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Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder 
characterized by impairments in social interactions/behaviors and increased ste-
reotypical repetitive behavior. Gastrointestinal disorders, ranging from severe 
constipation to diarrhea, are particularly prevalent for people on the autism spec-
trum, which may relate to an underlying dysbiosis (breakdown or imbalance) in 
the gut microbial community. Many studies have also identified changes in the gut 
microbiome in ASD compared to neurotypical cohorts in animal models and 
human populations. Microbial probiotics to help revert these gut microbial 
changes have been tested in animal models of ASD. Some have shown reversal of 
ASD behaviors and modulating the integrity of the gastrointestinal epithelial 
barrier. The gut-microbiota-brain axis has been described as a multidirectional 
communication channel between the three systems: the gut, gut microbes, and 
the brain, but whether these gastrointestinal microbes play a role in the context of 
ASD and whether they can be harnessed as a target for gastrointestinal therapies 
in humans is yet to be determined. 
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INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental condition that typically 
includes impairments in social communication/interaction and an increase in ste-
reotyped, repetitive behavior, as defined by the DSM-5 Manual (1). Autism was 
first clinically described by Kanner in 1943, with the reported prevalence of the 
condition increasing in recent years from ~5 in 10,000, in 1999, (2) to 1 in 54 in 
2020 (3). The factors responsible for this apparent increase are unclear. However, 
it could be due in part to greater awareness of the condition as well as changes to 
the diagnostic criteria of ASD. ASD is more commonly diagnosed in males than 
females (3 males: 1 female) (4). While the characteristics described above are 
generally associated with ASD, it involves a highly heterogeneous phenotype that 
differs from person to person and ranges from so-called ‘high-functioning’ indi-
viduals of exceptionally high intellect to severely intellectually handicapped peo-
ple requiring life-long care.

ASD commonly co-occurs with other conditions such as epilepsy, Down syn-
drome, and Fragile X syndrome, which may mask the presence of ASD due to 
their more prominent features (5). Based on twin studies, the concordance rate of 
ASD in monozygotic twins (who share all of their genes) is higher than in dizy-
gotic twins (who share around half of their genes), indicating that there are strong 
genetic factors associated with ASD (2, 3). A wide range of genetic mutations has 
been identified in genome-wide association studies of ASD, but no single gene 
mutation has been linked to more than 1% of all ASD cases (4, 5). Of the vast 
array of genetic de novo mutations, copy number variations, and chromosomal 
rearrangements associated with ASD, many converge towards disrupted synapse 
pathways in the brain (6). For example, single protein mutations that affect any of 
the components involved in the neurexin-neuroligin-PSD-95-SAPAP-SHANK 
complex result in a similar mechanism of synaptic disruption in ASD (7).

This chapter introduces the potential role of gut microorganisms (the “gut 
microbiota”) in ASD and discusses how these complex microbial communities 
may be manipulated as therapies for ASD-related challenges.

ASD AND THE GUT 

The gut microbiota refers to the microorganisms (mainly bacteria and fungi) living 
in the gastrointestinal tract, while the microbiome describes both the organisms 
themselves and their collective genomic capabilities. The colonization of the gut 
by microbes may begin before birth, although this remains controversial (8, 9). 
The microbiome dynamically fluctuates as diet and environmental exposure 
change throughout development (10). Bacterial cells were once thought to out-
number human cells by 10: 1 (11), though recent estimates suggest that this ratio 
is closer to 1.3 : 1 (12). Gut commensals are essential for aiding digestion of food 
(13), providing resistance against pathogens (14), and stimulating the host 
(human) immune system (15). Although the bacterial biota of the human gastro-
intestinal tract is quite conserved at the broad phylum level, where members of 
the Bacteroidetes and Firmicutes typically dominate (13, 16), the composition of 
bacterial species varies widely among individuals (17). Despite this variation in 
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bacterial composition, the functional capabilities of the gut microbiota are highly 
conserved among individuals, suggesting the presence of a ‘core microbiome’ of 
microbial genes (18). 

Due to difficulties with sampling the gut tissue itself (e.g., via colonoscopy), 
many studies use fecal samples as a non-invasive proxy for the gut microbiota. 
Although the fecal microbiota appears to be highly representative of the colonic 
microbiota, it is a less useful proxy for other parts of the gastrointestinal tract 
(19, 20). In practice, fecal matter includes a subset of both mucosa- and lumen-
inhabiting microorganisms, and sampling of feces remains the method of choice 
for most human gut microbiome studies. Next-generation sequencing technolo-
gies have provided a highly efficient, culture-independent approach to study gut 
microbiota, whereby the 16S ribosomal RNA gene is specifically amplified by PCR 
for taxonomic classification due to the universal presence of this gene in bacteria 
and archaea.

Children with ASD commonly have a more limited food repertoire and 
increased refusal to eat certain foods compared with neurotypical children. This 
could be due to hyper/hyposensitivity to sensory inputs associated with ASD 
(21, 22). Diet plays a large role in determining gut microbial composition and 
function (23, 24); thus, a selective diet could affect the gut microbial community. 
Some parents of children with ASD suspect that food allergies and sensitivity to 
dietary gluten and casein result in gastrointestinal problems and therefore imple-
ment gluten-free, casein-free (GF/CF) diets (25). However, despite the selective 
eating habits and specialized diets of some individuals on the autism spectrum, 
such as a GF/CF diet, there is no evidence of differential energy intake and growth 
compared to neurotypical children (26, 27). A small number of studies have 
found changes in ASD-related behaviors following implementation of a GF/CF 
diet (28), but many other studies have identified no such changes (25, 29). 
Overall, the effect of a GF/CF diet on ASD behaviors remains inconclusive.

The reported prevalence of gastrointestinal (GI) disorders (ranging from severe 
constipation to diarrhea in individuals with ASD varies widely, with estimates 
ranging from 2.2% to 96.8% of the ASD population (30, 31). Despite this consid-
erable heterogeneity, overall, most studies suggest a greater prevalence of GI prob-
lems in children with ASD compared with their neurotypical counterparts 
(32, 33). Behavioral changes combined with communication difficulties often 
make it hard for clinicians to detect underlying gastrointestinal problems in indi-
viduals with ASD (34), contributing to the variable findings of gut problems in 
this population. A compromised intestinal barrier (so-called “leaky gut”) describes 
GI problems associated with the permeability and integrity of the gut epithelial 
barrier (35–37), which may contribute to ASD. In this situation, dietary products 
and/or bacterial metabolites can pass through this barrier and enter the blood-
stream, where immune responses and interactions and other effects on the central 
nervous system/brain may occur.

ASD AND THE GUT-MICROBIOTA-BRAIN AXIS

The gut-microbiota-brain axis refers to the bidirectional communication between 
gut microbes and the brain (38–40). Changes in the gut microbiome have been 
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described in children with ASD (41–43), though this relationship varies consider-
ably among studies, and differences reduce somewhat once ASD, and control 
cohorts are carefully matched (44). If changes in the gut microbiome do occur, 
this may also alter the synthesis of microbial products. Gut microbial metabolites 
include short-chain fatty acids, as well as vitamins essential for human health 
(24, 45, 46). Other microbial products include compounds that act as neurotrans-
mitters that may influence synapse function and communication with the brain 
(47, 48). For example, gastrointestinal disorders and changes in the gut microbi-
ota are known to affect serotonin signaling in the gut and the brain (49, 50). 
Serotonin and other microbial metabolites, such as gamma-aminobutyric acid 
(GABA), can act as neurotransmitters, whereby the vagus nerve presents a direct 
pathway for communication between the brain and gut (51) (Figure 1). 

By inducing stress in mice, researchers have been able to measure changes in 
the gut microbiota (52), demonstrating how the brain can affect the gut in ways 
that could potentially lead to disruption of the gut barrier (53) and inflammation 
from gut immune responses (54). In germ-free mice that are not exposed to any 
bacterial sources and are kept under strictly sterile conditions, anxiety-related 
behaviors are common, as well as deficiencies in gut physiology and immune 
development (55, 56). Specific pathogen-free mice harbor gut bacteria but are 

Figure 1. The bidirectional communication pathways between the gastrointestinal system, gut 
microbes, and the brain. Direct stimulation between the gastrointestinal system and the brain 
occurs via the vagus nerve and metabolites from gastrointestinal microbes such as short-
chain fatty acids (SCFA), as well as neurotransmitters that can communicate with the brain via 
the blood.
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free from a list of specific pathogens. Compared to germ-free mice with no gut 
microbes, these mice exhibit profound differences in behavior and brain chemical 
signaling (57, 58), suggesting the importance of gut microbe interactions.

GUT MICROBIAL THERAPIES

The gut microbiota offers a therapeutic target due to their manipulable nature. 
There exist several avenues by which the microbiota can potentially be altered, 
and we discuss these in the context of ASD research below.

Probiotics

Probiotics consist of live microbes that are used to benefit host health by supple-
menting ‘healthy’ gut microbiota (59). Better-known types include bacteria such 
as various species of Lactobacillus and Bifidobacterium, which are readily available 
in fermented products as well as in powder or capsule form. Probiotics have been 
used to treat a wide variety of conditions in humans, such as antibiotic-associated 
diarrhea (60, 61) and irritable bowel disease (62–64). There is much anecdotal 
evidence that probiotic consumption has helped individuals with ASD, both in 
terms of improving gut problems (such as diarrhea or constipation) and improv-
ing some ASD-related behaviors. The use of probiotic treatments for ASD-
associated behavioral characteristics has also been supported in mouse models of 
ASD (65, 66), while trials in humans with ASD (60, 67) have sometimes been 
equivocal due to limitations such as small numbers of participants or lack of a 
placebo group. A 2020 review of probiotic supplementation for individuals with 
ASD concluded that the efficacy of probiotics looks promising, but there is still a 
need for standardized clinical trials to assess the effects of probiotic supplementa-
tion in individuals with ASD (67).

Diet alterations

It is well established that changes in diet have the potential to alter the composi-
tion of the human gut microbiota. For example, in a landmark 2014 paper, David 
and colleagues demonstrated significant and reproducible changes to the gut 
microbiota within 1–2 days of transitioning to a heavily animal protein-based diet 
(68). Similarly, marked differences in gut microbiota composition can be seen 
between members of more traditional, hunter-gatherer societies compared with 
urban dwellers consuming more of a contemporary, Western-type diet (69). 
Microbial diversity tends to be richer in the former group, likely reflecting a lesser 
reliance on antimicrobial products as well as consumption of a greater breadth of 
seasonal foods (69).

People on the autism spectrum typically have a more selective food repertoire, 
which can result in lower nutritional intake, ultimately leading to the develop-
ment of deficiencies in fiber, calcium, and protein uptake (70, 71). Selective eat-
ing habits may involve food refusal and high-frequency selective food intake or 
even gluten-free/casein-free/lactose-free parental restriction of diets, often making 
it difficult to provide a balanced diet to children with ASD, especially those with 
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sensory sensitivities (72, 73). Many studies only focus on children with ASD and 
their eating behaviors, with a need for longitudinal studies focusing on dietary 
deficiencies and their association with selective food intake.

There is also increasing interest in the use of prebiotics, so-called functional 
foods that are not broken down by host enzymes but are instead fermented by gut 
microbes, in turn stimulating their growth and activity (74, 75). Prebiotics such 
as partially hydrolyzed guar gum (76), galactooligosaccharide (77), and bovine 
colostrum product (78) have contributed to a reduction in gastrointestinal symp-
toms: mainly abdominal pain and increased bowel movement along with changes 
in the membership of the gut microbiota. Suggestions to combine prebiotics with 
probiotics or exclusion diets (e.g., GF/CF diet) to improve efficacy have the poten-
tial to have long-term effects but to date have been demonstrated with limited 
effectiveness, partially due to the vast differences in treatment duration, dosage, 
and regimens (79). 

Antibiotics

Antibiotic usage has substantially increased in the past few decades (80), accom-
panied by a concomitant increase in antibiotic-resistant infections (80, 81). While 
antibiotics can be exceptionally effective against various diseases of bacterial 
origin, the widespread non-targeted use of antibiotics calls for stricter guidelines 
on antibiotic stewardship (82). Narrow-spectrum antibiotics or even vaccines tar-
geting specific pathogens in the gut (83) could be used to improve gut health and 
cure infections (84). Doing so may open up an ecological niche in the gut following 
the eradication of specific microbes, therefore pro- or prebiotics may be beneficial 
to fill this gap with commensal beneficial microbes (85, 86).

A small oral vancomycin treatment study resulting in short-term beneficial 
changes in ASD behaviors was one of the first few papers to suggest a link between 
the gut-microbiota-brain axis and ASD (87). The authors suggested that the van-
comycin antibiotic treatment may temporarily deter colonization of potentially 
pathogenic bacteria in the gut, hinting at the promise of gastrointestinal therapies 
to ameliorate ASD symptoms.

Fecal microbiota transplants

Fecal transplants, whereby the gut microbes from a healthy donor(s) are intro-
duced into the gut of an affected individual, have received considerable recent 
attention. To date, they are most notable for their success in treating persistent 
Clostridioides difficile–associated diarrhea (88, 89), with a highly impressive >90% 
rate for curing recalcitrant infections (90). This approach has now been refined to 
reduce the risk of conferring infection and disease and improve patient palatabil-
ity (91). Careful consideration of the fecal donor sample is crucial as various 
unwanted effects such as new-onset obesity may occur after fecal transplant ther-
apy (92). Currently, the euphemistically termed “microbiota transfer therapy” has 
been proposed for a variety of human conditions, such as obesity (93), ulcerative 
colitis (94), and ASD (95). However, to date, the efficacy of this approach has only 
been unequivocally proven for C. difficile infections.
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Microbiota transfer therapy has shown promise to shift gut microbial 
composition in individuals with ASD towards neurotypical gut profiles (95). 
Importantly, these changes were accompanied by improvements in GI symptoms 
and behaviors associated with ASD, at least for eight weeks following a 10-week 
treatment period. Although promising, these results need to be viewed cautiously: 
this was an open-label study where placebo effects could not be assessed. 
Moreover, confounding effects such as antibiotic treatment to suppress patho-
genic bacteria, and acid-pump inhibition medication to reduce stomach acidity 
and improve the survival rate of the transferred microbes, could also have 
impacted the observed effects (95). Encouragingly, however, Kang et al. subse-
quently reported sustained ASD behavior and GI symptom improvements for at 
least two years post-microbiota transfer therapy (96).

ANIMAL MODELS OF ASD

Although ASD is only known to affect humans, there are many different animal 
models of ASD. The use of such models can enable a better understanding of the 
potential causes and mechanisms underlying ASD, which could ultimately result 
in the development of treatments for those that require them. Existing animal 
models of ASD include nematodes (Caenorhabditis elegans (97)), monkeys (Macaca 
sp. (98)), rats (Rattus norvegicus (99)), and the widely used mice (Mus musculus 
(100)). While using animals that are most similar to humans, such as monkeys, 
would be logical, this brings wider complications of financial burden, long devel-
opmental periods, and ethical concerns. 

ASD is generally diagnosed in a clinical setting, whereas autism-like behaviors 
in animals are assayed through a series of behavioral tests. To determine if the 
animal model accurately reflects the human disorder, determining construct, face, 
and predictive validity is important (101). Construct validity refers to how well 
the causative mechanism of the disorder in the animal model represents the human 
condition; this can be difficult to achieve for ASD models as there is no single 
mutation that represents all ASD cases. Therefore, there is an intention to mimic 
environmental and/or genetic aspects of ASD in humans in various ASD animal 
models. Face validity is the extent to which the animal model phenotype repre-
sents the human disorder on a behavioral and cellular level. Behavioral tests are 
well established in mouse models of ASD (102). However, ASD behaviors such as 
deficits in social-emotional reciprocity and non-verbal communicative behaviors 
are challenging to model in mice. Predictive validity relates to how well the treat-
ments for reversing or preventing some of the symptoms of the human disorder 
are reflected in the animal model. Currently, there are no reliable “treatments” for 
ASD, making it difficult to achieve predictive validity in animal models of ASD.

Mouse models of ASD can be created using varying approaches. For example, 
the maternal immune activation (MIA) mouse model is created by infecting a 
pregnant mouse with either live viruses or immunogenic substances (e.g., the 
bacterial endotoxin Lipopolysaccharide or the synthetic double-stranded RNA 
analogue polyinosinic–polycytidilic acid) to stimulate an immune reaction, result-
ing in offspring that display ASD-like behaviors, as well as autism-related cellular 



Wong GC et al.102

pathological changes (103). This model is based on data for humans that have 
correlated viral infection in the first trimester of pregnancy with a significantly 
increased likelihood of the offspring developing ASD (104). Administering val-
proic acid in utero is another method used to create an ASD mouse model that 
exhibits ASD-associated lesions in the motor nuclei of the brain (105). Buffington 
et al. (66) identified a specific bacterium (Lactobacillus reuteri) as being absent 
from mice in the maternal high-fat diet (MHFD) mouse model of autism spectrum 
disorder. After introducing L. reuteri into the MHFD mice, the social behavior 
deficits were restored with further effects on synapses and oxytocin levels in the 
brain, providing further evidence of a brain-gut connection (66) (Figure 2).

Inoculation of the probiotic bacterium Bacteroides fragilis in the MIA mouse 
model (Figure 2) led to a reversal of some ASD-like behaviors, restored blood 
serum bacterial metabolite levels, and improved gut epithelial barrier function 
(65) (Figure 2). This study illustrated a possible mechanism of ASD, as well as 
suggesting a potential therapy. However, translating results from animal models 
into humans requires caution. In animal models of other disorders, such as schizo-
phrenia, the treatments seem promising, but the same beneficial effects are not 
always observed when treating humans (106). However, by using animal models 
of ASD, one can have more control over environmental variables, which are 
valuable for understanding this complex disorder.

Genomic animal models are developed using ASD-related genetic mutations/
variants detected in humans (107), which generally also display face and con-
struct validity. Although these models do not embody all aspects of ASD, they do 
encapsulate certain features of ASD that are useful to study. Animal models are 
invaluable for understanding the histopathological and pathophysiological mech-
anisms of ASD in the brain, as well as for testing treatments that may aid people 
carrying the same genetic/histopathological changes as the animal model. 

Figure 2. The effects of microbial-based therapies on mouse models of ASD (65, 66). 
Introduction of bacteria such as Lactobacillus reuteri and Bacteroides fragilis in mouse 
models of ASD have been shown to restore oxytocin levels and synaptic function in the 
brain, modify and restore blood serum metabolites and improve the gut epithelial barrier 
function. 
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The marked heterogeneity of ASD genetics makes it hard to model the exact dele-
tions, frameshift mutations, or translocation mutations in different individuals 
with ASD. The SHANK family of synaptic proteins (SHANK1-3) is highly linked 
to ASD, with point, deletion, and frameshift mutations observed in people affected 
by ASD. In mice, the Shank3 gene is found on chromosome 15qE3 (108), and 
many Shank3 mutant mouse lines with different Shank3 gene mutations have been 
created (109–114). A major ASD-Shank3 mouse model that has been widely uti-
lized in ASD research is the Shank3B-/- ex13–16 mouse model, in which exons 
13–16 of the Shank3B-/- gene are deleted (7); this maintains the overall effect of 
knocking out the gene, resulting in SHANK3 protein loss of function as seen in 
human ASD cases as well as Phelan-McDermid Syndrome. Most Shank3 mouse 
model studies use homozygous Shank3 mutant mice, whereas heterozygous 
Shank3 mutations are also found in individuals with ASD. The Shank3B-/- mutant 
mouse model (ex13–16) displays ASD-like behaviors, including repetitive behav-
iors (grooming) and deficits in social interaction (7). In addition to this, the loss 
of several proteins in the post-synaptic structure is observed in the mouse model, 
which is also seen in individuals with ASD (7). These behavioral and cellular 
mechanisms observed in these mice reflect those that occur in people with ASD, 
supporting the face validity of the Shank3B-/- (ex13–16) mouse model. In relation 
to the gut-brain axis, differences in Shank3 mouse gut microbiota compared to 
wild-type mice have been observed, and subsequent Lactobacillus reuteri probiotic 
treatment was beneficial towards ASD behaviors; this provides further evidence 
that the gut-microbiota-brain axis in ASD can be manipulated (115). Overall, the 
use of ASD mouse models is crucial towards understanding how microbes can 
affect a neurodevelopmental condition (ASD) and how we can target this towards 
treatments for gastrointestinal disorders and behaviors associated with ASD.

DIETARY ZINC AND THE GASTROINTESTINAL TRACT IN ASD

Zinc is a key micronutrient required for many processes in the body, including 
enzyme functionality (116), immune system functioning (117), hormone produc-
tion (118), DNA repair (119), and protection against oxidative stress (120). 
Dietary zinc is absorbed mainly in the small intestine, where intestinal mucosa 
metallothionein proteins, ZIP proteins, and zinc transporters control zinc homeo-
stasis (121–123). Zinc deficiency is widespread in individuals with ASD and is 
also seen with attention deficit hyperactivity disorder (ADHD) and depression 
(124). Zinc deficiency can impair gastrointestinal function, conceivably resulting 
in further deficiencies of other micronutrients (125). ADHD and depression co-
occur in some individuals with ASD, but while the role of zinc in the pathology of 
these conditions is unknown, zinc treatment has been trialed for these conditions 
(126, 127). Some of the gastrointestinal problems reported in ASD reflect increases 
in intestinal permeability (128, 129). This could affect the absorption of zinc, 
which primarily occurs in the gut, leading to the zinc deficiencies that have been 
described in individuals with ASD (130). On the other hand, zinc deficiencies 
from the diet could also affect the integrity of the intestinal epithelial membrane 
as zinc is required as a cofactor/catalyst for many membrane transporters and 
structural membrane proteins (131, 132). 



Wong GC et al.104

Chronic zinc deficiency can affect the diversity, composition, and functional 
capacity of the gut microbiota (133), but to date, such analyses with the gut 
microbiota of humans or mice with ASD have not been undertaken. Short-chain 
fatty acids produced by gut microbes may contribute to lowering intestinal pH, in 
turn increasing zinc solubility and thus allowing increased dietary zinc absorption 
(134–136). Additionally, the gut microbiota may change the availability of zinc, 
which is required for many membrane transport systems essential for known 
pathogens such as Campylobacter jejuni (137). As a result, zinc can become a limit-
ing factor, leading to competition for this micronutrient among microbes. On the 
other hand, excess dietary zinc may negatively affect the gut microbiota, as the 
host immune system uses zinc to protect against pathogens (138). Thus, regulation 
of zinc homeostasis is important for both the health of the host and the gut 
microbiota.

The human immune system requires zinc to provide an innate and adaptive 
humoral response towards pathogens (139). Perturbations of the immune system 
can occur in ASD (140–142), but whether zinc plays a role in mediating this is 
unknown. Complex pathways connecting the central nervous system (CNS) and 
the immune system are essential, especially during the early stages of neurodevel-
opment (143). The findings of an altered immune system in some individuals 
with ASD (141, 144–146), together with the presence of a bidirectional immune 
system-CNS system, contribute to another model of ASD pathogenesis in which 
autoimmune reactivity could play a role.

Nutrient acquisition from the diet is partially compromised in zinc deficiency 
due to a reduction of functional zinc metalloenzymes and disaccharidases for 
digestion (147). Diarrhea and malnutrition can result from zinc deficiencies as the 
integrity and permeability of the gut epithelial barrier require zinc to maintain its 
function (148). These alterations make the gut more susceptible to pathogen 
establishment and growth, which can further reshape gut microbiota 
composition.

Some of the genes implicated in ASD interact with zinc: in particular, zinc 
interacts with the SHANK3 protein, the master regulator of synapses, to provide 
the essential post-synaptic density scaffolding network required for synaptic 
transmission in the brain (149). The SAM domain of SHANK3 proteins contains 
a zinc-binding site that requires zinc to create the scaffolding structure at the post-
synaptic density (150). Zinc deficiency and the loss-of-function Shank gene muta-
tions have implications for assembly, maintenance and neurotransmission function 
at the synapse, leading to loss of synaptic control mechanisms (151). Zinc uptake 
transporters (ZIP4 and ZIP2) co-localize with SHANK3 proteins at the plasma 
membrane: in Shank3αβ knockout mice and Shank3 knockdown human cell lines, 
there is reduced co-localization of zinc uptake transporters (ZIP4 in particular) 
and SHANK3 proteins at the membrane (152).

Brain electrophysiology studies have shown that zinc is responsible for stabi-
lizing the SHANK3 post-synaptic density by supporting the association between 
several SHANK3 proteins (153). Arons and colleagues (149) found that zinc is 
important in regulating SHANK3 activation in the brain, as SHANK3 proteins are 
central to regulating synaptic transmission via a zinc-sensitive signaling system. 
Disruption of this zinc-sensitive signaling system has been observed in Shank3 
mutations related to ASD, which may have impacted the functionality and plastic-
ity of synapses in the brain, possibly resulting in ASD behaviors (149, 154). 
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Increasing dietary zinc in Shank3 mouse models of ASD reverses ASD-related 
behaviors in young mice and offspring of mice fed a zinc-supplemented diet 
(155, 156). Whether these dietary zinc effects partially or fully stem from changes 
in the gut, including gut permeability or the gut microbiome, is of significant 
interest. 

CONCLUSION

There is increasing evidence for the gut-microbiota-brain axis and how the modu-
lation of these systems may play a role in gastrointestinal health and modification 
of ASD-related behaviors. While many individuals on the autism spectrum may 
present with different gastrointestinal microbial communities from neurotypical 
people and experience gut disorders, the currently available treatments are lim-
ited. Supplemented dietary zinc treatment has shown potential in an ASD-mouse 
model with supported plasticity changes in the brain. Fecal microbial transfer 
therapy also shows promise towards changing the gut microbial community and 
has positively sustained long-term effects towards gastrointestinal issues in ASD. 
Understanding how these potential treatments involve the gut-microbiota-brain 
axis and what we can use to harness it with reproducibility in the future effectively 
is key.
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