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Abstract: While patient-specific targeting of cellular growth and viability pathways 
dominates current approaches in anti-cancer therapeutics development, apprecia-
tion for the strategy of targeting transformation-dependent alterations in cellular 
organelle structure and function continues to grow. Here we discuss the lysosome 
as an anti-cancer target, highlighting its role as a key mediator of cell death. As the 
major degradative compartment of the cell, the lysosome houses dozens of 
destructive enzymes and is responsible for the breakdown of both internal and 
external molecules and particles; however, until relatively recently the contribu-
tion of the lysosome to cellular death mechanisms has been largely overlooked. 
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Renewed interest in the therapeutic potential of lysosomal rupture to combat can-
cer has led to development of lysosome-disrupting agents that induce lysosomal 
membrane permeabilization (LMP), cathepsin protease release, and subsequent 
lysosome-dependent cell death (LDCD), now distinguished as a bona fide cell 
death process. Here, we present the basic biology, structure, and function of the 
lysosome, with particular emphasis on the transformation-associated alterations 
that sensitize cancer cell lysosomes to membrane rupture. We further describe the 
lysosome’s role in cell death and comprehensively outline emerging therapeutic 
strategies that exploit lysosomes for the treatment of a variety of malignancies.

Keywords: cancer therapeutic targeting; cationic amphiphilic drugs; lysosomal 
membrane permeabilization; lysosome; lysosome-dependent cell death

INTRODUCTION

Using subcellular fractionation based purely on biochemical criteria, de Duve and 
colleagues (1955) made the serendipitous discovery of the lysosome (1, 2), an 
achievement deemed worthy of the Nobel Prize in Physiology (1974). Upon 
observation that liver-derived acid phosphatase exhibited latent activity following 
homogenization, it was deduced that a membrane-bound structure must normally 
sequester it, and potentially other degradative hydrolases, from their 
substrates (2, 3). Indeed, the lysosome harbors some 60 lytic enzymes (4) capable 
of degrading proteins, nucleic acids, polysaccharides, and lipids. Subsequent 
investigations determined that lysosomes serve as the terminal compartment for 
the degradation of extracellular materials taken up by endocytosis and phagocyto-
sis and the digestion of intracellular constituents isolated during autophagy (5, 6). 
We now appreciate that lysosomes are more than cellular refuse depots; they are 
fundamental components of dynamic physiologic processes such as plasma mem-
brane repair, bone and tissue remodeling, matrix degradation, inflammatory 
responses, antigen presentation, cholesterol homeostasis, nutrient sensing and 
metabolism, cell signaling, growth factor recycling, and programmed cell death 
(7–23). These processes differentially rely on fusion with endocytic vesicles or the 
regulated release of lysosomal hydrolases into the cytosol via lysosomal membrane 
permeabilization (LMP) or into the extracellular space via lysosomal exocytosis. A 
summary of the lysosome’s various functions is illustrated in Figure 1.

Of note are observations that the quantity, composition, and complement of 
lysosomal hydrolases are often augmented with cancer pathologies. Along these 
lines, lysosomal heparanase and cathepsins promote cancer cell proliferation, 
angiogenesis, and metastasis, suggesting that these and other lysosomal enzymes 
are of potential clinical significance (24, 25). The therapeutic implications of lyso-
somal hydrolases were recognized decades ago, with seminal investigations 
describing enhanced activities of lysosomal enzymes in solid tumors as compared 
to their tissues of origin, with specific enzymes (i.e., beta-glucuronidase) favoring 
tumor cell invasiveness (26). Perhaps it is not surprising then that cancer cells 
often exhibit an expansion of the lysosomal compartment (24, 27, 28), a feature 
that would enhance tumor aggressiveness. However, such distinction may also 
provide a rational basis for therapeutic intervention. Cancer-associated lysosomes 
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are more fragile than their normal counterparts due in some measure to increases 
in hydrolytic enzymes and fundamental changes in the composition of the lyso-
somal membrane (29–31). Based on the concept that the lysosome may represent 
a ‘suicide-bag’ as first proposed by de Duve (32), the instability of cancer-associated 
lysosomes may lend to enhanced cellular susceptibility to LMP, coincident release 
of destructive hydrolases into the cytosol and ultimate cell demise by either apop-
totic or non-apoptotic cell death mechanisms.

Herein, we review the fundamentals of lysosome physiology, composition, and 
function in cell death, and connect cancer-associated changes in the expression 
and activity of lysosomal components with a particular focus on the therapeutic 
opportunities they may provide for breast and other tumor types.

Figure 1.  Functions of the lysosome. Lysosomes regulate cell function by internalizing and 
degrading pathogens, receptors, cellular debris, etc. via endocytosis and phagocytosis 
(upper left) and autophagy (upper right). They also transmit materials to the cell surface and 
extracellular space by exocytosis (lower left). Lysosomal membrane permeabilization 
resulting from various stimuli (e.g., reactive oxygen species (ROS) and iron accumulation) 
promotes cathepsin release and subsequent lysosomal cell death (lower right). Figure 
created with BioRender.com (adapted with permission from ref 163).

http://BioRender.com
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LYSOSOMAL STRUCTURE, DISTRIBUTION, AND 
IDENTIFICATION

Lysosomes are typically less than 1 μm in diameter and contribute up to 0.5% of 
the total intracellular volume of many eukaryotic cells, although this may vary 
depending upon cell type (i.e., macrophages), energetic state, or degradative 
requirements (33–35). Unlike other organelles, lysosomes cannot be identified 
based on uniform morphologic criteria, as there is significant variation in their 
size, architecture, and morphology depending upon nutrient availability, for 
example, autophagy (36–39). Significant augmentation of lysosome volume, 
abundance, and structure also occurs during certain pathologic states, for exam-
ple,  lysosomal storage diseases (40) and cancer (24, 41), or following experimen-
tal manipulations that inhibit enzymatic digestion such as overloading with 
non-physiologic substrates such as sucrose (42), administration of cationic 
amphiphilic drugs (CADs (43–45)), or treatment with aminoglycoside antibiotics 
(46). Interestingly, lysosomes at peripheral locations can partially change their 
intracellular pH (47, 48), a feature that may be co-opted by some cancer cells to 
facilitate constitutive mTOR signaling (38) or modulate extracellular acidity to 
enhance invasion (49, 50).

By electron microscopy, lysosomes are identifiable as either tubular or spheri-
cal membrane-bound structures with cores of variable densities, amorphous gran-
ular material, or membrane whorls (34, 51). Biochemically, lysosomes are defined 
by the presence of multiple hydrolytic enzymes (32) which may vary between 
tissue type (51) and pathology (25, 40). Lysosomes may be distinguished from 
endosomes by their pH, calcium content, abundance of lysosomal-associated 
membrane proteins LAMP-1 and LAMP-2, and lack of mannose-6-phosphate 
receptors (34, 52–54). Fluorescent dyes that accumulate in acidic vesicles––such 
as LysoTracker Red and Acridine Orange––effectively label lysosomes, however 
other acidic vesicles such as endosomes and autophagosomes may be concomi-
tantly labeled to varying degrees (55).

LYSOSOME COMPOSITION

Lysosomes can degrade a vast array of structurally diverse macromolecules into 
their constituent components. Following degradation, substances either diffuse or 
are transported out of the lysosome into the cytosol where they become fuel for 
metabolism or substrates for biosynthetic pathways (5). This dynamic recycling 
process requires the coordinated action of the lysosomal acid hydrolases with 
integral, peripheral, and transiently-associated proteins as discussed in the follow-
ing sections.

Lysosomal hydrolases

To achieve efficient breakdown of complex substrates, lysosomes contain several 
acid hydrolases such as proteases, glycosidases, nucleases, sulfatases, and lipases. 
In addition to the degradation of material delivered via endosomes, phagocytic 
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vesicles, and autophagosomes, lysosomal hydrolases are involved in diverse pro-
cesses such as pro-protein and antigen processing, degradation of extracellular 
matrix, stimulation of angiogenesis, and the initiation of cell death (13, 56–61).

Chief among the acid hydrolases are the aspartic, serine, and cysteine prote-
ases, with the most widely studied being the cathepsins (62). While cathepsins are 
most recognized for their activity within the lysosomal compartment, a number of 
studies have indicated their localization to any vesicle along the endocytic path-
way (early and late endosomes, phagosomes), within the nucleus or cytosol, at the 
cell surface, or secreted into the extracellular matrix, depending on physiologic or 
pathologic state  (61–64). Cathepsins are synthesized as inactive precursors that 
are then processed to their mature and active form by proteolytic removal of the 
N-terminal propeptide (65). Removal of the propeptide may occur by autolysis 
within acidic lysosomes or by activation of other proteases in a chain-like reaction 
(66–70) and may be enhanced in the presence of glycosaminoglycans or polysac-
charides (71–74). While most cathepsins become destabilized at neutral pH, 
several interacting partners such as heparin and catalase may prolong cathepsin 
activity by promoting structural integrity and inhibiting peroxidation (75, 76).

Originally considered to function only within the lysosome in general protein 
turnover, it has become exceedingly clear from gene knockout models that cathep-
sins have non-redundant and diverse functions and may be expressed ubiqui-
tously in a tissue-specific or even context-specific manner (77–82). The diversity 
of this class of proteases is beyond the scope of this review and has been exten-
sively examined elsewhere (63, 83–85). Notably, cysteine proteases B, L, S, X, 
and K, as well as aspartic cathepsin D, have all been implicated to varying degrees 
in cancer progression. Along these lines, cathepsins in cancer cells are often trans-
located to the plasma membrane along with pH regulators such as v-ATPases and 
Na+/H+ exchangers (86), where they associate with microdomains or are secreted 
in an active form (87). In this respect, cancer cells effectively exploit cathepsins to 
remodel the extracellular environment to potentiate invasion and metastasis 
(61,  88–93). Alternatively, infiltrating macrophages may supply cathepsins to 
stimulate angiogenesis and promote the growth and invasion of associated tumor 
cells (94).

Cathepsins may be specifically regulated by interactions with endogenous 
inhibitors, including cytosolic stefins, extracellular cystatins, and kininogens 
(63, 93). As such, blunted cystatin often accompanies enhanced cathepsin levels 
during the acquisition of invasive capacity (95). More recently, cathepsins have 
been implicated in the development of intrinsic therapeutic resistance and adap-
tive responses to treatment (93, 96–98).

Membrane-associated proteins and lipids

The lysosomal membrane contains more than one hundred proteins, with LAMP-1 
and -2 comprising nearly 50% of the total protein content (99). The oligosaccha-
ride side chains on LAMPs and LIMPs (lysosomal integral membrane proteins) 
form a thick polysaccharide coat, or glycocalyx, that lines the inner surface of the 
lysosomal membrane to ensure protection of sensitive lysosomal and extralyso-
somal substrates from degradative hydrolases (100, 101). In addition to ensuring 
compartmentalization of acid hydrolases and maintaining structural integrity, 
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peripheral and integral membrane-associated proteins are vital to lysosomal 
(LAMP-1) and the plasma membrane (RABs and SNAREs) trafficking, transport of 
ions and soluble substrates (cation channel mucolipin1, chloride channel CLCN7, 
protein transporter LAMP-2A, amino acid transporter LAAT1), and nutrient 
sensing (v-ATPase), as previously reviewed (52, 102–106). In addition, lysosomes 
may contain multiple internal vesicles that harbor their own unique complement 
of proteins and lipids (107, 108), imparting further functional diversity. Given 
this diversity and the propensity for alterations during cancer, it is worth detailing 
a few key membrane constituents. For a more in-depth discussion, the reader is 
referred to several excellent topical reviews (108–113).

Several observations suggest that LAMPs may contribute to the fragility of 
cancer-associated lysosomal membranes. Oncogenic transformation of fibroblasts 
is accompanied by a decrease in LAMP expression, redistribution of lysosomes to 
the cell periphery, and increased sensitivity to lysosomal cell death and to agents 
that induce LMP (114). Conversely, LAMP overexpression was found to be protec-
tive against LMP (114), and a role for LAMP in cytoprotective autophagy has been 
proposed (115). While overall LAMP expression is reportedly increased in a num-
ber of cancers (27, 116–118), it is likely these observations are indicative of an 
increase in total lysosome content and not changes in their activity per se. Given 
the role of LAMPs in the formation of the protective glycocalyx, it is conceivable 
that their overall loss augments internal hydrolase-mediated damage to other 
lysosomal membrane constituents and propensity toward LMP.

Lysosomes are bound by a single bilayer membrane, which is comprised of a 
primary lipid matrix of glycerophospholipids, sphingolipids, and cholesterol (110). 
In general, glycerophospholipids such as phosphatidylcholine, phosphatidyletha-
nolamine, and phosphatidylinositol dictate the fluidity of biomembranes and par-
ticipate in trafficking, fission, and fusion events (110, 119). Lysosomal and late 
endosomal membranes are uniquely enriched in the glycerophospholipid 
bis(monoacylglycero) phosphate (BMP), permitting a heightened capacity for 
cholesterol transport and sphingolipid degradation (108, 120, 121). Along these 
lines, depletion of cellular cholesterol results in an increase in lysosomal density 
and affects resistance to agents such as sucrose and lytic compounds known to 
perturb membrane structure (122). Moreover, cholesterol contributes to the for-
mation of detergent-resistant lipid rafts within lysosomal membranes, which are 
focal centers for sorting and concentrating complexes of proteins vital for traffick-
ing and signal transduction (123) as shown by proteomic (18) and biochemical 
(124) analyses. Cellular repressor of E1A-stimulated genes (CREG), a secreted 
glycoprotein that promotes the differentiation of pluripotent stem cells (125) and 
inhibits cell growth (126), concentrates specifically at lipid rafts (18). Lipid rafts 
have garnered particular interest in recent years because of their role in metastasis 
and various cell death pathways (127).

Although originally considered a source of structural support, mounting 
evidence implicates sphingolipids like sphingomyelin, ceramide, and glycosphin-
golipids as important agents of lipid raft cell signaling cascades (110, 128, 129). 
Different sphingolipid species have been implicated in regulating cell survival, 
angiogenesis, inflammation, proliferation, autophagy, and programmed cell death 
(130–133). For example, ceramide, which is hydrolyzed from sphingomyelin by 
lysosomal acid sphingomyelinase (aSMase) (134) or other mechanisms (135, 136), 
has been intensively studied following observations that aSMase-deficient mice 
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were resistant to cell death induction (137, 138). The aSMase/ceramide pathway 
has since been identified as a central component of cellular response to various 
stressors and chemotherapeutics (111, 135, 139–141), potentiation of redox 
signaling (142, 143), autophagy (144–148) and regulation of proteins involved in 
programmed cell death (i.e., phospholipase A2 (149), cathepsin D (150, 151), 
Jun-N-terminal kinases (152).

LYSOSOMES IN CELL DEATH

Cell death is classically defined by morphological criteria: apoptotic cells display 
cellular shrinkage, nuclear fragmentation, and condensation into apoptotic bodies 
for clearance by phagocytosis; autophagy-dependent cell death involves cytoplas-
mic vacuolization and autophagosome formation, followed by lysosomal degrada-
tion; necrosis manifests as organelle swelling, plasma membrane breakdown, and 
disintegration of cellular structures (153). However, investigations into the pre-
cise biochemical and functional underpinnings of cell death processes have 
revealed distinct “regulated” cytotoxic programs and prompted a diversification of 
nomenclature. Lysosome-dependent cell death (LDCD), characterized by lyso-
somal destabilization and requiring LMP, is now distinguished as a subclass of 
programmed cell death (153). Though lysosomal rupture has been observed as an 
ultimate consequence of canonical cell death processes (154), primary LMP acti-
vates a death program in LDCD and can be differentiated by novel assay systems 
(155, 156). LMP does not generate defining morphological alterations (157) and 
is therefore classified at the molecular level by release of lysosomal luminal con-
tents including proteolytic cathepsin enzymes to the cytosol, where cathepsins 
function in a variety of contexts as cell death executioners (158). However, the 
precise mechanisms leading to loss of lysosomal membrane integrity and protease 
translocation to the cytosol are not fully elucidated for the majority of LMP 
stimulants. Activities of pore-forming toxins such as venoms, bacterial toxins, and 
viral entry proteins are fairly straightforward; these compounds can disrupt mem-
brane dynamics from within the lysosome following their uptake into the endoly-
sosomal system and activation at low-pH, or alternatively induce pore formation 
from the cytosol (158, 159). Lysosomotropic detergents are well-studied LMP-
promoting agents that function by directly disrupting membrane dynamics lead-
ing to organelle leakage or by impairing function of lysosomal lipases (158). 
Under physiological conditions, LDCD contributes to tissue remodeling during 
mammary gland involution (160) and regulates immune cell clearance following 
inflammation (161) or bacterial infection (162). Moreover, LDCD is associated 
with a variety of pathological states (153).

Consequences of LMP

LMP may either initiate or amplify a cell death cascade, and it can trigger distinct 
pathways depending on cellular context and the nature of lysosomal injury. The 
molecular players and morphological outcomes of a given lethal subroutine fea-
turing LMP can be classified as apoptotic or necrotic, and it is widely accepted 
that the degree of lysosomal rupture––with respect to number of lysosomes 
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impacted and extent of membrane damage––dictates the specificity of lysosomal 
component release and downstream cellular responses (158). Extensive LMP 
allows rapid release of lysosome contents to the cytosol and lethal cytoplasmic 
acidification, resulting in rampant hydrolysis of cytoplasmic contents and cell 
death by necrosis following plasma membrane breakdown. Conversely, the cyto-
solic translocation of select cathepsins with limited LMP initiates a regulated 
signaling cascade and death resembling apoptosis (163–165). Indeed, cathepsin 
inhibition can revert the effects of limited LMP. Cathepsins were identified as 
principal mediators of LMP-dependent cell death by studies demonstrating cell 
viability rescue with pharmacological or genetic manipulation of cathepsins and 
their endogenous inhibitors (158, 166). Moreover, partial LMP may trigger a cyto-
protective lysophagy response and cell survival if the degree of damage is suffi-
ciently limited (167, 168). Lysosomal stress sensors activate endolysosomal 
damage-response mechanisms (163) whereby injured lysosomes are eliminated 
and recycled before the cell is committed to die. A greater understanding of the 
precise lysosomal membrane alterations leading to LMP is required to elucidate 
consequent cell fate determinations.

LMP is most widely studied in relation to caspase-mediated apoptosis-like 
death. Select cathepsins that remain functional at neutral pH, including cathep-
sins B, D, and L, can activate apoptotic effectors following limited release from 
leaky lysosomes (166). Indeed, cathepsins are implicated in apoptotic cancer 
cell death in a variety of tumor models (169). Apoptotic pathways triggered by 
intrinsic factors such as DNA damage, endoplasmic reticulum stress, and LMP 
ultimately converge on mitochondrial membrane permeabilization (MOMP) and 
subsequent release of pro-apoptotic factors to the cytosol (166, 170–172). 
Mechanistic understanding of primary LMP in apoptosis was developed largely 
from studies using the lysosomotropic agent Leu-Leu-methyl ester (LLOMe) (173) 
and other apoptotic stimuli (153). Following their cytosolic release, cathepsins 
can cleave Bid to generate a pro-apoptotic t-Bid fragment, thereby initiating 
the common intrinsic apoptosis pathway that includes t-Bid activation of pore-
forming Bax and Bak proteins, MOMP, mitochondrial cytochrome c release, and 
activation of executioner caspases (163, 173). In fact, cathepsin inhibition reduced 
Bid processing and alleviated LMP, rescuing cancer cell viability (174). Cathepsins 
can play a variety of other roles in LMP-mediated apoptotic death involving 
MOMP. Cathepsins amplify signaling upstream of MOMP via proteolytic Bax acti-
vation (165) or inactivation of anti-apoptotic Bcl-2 proteins (175), and they have 
been shown to cleave caspases directly (158) or degrade the caspase inhibitor 
XIAP (176). Of note, Bax may directly permeabilize the lysosomal membrane to 
initiate primary LMP (153, 177, 178). LMP has also been observed downstream 
of MOMP as a consequence of apoptotic signaling pathways (179, 180). Reactive 
oxygen species (ROS) production generated by MOMP induces lysosomal mem-
brane lipid peroxidation and LMP to perpetuate apoptotic cell death (176), while 
various caspases themselves play causal roles in secondary LMP (158). Under 
certain conditions, cathepsins regulate apoptotic death independent of caspases, 
such as by direct cleavage of apoptosis inducing factor (AIF) (181) or in cells with 
defective apoptotic machinery (182).

LMP-mediated cell death can alternatively take the form of necrosis in the 
absence of caspase activation, whereby cathepsins serve as the principal cell death 
executioner proteases (63). The caspase dependence of LDCD pathways may shift 
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depending on the cellular context or severity of cellular insult, as some lysosomo-
tropic agents induce either apoptotic or necrotic cell death in a dose-dependent 
manner or in various cell types (173). Increased levels of oxidative stress or ATP 
depletion have been reported to promote a necrotic LDCD phenotype in several 
studies (166, 171). Necrosis, long considered an accidental and irreparable con-
sequence of extreme chemical or physical cell stress, is now understood to be a 
highly regulated process with defined molecular drivers (183). Though cathepsin 
substrates in non-apoptotic death are not well characterized (63, 158), it is pro-
posed that extensive LMP unleashes widespread cathepsin proteolysis and rapid 
breakdown of cellular structures, as cathepsin inhibition can mitigate necrotic 
LDCD (184–187). LMP may be an early and activating event in response to lyso-
some disruptors such as H2O2 (154), though it is also observed as a late-stage 
consequence of signaling in receptor interacting protein (RIP) kinase-dependent 
necroptosis (154). Furthermore, lysosomal ROS generation has been implicated 
in the execution of ferroptosis, a form of regulated cell death involving iron-
dependent ROS accumulation which displays necrotic morphology (153, 188). 
Lysosomes degrade iron-containing proteins including ferritin during autophagy 
and serve as major storage sites of chelatable iron within the cell. Overloaded iron 
can catalyze Fenton reactions in redox cycling to produce ROS, which damage 
lysosomal membranes and increase the cell’s susceptibility to LMP (164).

Lysosomal disruption is critical to activation of the nod-like receptor (NLR)-
dependent ‘inflammasome’ in pyroptosis, an inflammatory cell death pathway 
observed in macrophages that culminates in cellular swelling, plasma membrane 
rupture, and cytokine release. Pyroptosis is characterized by recruitment and acti-
vation of pro-inflammatory caspase-1 by the multimodular inflammasome plat-
form and is mediated by gasdermins, which form plasma membrane pores to 
drive lytic death (189, 190). Various crystals and chemical compounds induce 
LMP-mediated pyroptosis, and LMP is reportedly critical to NLRP3 inflamma-
some function, though the precise molecular pathway linking LMP and lysosomal 
content release with inflammasome activation is debated (191, 192). Inflammasome 
activation was shown to potentiate tumor invasion and stimulate angiogenesis in 
cases where suppressive immune cells were favorably recruited to the tumor site, 
such as in the absence of IL-12 (193). The pro- and anti-tumor functions of 
inflammasomes may thus be context-dependent, reflected by responses of NLRP3 
that differ significantly depending on cell lineage (e.g., hematopoietic vs. struc-
tural epithelium) or phenotype (193).

Lysosomes serve a principal function in autophagy, an adaptive cellular stress 
response that is normally cytoprotective but contributes to cell death in many 
pathophysiological conditions including cancer (153). During autophagy, the cell 
digests and recycles macromolecules and whole organelles by forming double 
membrane-bound autophagosomes that deliver engulfed material to lysosomes (194). 
Considering the requirement for functional lysosomes in autophagy execution, it is 
perhaps unsurprising that lysosomal damage can prevent autophagosome fusion 
and dysregulate autophagic flux, precipitating cell death (195, 196). Cell death is 
commonly the consequence of experimental or pharmacological autophagy block-
ade, and targeting autophagic processes has emerged as a promising therapeutic 
strategy for treatment of diseases including cancer (197, 198). For example, lyso-
some-disrupting chloroquine derivatives kill tumor cells by inhibiting autophago-
some-lysosome fusion and chemotherapy-induced autophagy and demonstrate 
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promise in clinical trials (199–201), while an aborted autophagic response follow-
ing co-administration of lovastatin and farnesyl transferase inhibitor leads to non-
apoptotic tumor cell death such that protein prenylation may be required for 
complete autophagy (202). Similarly, LMP may occur after inhibition of autophagic 
flux by a sophoridine analog, leading to apoptosis in pancreatic cancer cells (203). 
However, autophagy regulation is complex, and plays roles in cell survival, cell 
death, and other cytotoxic processes in a number of developmental and disease 
contexts (153, 204). In fact, LMP and cysteine cathepsin activity have been impli-
cated in autophagy regulation and facilitate autophagy-mediated apoptosis in can-
cer cells (205–207). Indeed, numerous cell death mechanisms involve lysosome 
dysfunction, but the molecular interactions underlying phenotypic consequences of 
LMP remain largely uncharacterized.

LYSOSOMES IN CANCER

As cancer is broadly characterized by rapid cell proliferation and upregulated cell 
survival mechanisms to combat cellular damage, many transformation-associated 
changes at the level of the lysosome serve to protect the cell from LMP and LDCD. 
Paradoxically, the opposite effect is also observed, where neoplastic cells can 
sacrifice lysosomal stability in order to increase their tumorigenic potential or 
aggressiveness (24). Therefore, it is critical to understand the complex regulation 
of LMP in cancer cells in order to pharmacologically hedge the balance towards 
LDCD for therapeutic benefit.

Cancer cells rely on increased metabolism to sustain their rapid proliferation. 
The lysosome serves as a key regulator in this process and helps satisfy the cata-
bolic need for building blocks for growth and neoplastic anabolic drive. The outer 
lysosomal membrane serves as a docking site for mTORC1, a signaling complex 
regulated by available nutrients in the cytoplasm. mTORC1 signals the upregula-
tion of lipid and protein biosynthesis, as well as the transcription of pro-
tumorigenic and anti-apoptotic regulators of the cell cycle (102, 208). Loss of 
several tumor suppressors including p53, PTEN, NF1 and TSC1/2 have been 
shown to activate mTORC1 (209). Furthermore, the lysosome is responsible for 
executing autophagy, one of the cell’s primary mechanisms of catabolism (210). 
Several cancers have engaged mechanisms to constitutively activate autophagy, 
such as in Ras-driven pancreatic cancers. This increased baseline level of autopha-
gic flux allows for more rapid clearance of toxic metabolites that build up as a 
consequence of increased metabolism (211–213). Therefore, inhibition of autoph-
agy could potentiate induction of LMP in such tumors.

The high metabolic activity of cancer cells presents another weakness in lyso-
somal regulation. Swift protein turnover demanded by rapidly dividing cancer 
cells leads to excessive intralysosomal accumulation of iron (214). Iron accretion 
alone is sufficient to sensitize the lysosome to LMP; however, Fenton-type reac-
tions with H2O2 can generate additional ROS and further destabilize lysosomal 
membranes through lipid oxidation. Coupled with the well-documented increase 
in ROS production in cancer cells and augmented cytoplasmic levels of cathep-
sins, lysosomal iron accumulation sensitizes tumor cells to LMP and LDCD (215). 
Other transformation-associated alterations in cancer cell lysosomes include 
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increases in expression of lysosomal enzymes, changes in lysosomal morphology 
and localization, and modifications in lysosome-associated proteins. Cathepsins 
are highly expressed in cancer cells and are localized to the cell periphery in secre-
tory lysosomes, where they can be secreted into the surrounding extracellular 
environment through a mechanism similar to the lysosomal exocytosis that allows 
the formation of invasive protrusions in C. elegans development (216). Once in 
the extracellular space, they wreak havoc by cleaving a variety of adhesion pro-
teins, degrading the basement membrane, and releasing sequestered growth fac-
tors such as platelet-derived growth factor (PDGF) and vascular endothelial 
growth factor (VEGF), leading to neoplastic progression through invasion, angio-
genesis, and metastasis (41, 217, 218). Additionally, downregulation of a potent 
regulator of pericellular cathepsin accumulation, M6PR, in a rat cell model of 
hepatocellular carcinoma abrogates inhibition of pro-neoplastic cathepsin 
activity (219). High concentrations of cathepsins predict increased tumor aggres-
siveness and poor prognosis in many tumor types such as breast cancer, lung and 
colorectal carcinomas, and gliomas (220–223). However, increased levels of 
cytosolic cathepsins also sensitize the cell to LDCD (224). Increased lysosomal 
cathepsin activity leads to decreased LAMP-1 and -2 levels in ERK-, ErbB2-, and 
K-Ras-driven models of cancer, reducing lysosomal membrane stability and ren-
dering the organelle susceptible to LMP (114). These cancer-associated vulnera-
bilities illuminate a potential therapeutic window to selectively target tumor cells.

As previously noted, lysosomes are alternatively localized within transformed 
cells; the switch from a perinuclear position to the plasma membrane facilitates 
secretion of toxic contents into the extracellular space, promoting extracellular 
acidification and activation of secreted lysosomal hydrolases (41). Increased 
expression of v-ATPase in metastatic tumor cells also contributes to extracellular 
acidification (225). Additionally, cancer cells exhibit increased lysosomal size, a 
phenomenon correlated with the metastatic potential of breast cancer cells (28). 
Once again, these tumorigenic changes compromise lysosomal stability, sensitiz-
ing tumor cells to LMP (28). Problematically, some forms of cancer have devel-
oped mechanisms to overcome this increased sensitivity to LMP. Breast cancer 
cells show elevated expression of Hsp70 (226), which has been shown to rescue 
lysosomal membrane integrity by stabilizing intralysosomal aSMase interaction 
with the critical lipase cofactor BMP (30, 215). Likewise, mammary-derived 
growth inhibitor (MDGI), which contributes to maintenance of lysosomal integ-
rity, is a marker of invasiveness in human glioblastoma patient-derived cells that 
are resistant to chemoradiation. Silencing MDGI leads to alterations in lysosomal 
membrane lipid composition through reduced trafficking of polyunsaturated fatty 
acids into the lysosomes, leading to eventual LMP-dependent cell death (227). 
Along these lines, targeting Hsp70 or other molecules critical to lysosome stability 
and function could prove to be promising therapeutic strategies.

Localization of transport proteins to the lysosomal membrane in transformation 
confers therapeutic resistance via active sequestration and inactivation of antineo-
plastics within the lysosomal lumen. Canonically, members of the ATP-binding 
cassette (ABC) family of transporters reside in the plasma membrane where they 
expel cytoplasmic antineoplastics, but some cancers (e.g., leukemia, breast and 
cervical cancers) exhibit lysosomal expression of transporters like P-glycoprotein 
(P-gp or ABC1), leading to drug sequestration in the lysosome (228–230). 
Inhibition of P-gp in cancer cells restores sensitivity to the sequestered drugs and 
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hyper-sensitizes cells to chemotherapeutic death (228, 230). Overexpression of 
ABCA3 correlates with poor prognosis in acute myeloid leukemia patients, and 
ABCA3 localizes to lysosomes in a chronic myeloid leukemia cell line (231, 232). 
The transport protein ATP7B, a copper transporter, is overexpressed in many can-
cers (233) and serves to sequester and exocytose platinum-based antineoplastics 
(234, 235). Overall, the dynamic changes in cancer-associated lysosomes reveals a 
wide range of possible therapeutic options for exploration (236).

MODULATION OF LMP AND ITS THERAPEUTIC POTENTIAL

Depletion of cancer cells via LMP is an attractive therapeutic strategy, holding 
particular promise for combating apoptosis-resistant cancer cell populations 
(237). Initial interest in this regard was sparked by realization of the degradative 
potential of lysosomes (1), catalyzing the search for pharmacologic agents that 
would destabilize the lysosomal membrane to kill cancer cells from the inside. 
Cholesterol and hydrocortisone were identified as stabilizing agents (32), while 
weakly basic amines with long hydrophobic tails disturbed membrane structure 
and induced LMP (238–240). However, enthusiasm quickly waned upon recogni-
tion that lysosomes were a ubiquitous feature of nearly all cells (excluding eryth-
rocytes (34)), and would not permit the distinction between normal and cancer 
cells (32). Interest has since reignited following more recent studies that suggest 
cancer-associated lysosomes express unique features (i.e., size, hydrolase content, 
membrane fragility) that may make them suitable for targeting. Numerous lyso-
some-disrupting agents are currently under investigation or in clinical develop-
ment for cancer and other indications (237, 241), though clinical data 
demonstrating efficacy of these approaches is limited. This section outlines select 
agents known to induce LMP, with a particular emphasis on their potential as anti-
cancer therapeutics. General mechanisms of LMP induction are illustrated in 
Figure 2.

Lysosomotropic Agents

Weakly basic amine compounds rapidly accumulate within lysosomal lumens and 
are thus referred to as ‘lysosomotropic’ (242). Sequestration of amine-containing 
agents occurs by a non-enzymatic and non-transporter mediated cation-trapping 
mechanism, referred to as ‘lysosomal trapping’ (44, 243, 244), but may also occur 
by endocytosis or facilitated transport (245). In particular, CADs and lysosomo-
tropic detergents feature a hydrophobic ring structure and a hydrophilic side 
chain with a charged cationic amine group that allow them to readily diffuse 
across cellular membranes in their non-ionized state. However, exposure to the 
acidic interior of the lysosome leads to protonation and entrapment (242). As 
these agents accumulate within the lysosomal lumen, they interact with negatively 
charged intra-lysosomal vesicles, displacing associated enzymes and lipid binding 
proteins and inducing swelling and vacuolization due to an influx of water into 
the lysosomal lumen (242). The appearance of lamellar bodies that occurs in 
response to some CADs (43) signals the accumulation of lipids within the lyso-
some that may occur following the interaction of drugs with phospholipids (246) 
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Figure 2.  Mechanisms of LMP induction.  (A) The lysosomal membrane is expanded to show 
detail. Carbohydrates on lysosomal associated membrane proteins (LAMPs) and lysosomal 
integral membrane proteins (LIMPs) form the protective glycocalyx. Also, resident within 
lysosomal membranes are ion channels and the vacuolar ATPase (v-ATPase) that maintains 
the acidic interior of the lysosome. A number of hydrolases are found within the lysosomal 
lumen. Dysregulation of these endogenous factors can contribute to LMP. (B) LMP-inducing 
agents including many lysosomotropic detergents and cationic amphiphilic drugs (CADs) 
contain hydrophilic side chains with charged cationic amine groups, allowing them to 
passively partition across cellular membranes in their non-ionized state. Within the acidic 
lysosomal lumen, these agents become protonated and sequestered in a process termed 
‘lysosomal trapping.’ (C) The degree of LMP often dictates the ensuing course of cell death 
(apoptosis or necrosis). (D) Expansion of the lysosomal membrane to show details of lipid 
constituents: the lysosomal membrane is composed of phospholipids, glycerophospholipids 
such as bis(monoacylglycero)phosphate (BMP), cholesterol, and sphingolipids such as 
sphingomyelin and ceramide. Sphingomyelin is hydrolyzed to ceramide by acid 
sphingomyelinase (aSMase). Positively charged amino acids on aSMase allow it to interact 
with negatively charged head groups on lipids such as phosphatidylcholine or 
phosphatidylserine. aSMase is displaced by agents that interfere with this binding domain. 
(E) Mitochondrial reactive oxygen species (ROS) production stimulates lipid peroxidation 
and LMP. Lysosomal membrane peroxidation is augmented by production of reactive 
hydroxyl radicals generated through degradation of iron-containing molecules within the 
lysosomal lumen in the presence of reducing agents. 
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or via inhibition of phospholipid metabolism (247, 248). The anti-tumor efficacy 
of CADs, including FDA-approved anti-histamines (227), anti-depressants (249), 
and anti-malarials (250), has been documented in both experimental and obser-
vational studies. The CAD 5-(N,N-hexamethylene) amiloride (HMA) showed 
robust induction of necrotic cell death in breast cancer cells regardless of molecu-
lar profile, with little toxicity against untransformed cells (184). Another CAD, 
the anti-histamine clemastine, killed patient-derived glioblastoma cells by LMP 
but was minimally toxic in normal human astrocytes and murine brain endothe-
lial cells, pointing to a critical therapeutic window for the treatment of this highly 
aggressive and chemo-refractory disease (227). Lysosomotropic detergents, which 
combine weakly basic amines (e.g., imidazole, morpholine) with long (9–14 
carbons) and straight hydrocarbon tails, are characterized by membrane disrup-
tive surfactant properties that progress with continued lysosomal accumulation 
(238–240). Derivatives of imidazole and morpholine lysosomotropic detergents 
were originally developed as anticancer therapeutics, inducing apoptosis or 
necrosis with LMP in a dose-dependent fashion across a range of cancer cell types 
(239, 251–253).

Interestingly, basic amines are a ubiquitous feature of therapeutic agents, 
conferring varying degrees of lysosomotropic potential (254). As such, lysosomal 
drug sequestration may either be cytotoxic or cytoprotective depending upon 
whether it potentiates LMP or prohibits interactions with the intended target. 
Indeed, substantial evidence supports the notion that the lysosome contributes to 
chemotherapeutic resistance (255–258). In one such mechanism, cellular stress 
resulting from accumulation of lysosomotropic drugs was shown to trigger exocy-
tosis, leading to lysosome-mediated multidrug resistance (259). Furthermore, the 
degree of resistance to the topoisomerase II inhibitor C-1330 and the receptor 
tyrosine kinase inhibitor sunitinib was directly associated with the total number 
of lysosomes (258) and, perhaps more importantly, the degree to which the nor-
mal cytosol-to-lysosome pH gradient is altered within a given cancer cell (260). 
Similar to other anti-cancer therapeutics (doxorubicin, mitoxantrone), C-1330 
and sunitinib were shown to preferentially accumulate within lysosomes, trigger-
ing substantial, dose-dependent increases in lysosome number, size, and their 
ability to uptake the lysosomal marker LysoTracker Red (258). Poor lysosomal 
accumulation and retained drug sensitivity was associated with intrinsic disrup-
tion of the physiologic pH of some cancer cell lysosomes (i.e., MCF7 breast cancer 
cells) (260). Accordingly, diminished lysosomal entrapment of weakly basic 
amines could be replicated with pharmacological disruption of the pH gradient 
following v-ATPase inhibition by bafilomycin A (255, 260) or administration of 
the lysosomotropic agent chloroquine (255), suggesting that modulation of 
lysosomal pH may be an effective strategy to overcome chemoresistance.

Indeed, the pH-disrupting agents chloroquine and hydroxychloroquine have 
been investigated as anti-cancer therapeutics, with dozens of clinical trials in 
progress (241, 261–265). Long used as an antimalarial, chloroquine sensitizes 
cancer cells to radiation and chemotherapy. Although thought to convey thera-
peutic sensitivity through the inhibition of protective autophagy, recent evidence 
suggests its role may be more complicated (266–268), and may at least par-
tially  involve the capacity to overcome drug sequestration within lysosomes 
(255, 269, 270). Nevertheless, as a nonspecific inhibitor of autophagy, potential 
side effects may arise from a loss of protective autophagy within normal tissues 
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(i.e., brain, liver, heart, kidney) that occurs during therapeutic intervention (271). 
Along these lines, chloroquine-treated mice are more likely to suffer from kidney 
damage in a model of ischemic–reperfusion than untreated animals (272). 
Chloroquine uptake may also be reduced in the external acidic milieu of some 
tumors, reducing its efficacy under these conditions (273). However, particular 
derivatives of chloroquine (273) or other small molecule inhibitors of autophagy 
(264) may offer improved stability and potency and warrant further study.

Nanoparticles

While nanoparticles have been extensively investigated for efficient tumor-site 
delivery of anti-cancer drugs in recent years, issues of non-specific cell toxicity 
are often attributed to lysosome dysfunction, as nanoparticles can accumulate in 
lysosomes and induce LDCD themselves. However, the precise mechanisms 
underlying nanoparticle toxicity are debated, with the involvement of autophagy 
in question in various cancers (274, 275). Several studies reported that early 
induction of autophagy allowed rapid nanoparticle uptake and delivery to 
lysosomes—a requirement for zinc oxide nanoparticle (ZnONP)-mediated cyto-
toxicity, i.e., nanoparticle dissolution and content release within the lysosomal 
lumen (276)––but that subsequent lysosomal damage resulting from nanoparticle 
buildup impaired autophagic flux and ultimately resulted in cell death (276, 277). 
Moreover, ZnONP cytotoxicity was not attributed to nanoparticle dissolution and 
zinc ion release within lysosomes in cellular models of leukemia and normal red 
blood cells but rather to LMP triggered by intact nanoparticles (278). A variety of 
nanoparticle formulations are currently under investigation as novel lysosome-
disrupting cancer therapeutics (279, 280). Interestingly, a recent report demon-
strated that nanoparticles carrying small interfering RNA (siRNA) therapeutics 
can become sequestered in lysosomes and exhibit inefficient endolysosomal 
escape (281), while CAD administration promotes LMP and cytosolic siRNA 
delivery.

Sphingolipids

Mounting evidence suggests that LMP occurs following specific changes in the 
composition of membrane lipids and major lysosomal proteins (114). Particularly 
interesting data has recently come to light suggesting that cancer cells have per-
turbed lipid species as compared to their normal counterparts, a feature that may 
permit their selective depletion. Along these lines, the lysosomotropic detergent 
siramesine and similar compounds directly induce LMP and non-apoptotic cell 
death in transformed cells but not in oncogene-depleted (‘detransformed’) or 
non-transformed variants (29, 282). These effects were universal across all cancer 
types tested (breast, ovary, prostate, cervix and bone (29)). Intriguingly, similar 
cancer specific effects were not found for other compounds that also induce LMP 
(i.e., LLOMe, sphingosine) or neutralize pH (concanamycin A) (29), although the 
lack of specificity may be related to the dose used (283).

Ostensibly, siramesine cytotoxicity is mediated by the displacement of aSMase 
(29), normally responsible for the breakdown of sphingomyelin to ceramide at 
the inner lysosomal membrane (134). Augmentation of aSMase activity occurs in 
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stressed normal cells following induction of heat shock protein 70 (Hsp70), which 
then binds the glycerophospholipid BMP to activate aSMase at the lysosomal 
membrane (30). The constitutive elevation of Hsp70 has been detailed for a num-
ber of cancer types, and is associated with resistance to caspase-dependent 
and  -independent cell death and poor prognosis (284–287). Bolstered aSMase 
activity appears to contribute to lysosomal integrity (29), making it a particularly 
attractive therapeutic target. Accordingly, exposure to siramesine (29) or Hsp70 
small molecule inhibitors (288) results in reductions in aSMase activity, induction 
of LMP, caspase-independent cell death and enhanced sensitivity to chemothera-
peutics. In agreement with siramesine-mediated aSMase inhibition, depleted 
Hsp70 induces effects that are cancer cell specific (286, 289–292). It is likely that 
aSMase inhibition perturbs lipid ratios (293), leading to membrane fragility and a 
propensity for LMP (29). This postulate is further supported by studies suggesting 
that augmented sphingomyelin content alone destabilizes lysosomal 
membranes (30), is selectively toxic to transformed cells (294), inhibits autopha-
gic flux (295), and impairs intracellular vesicle and plasma membrane fusion 
events (296). Destabilized lipid content following aSMase inhibition also affects 
signaling events at the plasma membrane, including the clustering and signaling 
of K-Ras (293), a protein with a dominant role in cell proliferation and survival. 
These data suggest that aSMase inhibition may not only be cancer cell specific 
(29), but may also be particularly well suited for K-Ras-driven cancers (i.e., pan-
creas, colon and lung), which currently lack targeted therapeutic options (297).

The clinical significance of sphingolipid species is further substantiated by 
observations that perturbed ceramide clearance was directly correlated with 
reduced chemotherapeutic sensitivity (298). As such, modification of ceramide 
levels by enhancing de novo biosynthesis or modulating aSMase activity have 
also been suggested as potential anti-cancer strategies to overcome imbalances in 
lysosomal ceramide (298–301). Although a clear link has yet to be established, a 
recent study demonstrated that markedly enhanced aSMase potentiates the accu-
mulation of ceramide and triggers cathepsin B release via LMP upstream of apop-
tosis (176). Importantly, cathepsin B catalyzes the degradation of XIAP (X-linked 
inhibitor of apoptosis) (176), the upregulation of which has been associated with 
therapeutic resistance and poor survival (302–304).

It is worthwhile to note that experimental modulation of aSMase activity 
appears to produce seemingly contradictory results. On the one hand, the deple-
tion of aSMase results in sphingolipid accumulation, ceramide depletion, LMP, 
and non-apoptotic cell death (29), whereas on the other hand its overexpression 
precipitates ceramide accumulation, LMP, and apoptosis (176). As such, it is likely 
that lysosome integrity depends upon the precise balance of sphingolipid species. 
Moreover, it is conceivable that there are factors modified under conditions of 
aSMase depletion or overexpression that await further investigation. For example, 
sphingosine accumulation inhibits cholesterol export (305), which may have 
implications for signaling events at lysosome-associated lipid raft domains or 
in  membrane dynamics. Moreover, modifications to sphingosine or ceramide 
may  generate either sphingosine-1-phosphate or sphingosine, respectively. 
Sphingosine-1-phosphate binds to G-coupled protein receptors to regulate 
growth, survival and migration of cells, and is associated with malignant transfor-
mation (306). Sphingosine was shown to induce LMP and programmed cell 
death (307–309), albeit nonspecifically (29). It was proposed that accumulated 
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sphingosine permeabilizes the membrane in a detergent-like fashion, resulting in 
cell death (310). A potential mechanism is outlined in Figure 3 that discusses the 
intricate balance of sphingolipids in LMP induction.

Calcium

Interestingly, sphingosine was also shown to affect calcium release from the lyso-
somal membrane (311). Although not often considered a major calcium storage 
site, the reported calcium concentration of 500μM within the lysosomal 
lumen (312) is comparable with that of the endoplasmic reticulum (313). In stud-
ies addressing the pathology of Niemann-Pick disease type C (NPC), a rare pro-
gressive disorder characterized by the accumulation of sphingolipid species and 
cholesterol, sphingosine was shown to induce the specific release of calcium from 
lysosomes and late endosomes but not release from other intracellular storage 

Figure 3.  Membrane stabilization and permeabilization is dependent on the balance of 
sphingolipids in lysosomes. Negatively charged bis(monoacylglycero)phosphate (BMP; shown 
in teal) is enriched in membranes of intraluminal lysosomal vesicles and provides docking 
points for positively charged acid sphingomyelinase, acid ceramidase, and other co-factors 
such as heat shock protein 70 (HSP70) and saposins (SAP). Proper recruitment of these 
enzymes facilitates lipid metabolism and membrane stabilization. Cationic amphiphilic drugs 
(CADs) disrupt BMP-enzyme interactions, inhibiting lipid metabolism and resulting in 
lysosomal membrane permeabilization. Figure created with BioRender.com.

http://BioRender.com
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sites (311). This rise in cytosolic calcium was dependent on interaction of sphin-
gosine with lysosome and endosome calcium channels (two-pore channel 1) (311). 
Lysosome-released calcium is vital for vesicle fusion and secretion, autophagy, 
and  lysosomal biogenesis (39, 314–316), as well as apoptosis-dependent 
phosphatidylserine externalization (317), an early recognition signal for engulf-
ment by phagocytic cells (318, 319). Intriguingly, prolonged endoplasmic reticu-
lum stress results in pancreatic cancer cell death mediated by LMP and 
accumulation of cytosolic calcium (320). General increases in intracellular cal-
cium are also associated with the activation of cytosolic calpain proteases and 
the initiation of LMP. Along these lines, μ-calpain is capable of permeabilizing the 
membrane of isolated lysosomes (321). Further, activated calpain species were 
shown to localize to the lysosomal membrane prior to cathepsin release 
(186, 322, 323), whereas their pharmacological inhibition effectively abolishes 
LMP (324).

Reactive oxygen species

Increased production of ROS (i.e., singlet oxygen and hydrogen peroxide) 
stimulates lipid peroxidation and destabilization of the lysosomal membrane 
(325–327). Cell death depends on the degree of LMP, where minimal leakage of 
cathepsins is nonlethal, reversible (328), and primarily impacts cell proliferation, 
while moderate or high membrane destabilization respectively induce apoptosis 
and necrosis (170). Peroxidation of the lysosomal membrane is likely mediated by 
local production of highly reactive hydroxyl radicals. Since iron-containing mac-
romolecules are degraded within the lysosomal lumen in the presence of reducing 
agents (i.e., glutathione, ascorbic acid and cysteine), there is a capacity to generate 
reactive radicals with exposure to H2O2 (329). Accordingly, iron chelation is 
protective against LMP whereas accumulation of iron-containing proteins or 
iron complexes sensitizes lysosomes to membrane damage (330–336). Cancer-
associated lysosomes may have a heightened propensity to accumulate iron, given 
the enhanced turnover of iron-containing proteins that accompanies their rapid 
proliferation (170). Consequently, cancer cells may be more sensitive to ROS-
induced LMP (214). Iron has also been implicated in maintenance of the cancer 
stem cell (CSC) state, and salinomycin selectively kills cancer stem cells by seques-
tering iron in lysosomes, leading to ROS-mediated LMP and ferroptotic cell 
death  (337). Unsurprisingly, aSMase was implicated in ferroptosis initiation 
through a positive feedback loop of ROS production, further connecting key lyso-
somal enzymes to ferroptosis (338).

While iron-loading has not been vetted as an anti-cancer strategy, such an 
approach may offer particular benefit to hypoxic regions of tumors where limited 
ROS production might contribute to insensitivity to LMP (329). Iron loading of 
hypoxic cells may sensitize them to ionizing radiation or other ROS-generating 
agents. On the other hand, redox-active iron has been suggested as a mutagen, 
contributing to persistent oxidative stress of DNA damage (339–341). Iron-
chelation also has important clinical applications, protecting normal tissues 
from  radiation damage during cancer treatment (342). An exception is CAD 
iron-chelating compounds, as they remain trapped within lysosomes and lead to 
iron-starvation and death (343, 344).
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CONCLUSION

The lysosome is clearly more than a cellular garbage disposal, contributing to 
dynamic processes that are essential to both normal physiologic function and dis-
ease pathology. Cancer-associated changes in lysosomal structure and function 
may bolster therapeutic resistance but may also be the gateway to cancer cells’ 
ultimate demise. Indeed, emerging data suggests the lysosome is potentially a pow-
erful anti-cancer target, given specific alterations in cancer cells that are not seen in 
non-transformed counterparts. Moreover, cancer cells frequently evade therapy-
induced apoptosis due to intrinsic or acquired mutations in caspase-dependent 
pathways; thus, utilization of LDCD and other caspase-independent cell death pro-
grams will be critical in the future development of cancer therapeutics. Nevertheless, 
a number of questions still remain with respect to cancer-associated lysosome 
signaling, membrane dynamics, ion regulation, and the precise role of LMP in cell 
death, which have limited the number of lysosome-targeted therapeutics transi-
tioning from preclinical study to clinical development. The dual functionality of 
cathepsin activation in cancer cell invasion and LDCD is a critical area requiring 
further investigation, as cathepsins are important mediators of both pro-tumorigenic 
and pro-death processes, depending on context. Substantial progress on these and 
other fronts will likely be fueled by continued advances in methods for the detec-
tion and quantification of lysosome-associated events.
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