrade in the body before reaching the target cells. Xu et al. (60) recently reported 
a study combining carbon dots with mesoporous organosilica nanocapsules 
(MON-CDs) and found that after 1 h of incubation in breast cancer cells, the 
nanoparticles were found close to the cell membrane and after 2 h the nanoparticles 
were mainly distributed in the cytoplasm, suggesting that MON-CDs possess 
near-infrared luminescence and have good imaging capabilities in confocal 
microscopy and photoacoustic imaging. In another study, a novel dual-element 
sensor array based on two CDs was constructed. Interestingly, the sensor array 
distinguished cancer patients (liver and breast cancers) from healthy people 
and  discriminated and quantified amyloidogenic proteins with high accuracy 
demonstrating its potential for rapid cancer detection on a large scale (61). All 
these studies indicate that CDs have potential use in the treatment and diagnosis 
of breast cancer.

FUTURE PERSPECTIVES

The most recent advances in the use of carbon nanostructures as vehicles to 
deliver drugs specifically to cancerous tumors, offers the possibility to minimize 
damage to healthy cells or reduce the side effects that affect the patient, can be a 
very useful tool for this purpose. We have learned to generate modifications on 
the surface of such nanostructures, generating groups capable of binding with 
drugs, especially those that can inhibit the growth and spread of cancer cells and 
with molecules capable of recognizing such cells, specific antibodies and 
compounds such as lactate, among others. It is worth noting that antibiotic such 
as tamoxifen can recognize estrogen receptors and therefore, can act as a 
recognition molecule. Thus, the combination of a nanostructure with an antibiotic 
or anticancer drug with a specific molecule that recognizes only the cancer cells, 
and a quantum dot that emits a fluorescent signal under a certain wavelength may 
enable early diagnosis of breast cancer. These examples show how carbon 
nanostructures can be useful for the diagnosis and treatment of breast cancer 
during the early stage of the disease even if there are just a few malignant cells. 
However, additional studies using different breast cancer cell lines must be carried 
out to evaluate the toxicity of the nanostructure alone and the complexes that are 
formed with it to guarantee patient safety.
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CONCLUSION

These examples show how carbon nanostructures can be useful for the diagnosis 
and treatment of breast cancer during the early stage of the disease, even when 
stage one is incipient with the presence of just a few malignant cells, thus 
representing their promising use by physicians in the clinic. However, additional 
studies at the laboratory level using different breast cancer cell lines must be 
carried out to evaluate the toxicity of both the nanostructure alone and the 
complexes that are formed with it in order to guarantee patient safety.
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