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Abstract 
 
Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic renal 
disease, which is caused by pathogenic mutations of either PKD1 (85%) or PKD2 (15%) 
genes, encoding for polycystin-1 (PC1) or polycystin-2 (PC2), respectively. These two 
proteins hetero-dimerize in renal primary cilia to act as a calcium channel. Primary cilia 
that protrude from cell membranes have a microtubule-based finger-like structure and are 
found on most mammalian cells. Primary cilia in the kidney have no motility but act as 
mechanosensors to sense fluid flow through renal tubules. In addition, various signaling 
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proteins related to Hedgehog (Hh) and platelet-derived growth factor receptor alpha 
(PDGFRα) are localized to the cilia to detect changes in the extracellular environment. 
Recent studies have demonstrated that many ADPKD animal models have defective cilia in 
the epithelial cells that line the cysts. Also, animal models targeting ciliary genes show 
abnormal phenotypes such as polycystic kidneys and developmental defects. These 
findings reveal that ciliary malfunction is sufficient to cause ADPKD. In this chapter, we 
will review the putative roles of cilia in cyst formation and development in ADPKD.  
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Introduction 
 
Polycystic kidney disease (PKD) is a group of inherited kidney disorders that induce 
bilateral cyst development in the kidneys. PKD is classified into two types: autosomal 
dominant (AD) and autosomal recessive (AR). ADPKD is estimated to have a prevalence 
rate of 1:400-1:1000 worldwide (1). ARPKD is estimated to have a prevalence rate of 
1:10,000-1:20,000 (2). ADPKD is the most common case of PKD and occurs in middle age, 
whereas ARPKD is the most lethal form and even affects children (2). One of the prominent 
characteristics of ADPKD is the development of fluid-filled cysts induced by an abnormal 
cell proliferation of epithelial cells in both kidneys, followed by inflammation and fibrosis 
leading to chronic kidney failure. Despite the clinical significance of this disease, no 
effective treatments are currently available. Mutations in the polycystin genes, PKD1 and 
PKD2, are responsible for ADPKD. These proteins are located in the primary cilia of 
tubular cells. The discovery of several mutated proteins in human and murine ADPKD 
indicates that there is a tight correlation between primary cilia and cyst formation, cell 
polarity, STAT6 and mammalian target of rapamycin (mTOR) signaling (3). Understanding 
the relationship between ADPKD pathogenesis and ciliary defects will provide novel 
insights to develop specific therapeutic targets against ADPKD. 
 
 
Autosomal dominant polycystic kidney disease (ADPKD) 
 
ADPKD is the fourth leading cause of renal failure worldwide in adults and affects 
approximately 1 in 400 to 1 in 1000 people (1, 4). ADPKD is a multisystem disease characterized 
by numerous cysts and fluid secretions into the lumen in the bilateral kidney (5). In general, 
patients affected with ADPKD suffer from hypertension and other cardiovascular symptoms 
beginning in their twenties and grow lots of fluid-filled cysts by middle age, finally leading to 
end-stage renal disease (ESRD) in ~50% of cases, which requires dialysis or transplantation (4). 
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The pathophysiology of ADPKD is caused by mutations in the genes of PKD1 
(chromosome region 16p13.3; approximately 85% of cases) or PKD2 (4q21; approximately 
15% of cases), which encode the proteins polycystin-1 (PC1) and polycystic-2 (PC2), 
respectively. Mutation in PKD1 is associated with a more severe renal cystic disease than 
mutations in PKD2 (6). PC1 is a 450-kD protein with a large extracellular N terminus, 11 
membrane-spanning domains, and a shorter cytoplasmic C terminus (7) and is associated 
with cell-cell and cell-matrix interactions at tight junctions, adhesions junctions, 
desmosomes, and focal adhesions (8). PC2 is a 968-amino acid protein that has six 
transmembrane domains with intracellular N and C termini (9). PC1 and PC2 proteins are 
known to form a complex that plays a role as a transient receptor potential channel 
involved in the regulation of intracellular calcium homeostasis (10, 11). This complex is 
localized to the primary cilium (12) and the endoplasmic reticulum (ER) (13), where it 
affects calcium concentrations in several subcellular compartments (14, 15). In the primary 
cilium, the PC1-PC2 complex may play a role as a mechanoreceptor to induce the influx of 
extracellular calcium in response to fluid shear stress (16, 17), while in the ER, it interacts 
with the ryanodine receptor and plays a role as a calcium release channel (18). Although 
the mechanisms are unclear, the loss of the functional PC1-PC2 complex leads to 
phenotype alterations such as the inability to maintain planar cell polarity, an imbalance 
between cell proliferation and apoptosis, increased fluid secretion, and remodeling of the 
extracellular matrix. The major signaling pathways associated with these phenotypic 
alterations include the intracellular deregulation of calcium homeostasis, cAMP 
accumulation and activation of protein kinase A (PKA), activation of mitogen-activated 
protein and mammalian target of rapamycin (mTOR) kinases, canonical Wnt signaling, and 
other intracellular signaling mechanisms (19, 20). 
 
The most important abnormalities that occur in the tubular epithelium lining the cysts have 
been extensively described: disturbance in the balance between tubular cell proliferation 
and apoptosis, alterations in the polarity of membrane proteins, abnormalities of cell-
matrix interactions, abnormal fluid secretion, and abnormal ciliary function (21). 
 
At first, in ADPKD, abnormal proliferation in tubular epithelial cells is strongly 
associated with cyst development and/or growth. The process of cyst formation requires 
proliferative expansion of the epithelial lining of the collecting duct or renal tubules (22). 
Actually, increased proliferation was observed in early cysts or dilated tubules from 
human ADPKD specimens and some mouse models of sporadic ADPKD (23, 24). 
Increased apoptosis as well as cell proliferation is detected in kidney tissues with 
ADPKD. Although the precise pathways linking proliferation and apoptosis in ADPKD 
remain to be elucidated, there is some evidence that apoptosis plays a crucial role in 
cystogenesis: (1) tubular epithelial cell apoptosis is observed in most animal models of 



Park et al. 

378 

PKD and in kidneys from patients with ADPKD; (2) induction of apoptosis in renal 
tubular cells leads to cyst formation in vitro; (3) abnormal increase in both proliferation 
and apoptosis occurs in cystic and non-cystic epithelial cells in the early stages of 
ADPKD; (4) caspase inhibition may induce less proliferation and apoptosis in tubular 
epithelial cells, leading to reduced cyst formation and kidney failure (25). Intriguingly, 
dysregulation of apoptosis plausibly induces cystic remodeling of renal tissue in 
cooperation with increased proliferation of tubular cells with disrupted planar cell 
polarity (PCP) and disoriented mitotic spindles (26). 
 
The PCP pathway, which is necessary for oriented cell division and the 
establishment/maintenance of kidney tubule structure, is involved in ADPKD 
pathogenesis even though it is incompletely understood (27). In addition, cell-cell/cell-
matrix interactions, which are mediated by integrin receptors, have long been associated 
with ADPKD but remain firmly understudied. Overexpression of extracellular matrix 
(ECM) proteins has been observed in human ADPKD cells and ADPKD animal models. In 
addition, the cysts lining epithelial cells show elevated adhesiveness to type I and type IV 
collagen in response to growth factors (28). 
 
Fluid secretion is an important pathogenic mechanism of cyst development in ADPKD. A 
large number of cystic lesions exhibit loss of afferent and efferent tubule connections, 
which implies that cysts derived from tubular segments are disconnected from the 
glomerular filtrate. Therefore, net transepithelial fluid secretion is required for the 
expansion of cystic lesions (29). Fluid accumulation causes cyst enlargement due to 
swelling and stretching in the cells to stimulate cellular division (30). Cystic fibrosis 
transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel 
expressed in the apical membranes of many secretory epithelia.  
 
Finally, renal cilia are microtubule-based and play a role as mechanosensors in response to 
fluid flow. The mechanosensory function of cilia is lost with mutated PC1 proteins in renal 
tubular cells (16) and the loss of polycystin function is mostly linked with cilia, leading to 
abnormal calcium signals in response to fluid flow (3). 
 
 
Primary cilia 
 
Structure of cilia 
 
Cilia and flagella are hair-like organelles found on eukaryotic cells when the cells were 
growth arrested or differentiated. These organelles project from the apical membrane of 
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epithelial cells. Although cilia were discovered in the 17th century, only motile cilia were 
studied for a long time, for example, in the respiratory epithelia that mediate airway 
clearance (3, 31). Relatively recent studies have focused on the structure and functions of 
primary cilia. 
 
Cilia and flagella are identified by their structures. Although the outer membranes of 
cilia and flagella are lipid bilayer membranes that coincide with the plasma membrane 
of the cell body, receptors and other proteins involved in signaling are embedded in 
the outer membrane of cilia (32). The inside structures of cilia and flagella are 
comprised of a microtubule-based cytoskeleton known as axoneme, which is a 
cylindrical pole regulated by the assembly or disassembly of ciliary protein. The 
axoneme grows outward from the basal body, which is a modified form of centrioles 
for developing axonemes in cell-cycle arrested cells. The centrosome is a complex of 
two centrioles and functions as the main microtubule-organizing center (MTOC) (33). 
The core axoneme is comprised of nine outer doublet microtubules (9+0) that emanate 
from the triplet microtubules of the mother centriole in the basal body (34). The change 
in the microtubule structures occurs in the region where the microtubule attaches to 
the membrane, known as the transition zone. The transition zone has transitional fibers 
that emerge from the end of the basal body and function as linkers from the doublet 
microtubules to the ciliary membrane (35, 36). The ciliary or outer membrane particles 
are separated in the transition zone. Selected ciliary particles move to the ciliary 
compartment and the membrane associated protein particles are lined up in the region 
known as the ‘ciliary necklace’ (37, 38). 
 
Most motile cilia contain an additional pair of central microtubules and axoneme-
associated dynein arms as well as radial spokes for ciliary motility (36). Recent studies, 
however, found some motile cilia with ‘9+0’ or ‘9+4’ microtubule structures (39). The 
non-motile cilia also known as ‘primary cilia’ are comprised of nine outer doublet 
microtubules, but lack a pair of microtubules and other proteins involved in motility 
(Figure 1). Instead of motility, primary cilia function as ‘sensory antennas’. The ciliary 
membrane contains a subset of receptors and ion channels that induce primary ciliary 
signaling pathways including phototransduction, olfactory sensing, mechanosensing, 
extracellular signaling including Hedgehog (Hh), Wnt, Platelet derived growth factor 
(PDGF) ligand, and planar cell polarity (PCP). Many organs and tissues in the 
mammalian body such as the brain, kidney, liver, pancreas and oviduct as well as 
olfactory and visual organs also have non-motile, primary cilia that detect and transmit 
signals from the external environment (32, 40, 41). 
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Figure 1. Structure of motile cilia and primary cilia. The inside structure of motile cilia is 9+2, 
and primary cilia is 9+0 microtubules based on the cytoskeleton, called the axoneme, which is a 
cylindrical pole regulated by the assembly or disassembly of ciliary protein. The doublet 
microtubule emanates from the basal body, which is a modified form of centrioles in cell-cycle 
arrested cells, ultimately resulting in assembly of the cilia. 
 
 
Cilia and cell cycle 
 
The cilia originate from the triplet microtubules of the basal body during interphase of cell 
division. The basal body is known as the centriole in metaphase of cell division. The centriole 
plays a role in determining the position of a dense matrix, called pericentriolar material, which 
in turn functions in organization of the microtubule during cell division (42). Because of basal 
body (centriole), formation of primary cilia also closely related with cell cycle regulation. Cilia 
are resorbed before S phase or during G2 (43) (Figure 2). When Golgi-derived (primary) vesicle 
attach to the mother centriole in the phase of G1, assembly of primary cilia begins. Additional 
Golgi-vesicles transport axonemal subunits at the mother centriole, and then accessory 
structures that induce docking and attachment of the mother centriole to the apical plasma 
membrane are formed (44, 45). Since docking of the mother centriole, axonemal subunits add to 
ciliary axoneme, and it leads to assemble and elongate primary cilia (35). 
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Figure 2. Regulation of primary cilia formation during the cell cycle progression. During the G1 
phase, centrioles dock to the apical region of the cells to prepare for cilia formation. If cells enter 
the G0 phase, assembly of the primary cilia is induced. During the S/G2 phase, centriole 
duplication and cilia absorption/disassembly occur, leading to cell division. When progression 
of the cell cycle is complete, two daughter cells re-enter the G1 phase and prepare for cilia re-
assembly. 
 
 
Assembly of cilia 
 
A number of components for cilia assembly have to be transported by ciliary precursors. 
Ciliary precursors were not described until 20 years ago, however, intraflagellar transport 
(IFT) was first discovered in Chlamydomonas, a unicellular green alga, by Rosenbaum and 
his colleagues (35, 46). They observed that IFT ascended and descended between the distal 
end of the flagella and the basal body along the ciliary axoneme (46). IFT was induced by 
large protein complexes known as complex A and B according to the direction of 
movement. Particles of IFT complex B function in anterograde IFT to the distal end of the 
cilia for ciliary assembly, whereas particles of IFT complex A are associated with retrograde 
IFT to the basal body during ciliary disassembly (47, 48). Anterograde or retrograde 
movement requires two classes of motor proteins, kinesins and dyneins, which gain energy 
by ATP hydrolysis. Heterodimeric kinesin-2 motors (Kif3a, Kif3b, KAP complex in 
mammals) accumulate IFT complex B (anterograde IFT) particles and transport them 
toward the tip of the cilia. Cytoplasmic dynein 1b (DHC2 in mammals) carries IFT complex 
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A particles (retrograde IFT) from the tip to the base (49-51). Recent studies reported that 
kinesin-2 motors congregate with not only IFT particles but also associated cargoes such as 
axonemes precursors, signaling molecules and retrograde motors, resulting in anterograde 
assembly in the cilia. Cytoplasmic dyneins, in contrast, restore kinesin motor proteins and 
IFT particles to the basal body (34). 
 
Ciliopathies 
 
Cilia were previously regarded as no more than small organelles. Following increased 
interest in cilia, however, studies have focused on disruptions in the cilia. Ciliary 
dysfunctions are related to multiple human genetic diseases called ciliopathies (52). The 
first study observed some developmental defects in Oak Ridge Polycystic Kidney mouse 
(ORPK mouse, mutation in IFT88) including cystic kidneys (32, 53). Later studies 
demonstrated that IFT88 was responsible for the assembly of the cilia and for abnormal 
cilia in the Tg737/ift88 mutant mouse (32, 42, 54). The importance of cilia in renal 
cystogenesis was revealed by knock-down of KIF3a (IFT-associated kinesin motor) in 
mouse kidneys (55). Altogether, loss of cilia or polycystin, which disrupted ciliary signaling, 
resulted in cystic disease. Recent data indicated that the timing of cilia defects determine 
the severity of the cystogenetic phenotype (56). 
 
 
PKD and ciliary defects 
 
Among the known ciliopathies, PKD is one of the most common renal genetic disorders. 
Recent studies have demonstrated that mutations in ciliary genes are closely related to the 
onset of cystic kidneys (12). Therefore, cilia-defective mouse models were produced to 
elucidate the function of renal cilia in the kidney. Most mouse models targeted by ciliary 
proteins showed embryonic lethality with multiple developmental defects (57-59). 
Consequently, many research groups have produced ciliary gene-targeted mice using 
kidney specific Cre mice (54, 57, 60). In this chapter, the phenotypes of renal cilia and 
aberrant signaling pathways in PKD mouse models targeted by ciliary genes are 
introduced.  
 
Phenotype of renal cilia in representative PKD mouse models 
 
According to many papers published so far, proteins related to the onset of PKD are 
localized to the cilia or basal body and regulate ciliary functions as well as the structure of 
the cilia (12, 61). The PC1 and PC2 proteins, encoded respectively by PKD1 and PKD2 
genes, are localized to renal cilia. DeCaen et al. suggest that these two protein complexes 
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act as calcium channels in the primary cilia (62, 63) and regulate various intracellular 
signaling pathways associated with cell proliferation (64). Kidney-specific inactivation of 
Pkd1 in the mouse results in the severe polycystic kidney phenotype (65), but there are no 
significant changes in the renal cilia (56, 65). However, a knockin mouse model targeted by 
pathogenic mutation of PKD1 (PKD1 p.R3277C) shows progressive PKD phenotype with 
elongated cilia of the renal collecting duct cells (66). These results indicate that the function 
and structure of renal cilia are regulated according to the type of genetic mutation of PKD1. 
The first mouse model to demonstrate that defects in renal cilia are associated with the 
development of PKD was the ORPK mouse model. The ORPK mouse is produced by 
insertion mutation of the Ift88 (Tg737) gene related to ciliary assembly (54). This mouse 
model has the polycystic kidney phenotype with shortened renal cilia that accumulate with 
PC2 protein (53, 67). As the volume of papers on the relevance of ciliary defects and PKD 
has increased, various mouse models targeted by ciliary genes have been produced. 
 
Many research groups have proposed that deficiency in the renal cilia is the driving force 
for PKD development. In this section, representative PKD mouse models targeted by the 
IFT complex B or complex A subunits are described. Most mouse models that are 
constitutively targeted by genes related to IFT have shown embryonic lethality (55, 57), and 
as a result, mouse models that are specifically targeted to IFT genes were produced to 
identify the role of IFT genes in the kidney. In PKD mouse models targeted by the IFT 
complex B subunit, deletion of the Ift20 gene in the collecting duct cells of the kidney is 
well documented. Because Ift20 belongs to IFT complex B, which has a role in cilia 
assembly (57), inactivation of Ift20 gene may cause defects in cilia formation. As expected, 
polycystic kidney, accompanied by the absence of cilia and centrosome defects such as 
mislocalization and overduplication leading to misorientation of the mitotic spindle, is 
observed in the Ift20 targeted renal collecting duct cells (57). In the PKD mouse model 
targeted by the IFT complex A subunit, inactivation of the Ift140 gene in the collecting duct 
cells of the kidney is well documented. This mouse model exhibits severe polycystic 
kidneys accompanied by an increase in canonical Wnt signaling (60). However, the renal 
cilia phenotype for Ift140-deleted kidneys is slightly different from those of Ift20-deleted 
kidneys. Renal cilia are almost completely absent in Ift20-deleted kidneys, but inactivation 
of Ift140 in the kidney results in short or stumpy cilia despite cystic renal epithelial cells in 
the late stage (60). These studies indicate that defects in IFT complex B commonly induce 
loss of renal cilia while defects in IFT complex A appear to induce short or truncated renal 
cilia instead of lack of cilia, suggesting that normal renal cilia structure is critical for 
repressing the cystogenesis mechanism in PKD.  
 
Another PKD mouse model targeted by mutation in non-IFT genes is the juvenile cystic 
kidney (jck) mouse, which has a missense mutation in the Nek8 gene encoding 
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serine/threonine kinase, NIMA (never in mitosis A)-related kinase 8 (68). The NIMA 
protein is known as the mitosis regulator and controls cell cycle entry (69). It has been 
suggested that cell cycle regulators may be involved in the regulation of primary cilia 
structures because primary cilia are absorbed into the cells during the cell cycle, resulting 
in disassembly of the primary cilia (70). Therefore some regulators related to cell cycle 
progression, such as the NIMA protein, may have an effect on the primary cilia structure. 
Consistent with this prediction, lengthened renal cilia are observed in the kidneys of jck 
mice with the accumulation of PC1 and PC2 expression along the cilia (71). With these 
ciliary defects, the jck mouse model shows the PKD phenotype in multiple nephron 
segments with increased levels of cAMP, resulting in an increase in fluid secretion into the 
lumen and renal cell proliferation (71). 
 
These PKD mouse models showing defects in renal cilia suggest that ciliary defects, 
including normal cilia without polycystin, stumpy cilia, and lack of cilia, are a driving force 
in the development of cystic kidney, and that cilia are important to maintain normal 
physiology in the kidney. Therefore, understanding the pathological changes that are 
specifically influenced by renal ciliary defects is important to elucidate the mechanism 
underlying renal cystogenesis.  
 
Aberrant signaling pathway induced by ciliary defects in PKD 
 
Unlike motility cilia, primary cilia have no motility but are considered cellular antenna 
that transduce extracellular environmental changes to intracellular signaling molecules 
(72), suggesting that defects to the cilia lead to aberrant multi-signaling pathways. In 
PKD with ciliary defects, many signaling pathways related to cell proliferation are 
disrupted (73). Among the pathways disrupted in PKD, mitogen-activated protein kinase 
(MAPK) and mammalian target of rapamycin (mTOR) pathways are commonly activated 
in PKD (74, 75).  
 
The primary cilium in the renal epithelial cell protrudes from the plasma membrane into the 
lumen to sense flow stimulation through the renal tubules (16). Flow stimulation induces the 
bending of intact cilia with PC1/PC2 calcium channels (16, 76), which leads to an increase in 
intracellular calcium levels followed by the release of calcium from the endoplasmic 
reticulum (ER). Increased levels of intracellular calcium induce suppression of the 
Ras/Raf/Mek/Erk pathway by regulating cAMP (42, 77). In contrast, perturbation of flow 
sensing occurred in PKD in the absence of cilia, resulting in the decrease of intracellular 
calcium levels (78). Decreased intracellular calcium levels induce cAMP activation, leading to 
activation of the Ras/Raf/Mek/Erk pathway. Hence, increased cell proliferation and fluid 
secretion into the lumen are observed in many PKD models with cilia defects (79). 
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The mTOR signaling pathway plays a role in regulating cell size and metabolism (80). 
Accumulated data suggest that hyper-activation of the mTOR pathway is observed in 
various PKD mouse models (75, 81). Based on these data, many research groups have 
tried to find the regulatory mechanism of the mTOR pathway in PKD models with cilia 
defects. There is a paper elucidating the role of renal cilia in regulation the mTOR 
pathway (82). This paper suggests that Lkb1 and AMPK proteins, localized at the basal 
body of normal primary cilia, repress the mTOR signaling pathway under flow 
conditions to reduce cell size (82). However, enlarged cell size and hyper-activation of 
mTOR signaling are observed due to a decrease in the responsiveness to flow stimulation 
in cilia-defective PKD (kidney-specific inactivation of Kif3a) models (55, 82), suggesting 
that proteins localized to the basal body of the cilium and normal ciliary structure are 
critical to regulate mTOR signaling in PKD.  
 
A new ciliary pathway that promotes renal cyst formation was recently reported (56). 
According to many papers published so far, the presence of renal cilia seems to act as a 
suppressor for renal cyst growth, but recent studies have demonstrated that primary cilia 
devoid of polycystin proteins can activate renal cyst growth (56). To prove this idea, a 
combination of the cilia-defective PKD mouse model and the polycystin-defective mouse 
model was produced (56). Surprisingly, loss of renal cilia reduced renal cyst size following 
defects in polycystin proteins, suggesting a new pathway involving cilia-dependent cyst 
activating (CDCA) mechanisms inhibited by polycystin (56). However, a CDCA-specific 
pathway or regulator has not yet been identified, so further studies are needed.  
 
In summary, normal primary cilia with polycystin proteins are critical to suppress rapid 
renal cyst growth by inhibiting the increase of cell proliferation, leading to the onset of 
PKD. In this chapter, MAPK, mTOR and CDCA pathways are discussed, but Hedgehog 
and Wnt pathways are also regulated in primary cilia and disrupted in PKD models. 
Therefore, identification of the role of cilia in PKD and role of polycystins in cilia are 
helpful to understand PKD pathogenesis and to identify new therapeutic targets for 
curing PKD. 
 
Conclusion 
 
The relationship between defects in primary cilia and PKD development has been 
elucidated, but the exact role of the primary cilia and related proteins in PKD remains to be 
identified. It was recently suggested that various pathogenic proteins observed in PKD 
models are localized to primary cilia. Also, it has been reported that proteins associated 
with primary ciliary assembly or with regulating ciliary function play a role in regulating 
the cell cycle in non-ciliated cells (83), which suggests that ciliary proteins may be essential 
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for regulating multiple signaling pathways in a cilia-dependent as well as cilia-
independent manner. Therefore, elucidating the role of primary cilia or components related 
to primary cilia will provide new insights into the pathological mechanisms of ciliopathies 
involving PKD in addition to non-ciliopathies.  
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