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Abstract 
 
MicroRNAs (miRNAs) are a class of small non protein-coding RNAs that function as 
inhibitors of post-transcriptional gene expression in plants and animals. Over a thousand 
different miRNAs are known to be encoded by the human genome, the majority of which 
are conserved in other species. miRNAs are essential for virtually all aspects of mammalian 
biology, including development of key organs such the brain, the heart, and the kidney. 
More importantly, miRNAs are implicated in the pathogenesis of numerous common 
human diseases, and pharmaceutical manipulation of miRNA function has emerged as an 
exciting new therapeutic approach for cancer and kidney diseases. Several lines of evidence 
have connected  miRNAs to the pathogenesis of  polycystic kidney disease (PKD). miRNAs 
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are aberrantly expressed in cystic kidneys and this aberrant expression is thought to 
regulate key aspects of cyst pathogenesis such as cyst epithelial cell proliferation and 
apoptosis as well as dosage of the various cystic kidney disease genes. In this chapter, we 
briefly discuss the basic biology of miRNAs and their role in kidney development, and 
highlight the role of three miRNA families – miR-17 and related miRNAs, miR-200 family 
and miR-21- in the pathogenesis of PKD.  
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Introduction 
 
MicroRNAs (miRNAs) are a class of small (approximately 22-nucleotide long) non protein-
coding RNAs that function as inhibitors of post-transcriptional gene expression in plants 
and animals (1, 2).  Drs. Victor Ambros, Gary Ruvkin and their colleagues first discovered 
miRNAs in the nematode Caenorhabditis elegans in the early 1990’s (3, 4). For nearly a 
decade after this discovery, it was thought that miRNAs represented a phenomenon that 
was unique and limited to lower organisms. However, this assumption changed in the year 
2000, when the first mammalian miRNA, called let-7, was described (5, 6). The discovery of 
let-7 sparked great interest in identifying new miRNAs, understanding miRNA biology in 
mammalian development, and studying the role of miRNAs in pathogenesis of common 
human diseases. Nearly fifteen years later, we now know that thousands of evolutionarily-
conserved miRNAs are encoded by the human genome and that miRNAs are implicated in 
virtually all aspects of mammalian biology – ranging from embryogenesis and aging to 
metabolism and immunity. More importantly, miRNAs have emerged as key players in the 
pathogenesis of numerous human diseases (7, 8) such as cancer (9-14), diabetes (15), obesity 
(16, 17), infectious diseases (18) and even genetic disorders such as polycystic kidney 
disease (PKD) (19-24). A novel class of drugs, called antimirs and miRNA-mimics, that can 
manipulate miRNA function are currently in various stages of pre-clinical and clinical 
testing, raising hope that someday a miRNA-based therapeutic approach can be used to 
treat common human diseases (11, 25, 26). 
 
 
MiRNAs: biogenesis, function and role in kidney development 
 
Based on their genomic location, miRNAs can be classified into two groups: intragenic 
miRNAs or intergenic miRNAs. Intragenic miRNAs are located within introns or rarely 
exons of known protein-coding genes, and are generally co-transcribed with their host 
gene. In contrast, the intergenic miRNAs are located outside of any known protein-coding 
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genes and function as independent transcriptional units. Biogenesis of miRNAs involves 
RNA-polymerase II-dependent transcription of a relatively large capped and 
polyadenylated transcript known as primary miRNA (pri-miRNA). Pri-miRNA is 
processed by the RNase III endonuclease, Drosha, and its cofactor, Dgcr8 into smaller stem-
looped structures known as precursor miRNAs (pre-miRNA). Pre-miRNAs are transported 
out of the nucleus by Exportin 5 into the cytosol, where further processing by a second 
RNase III enzyme, Dicer, leads to the generation of 19-25 nucleotide mature miRNA. The 
nucleotide sequence 2 through 8 at the 5’-end of the mature miRNA is referred to as the 
‘seed-sequence’. The mature miRNA associates with the miRNA-induced silencing 
complex (miRISC), where Watson-Crick base-pairing between the seed-sequence of a 
mature miRNA and complementary sequences primarily located within 3’-UTRs of 
mRNAs results in post-transcriptional gene silencing (Figure 1).  In this manner, miRNAs 
function as sequence-specific inhibitors of mRNA translation(27). miRNA-mediated 
regulation of mRNA expression is likely to be extremely complex. Bioinformatic algorithms 
predict that each miRNA could potentially inhibit thousands of mRNAs(28-35). Each 
mRNA, in turn, may possess binding sites for numerous unique miRNAs. Additional 
factors that further complicate the regulation of mRNA expression by miRNAs include the 
secondary structure of the mRNA and binding of proteins to mRNAs in close proximity to 
miRNA-binding sites. Recent studies have shown that some miRNAs can be produced 
independent of the canonical Drosha-Dicer pathway and that miRNAs can inhibit mRNA 
translation by binding to coding regions and 5’-UTRs of mRNAs. Thus, a lot remains to be 
learned about the basic miRNA biology. 
 
miRNAs are implicated in development of various organs, including the kidney (36, 37). 
Kidney development involves interactions between two embryonic structures, the 
metanephric mesenchyme (MM) and the ureteric bud (UB). The MM is a precursor tissue 
composed of renal progenitor cells that gives rise to glomeruli and nephrons. The UB is a 
‘T’-shaped epithelial structure that eventually gives rise to the collecting ducts. Signals 
from the UB induce the progenitor cells of the MM to undergo differentiation. 
Conversely, the MM sends signals to the UB, which causes UB to undergo branching. 
This process of reciprocal signaling between the MM and UB is repeated innumerable 
times to eventually give rise to nearly one million nephrons and collecting ducts. 
Mutations of cystic kidney disease genes, particularly those implicated in childhood 
forms of PKD are known to disrupt normal kidney development. Therefore, 
pathogenesis of some forms of PKD can be traced back to abnormal kidney development. 
miRNAs have been shown to regulate virtually all processes in kidney development  
(36-39). Inhibiting miRNA function in the UB or MM prevents UB branching and MM 
differentiation, respectively, ultimately resulting in renal agenesis or dysplastic kidneys. 
Inhibiting miRNA function at later stages of kidney development, specifically in the 
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elongating renal tubules without affecting UB branching and MM differentiation, results 
in the formation of numerous tubular and glomerular cysts, a phenotype that is 
reminiscent of PKD (40). Intriguingly, the proposed mechanism by which miRNAs may 
regulate normal renal tubule elongation is by modulating the expression of various cystic 
kidney disease genes, in particular the autosomal dominant polycystic kidney disease 
(ADPKD) gene PKD1(40). Thus, these observations provide the earliest and a direct link 
between miRNAs, kidney development and cyst pathogenesis. 
 
 

 
Figure 1. A schematic of miRNA biogenesis and function in animals. miRNA biogenesis 
begins in the nucleus, where RNA-polymerase II-dependent (RNAPII) transcription of a 
relatively large capped and polyadenylated transcript known as primary miRNA (pri-
miRNA). Pri-miRNA is processed by the RNase III endonuclease, Drosha, and its cofactor, 
Dgcr8 into smaller stem-looped structures known as precursor miRNAs (pre-miRNA). Pre-
miRNAs are transported out of the nucleus by Exportin 5 into the cytosol, where further 
processing by a second RNase III enzyme, Dicer, leads to the generation of mature miRNA. 
The mature miRNA associates with the miRNA-induced silencing complex (miRISC), where 
Watson-Crick base-pairing between the seed-sequence of a mature miRNA and 
complementary sequences primarily located within 3’-UTRs of mRNAs results in post-
transcriptional gene silencing. 
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MiRNAs that regulate PKD pathogenesis 
 
Emerging evidence from studies performed on rodent models and bio-specimens obtained 
from human ADPKD patients suggests that aberrant expression of many miRNAs may 
underlie disease progression in PKD. In this section, we will primarily discuss the role of 
three families of miRNAs in the pathogenesis of PKD; miR-17 and related clusters, miR-200 
and miR-21. 
 
miR-17 and related miRNAs  
 
The miR-17 family of miRNAs consists of fifteen miRNAs that are located as three distinct 
clusters on different chromosomes. In humans, the first cluster - miR-17~92, is located 
within the third intron of the non-protein coding gene, MIR17HG (C13orf25) on 
chromosome 13 (13q31.1-q33-1). The cluster consists of miR-17, miR-18a, miR-19a, miR-20a, 
miR-19b-1, and miR-92-1. The second cluster – miR-106b~25, is located in the 13th intron of 
MCM7 on chromosome 7 (7q22.1) and consists of miR-106b, miR-93, and miR-25. The third 
cluster – miR-106a/363 is located on chromosome X (Xq26.2) and consists of miR-106a, 
miR-18b, miR-20b, miR-19b-2, miR-92a-2 and miR-363. Based on their seed sequences, the 
fifteen miRNAs can be grouped into four families - the miR-17, the miR-18, the miR-19, and 
the miR-92 family. The four families target different mRNAs; however they are predicted 
to repress multiple mRNA targets within the same pathways, thus regulating entire 
signaling nodes. 
 
The miR-17~92 cluster is expressed at high levels in embryonic cells and is essential for 
normal development of various organs (41, 42). Microdeletions of the miR-17~92 
cluster cause Feingold syndrome, a human developmental disorder that is 
characterized by defects in the skeletal and gastrointestinal system (43). Some patients 
with Feingold syndrome also have mental retardation and kidney and heart 
developmental abnormalities. Consistent with these findings, deletion of miR-17~92 in 
mice produces skeletal, heart, brain and kidney developmental defects (44, 45).  Several 
lines of evidence have proved that the miR-17~92 cluster is a bonafide oncogenic 
miRNA cluster (10, 46). First, the miR-17 family and related miRNAs are upregulated 
in various human cancers (47), which include those of the kidney, colon, breast, 
prostate, stomach, and the pancreas. The oncogenic transcription factor, c-Myc binds to 
the promoter region of miR-17~92 and activates its transcription (48, 49).  Second, 
forced expression of these miRNAs aggravates, whereas inhibiting miR-17~92 slows, 
cancer growth in mice (50-53). Lastly, the miR-17~92 cluster promotes proliferation of 
cells through direct and indirect inhibition of numerous tumor suppressor genes and 
promotes proliferation of cells. 
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While the miR-17~92 cluster and related miRNAs have been studied extensively in cancer, 
their role in kidney diseases is not completely understood. Studies by our group have 
conclusively proved that the miR-17~92 cluster is pathogenic in PKD (23). The expression 
of the miR-17~92 cluster is increased in orthologous as well as non-orthologous mouse 
models of PKD. Kidney-specific over-expression of the miR-17~92 cluster leads to cyst 
formation. Conversely, deletion of the cluster in a mouse model of PKD ameliorates the 
cystic phenotype, improves renal function and prolongs survival. One of the mechanisms 
through which the miR-17~92 cluster aggravates to cyst growth is by promoting 
proliferation of the cyst epithelial cells. Overexpression of the miR-17~92 cluster in the 
kidney leads to increased proliferation of cells lining the cysts, while deletion of the cluster 
in a model of PKD, decreased proliferation. A novel mechanism for cyst growth in PKD has 
been uncovered, which involves post-transcriptional regulation of cystic kidney disease 
genes by members of the miR-17~92 cluster. The ADPKD genes, Pkd1 and Pkd2 harbor 
conserved binding sites within their 3’-UTRs for members of the miR-17 family, while the 
hepatocyte nuclear factor 1-beta gene (HNF-1β) has conserved binding sites for the miR-25 
family within its 3’-UTR. HNF-1β is an epithelial-specific transcription that regulates the 
expression of multiple cystic kidney disease genes (54, 55). In humans, mutations of HNF-
1β produces cystic kidney disease and early-onset diabetes mellitus, a syndrome called 
renal cysts and diabetes (RCAD) (56). Several lines of evidence indicate that miR-17 
represses these cystic genes in vitro and in vivo. In mouse kidneys, over-expression of the 
miR-17~92 cluster leads to decreases in the expression of Pkd1, Pkd2, Pkhd1 and Hnf-1β, 
while kidney-specific deletion of the miR-17~92 cluster in a PKD mouse model leads to 
upregulation of the same set of cystic genes. In cultured renal epithelial cells, reporter 
assays indicate that miR-17 represses Pkd1 and Pkd2, while miR-25 represses Hnf-1β by 
directly binding to their 3’-UTRs. In addition, mutation of the miR-17 and miR-25 binding 
sites within the 3’-UTRs of Pkd1, Pkd2 and Hnf-1β, respectively, abrogated the miRNA 
mediated repression. The autosomal recessive polycystic kidney disease (ARPKD) gene, 
Pkhd1 does not harbor binding sites for miR-17; however, its expression is directly 
regulated by Hnf-1β, which explains the change in its levels in miR-17 overexpressing cells 
and miR-17~92 knockout kidneys (57). In addition, bioinformatic analysis indicates that a 
number of genes that are mutated in humans with cystic diseases and developmental 
disorders are targets of the miR-17/18/19 and 25 families. Thus, miR-17 may promote cyst 
growth in PKD by directly and indirectly modulating the gene dosage of a large network of 
cystic kidney disease genes. Reduced gene dosage of ADPKD genes has been proposed as a 
new mechanism for cyst pathogenesis (58-60). The hypothesis states that kidney cysts form 
in ADPKD patients because the dosage of ADPKD genes falls below a critical threshold. 
Mutations that moderately reduce ADPKD gene dosage cause a milder form of the disease, 
whereas more deleterious mutations that severely reduce ADPKD gene dosage cause an 
aggressive form of disease. In this scenario, miR-17 may act as a modifier of disease 
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progression in ADPKD. Increased levels of miR-17 can further reduce ADPKD gene dosage 
and aggravate disease progression. Importantly, inhibiting miR-17 may increase the 
ADPKD gene dosage and retard disease progression. 
 
miR-200 miRNA family 
 
The miR-200 family comprises five members – miR-200a, miR-200b, miR-200c, miR-141, 
and miR-429. These miRNAs are located as two clusters on separate chromosomes. In 
humans, the miR-200b~miR-429 cluster is located on chromosome 1(1p36.33), while the 
miR-200c and miR-141 cluster is located on chromosome 12 (12p13.31). Based on their seed 
sequences the five miRNAs are divided into two subgroups – group I comprises miR-200a 
and miR-141 while group II comprises miR-200b, miR-200c and miR-429; however, these 
two groups regulate many of the same mRNA targets. Several lines of emerging evidence 
suggest that the miR-200 miRNA family plays an important role in renal tubule 
development and cyst pathogenesis. First, the expression of miR-200 family members is 
highly enriched in the normal kidney tubules whereas its expression is reduced in injured 
kidney tubules. Second, kidney tubule-specific knockout of the miRNA biogenesis enzyme, 
Dicer, leads to significant down regulation in the expression of all five members of the miR-
200 family and formation of kidney tubule-derived cysts (40). Furthermore, miR-200 
knockdown in cultured renal epithelial cells inhibits tubulogenesis and produces cyst-like 
structures, thus implicating miR-200 in the maintenance of normal renal tubule structure 
and preventing cyst formation. Third, miR-200 is known to regulate the expression of the 
ADPKD gene, PKD1. Bioinformatic analysis of PKD1 3’-UTR has identified two 
evolutionary-conserved binding sites for the miR-200 members. The miR-200 family 
members directly bind to PKD1 3’-UTR and inhibit its translation. Thus, miR-200 may 
regulate cyst pathogenesis through modulation of PKD1 gene dosage. Fourth, the 
transcription of miR-200 is regulated by another cystic kidney disease gene, Hnf-1β (61). In 
mice, kidney tubule-specific deletion of Hnf-1β results in decreased expression of miR-200 
miRNA family members and causes renal cysts. HNF-1β is known to promote the 
expression of key cystic kidney disease genes including the ADPKD gene PKD2 and the 
ARPKD gene PKHD1. Interestingly, HNF-1β binds to a promoter region upstream of the 
miR-200 gene and directly controls the transcription of the miR-200b~429 cluster via a long 
non-coding RNA. Thus, along with PKD2 and PKHD1, miR-200 belongs to a network of 
cystic kidney disease genes regulated by HNF-1β. 
 
The cellular mechanism by which miR-200 regulates cyst pathogenesis may involve 
epithelial-to-mesenchymal transformation (EMT), a process in which epithelial cells lose 
polarity (e.g. apical-basal polarity) and acquire mesenchymal properties such as increased 
migratory capacity. miR-200 is known to maintain epithelial integrity and inhibit EMT, at 
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least in part, through direct inhibition of mesenchymal transcription factors ZEB1, ZEB2 
and transforming growth factor-β (TGF-β2), a potent inducer of EMT (62-68). However, 
renal tubule epithelia in kidneys of Dicer and Hnf-1β mutant mice do not appear to 
undergo EMT (40). These cells might be undergoing ‘partial EMT’ wherein they 
simultaneously express both epithelial and mesenchymal markers. This has been observed 
in the kidney-specific HNF-1β knockout mice, as the expression of miR-200 targets - Zeb2 
and TGFβ2 are increased several fold, while the expression of epithelial polarity protein,  
E-cadherin, is unchanged (61). While the role of partial EMT in aggravating cyst growth 
currently remains uncharacterized, partial EMT of renal tubule epithelia has been recently 
shown to promote renal tubule injury and kidney fibrosis (69). In summary, miR-200 
members help maintain renal tubule homeostasis by preventing cells from undergoing 
partial EMT and regulating the dose of genes involved in cystic kidney disease. 
 
miR-21   
 
In humans, miR-21 is located on chromosome 17q23.2, where it overlaps with a protein-
coding gene called Vacuole membrane protein 1 or Vmp1. Despite its intergenic location, 
the transcription of miR-21 is regulated independently of its host gene Vmp1 through its 
own unique promoter. Even though miR-21 is expressed at high levels in multiple normal 
tissues, such as the heart, the liver and the kidney, miR-21 knockout mice display no overt 
phenotype, are fertile and live a normal life span (70). Thus, miR-21 is dispensable for 
normal development. Instead, the physiologic function of miR-21 may be in aiding organ 
regeneration after injury by promoting proliferation and/or inhibiting apoptosis of cells 
(71). This function of miR-21 is often ‘hijacked’ in the context of cancer to fuel the growth of 
malignant cells. miR-21 is dubbed oncomir because it is frequently amplified in multiple 
forms of cancers, where it is thought to promote proliferation and inhibit apoptosis of 
malignant cells by directly repressing a network of tumor suppressor genes (12, 72-74). 
Another disease in which miR-21 has been extensively studied is tissue fibrosis. While miR-
21 may be necessary for recovery after acute injury, persistent elevation of miR-21 is 
thought to promote fibrosis (75, 76), particularly in the kidney. Several lines of converging 
evidence have shown that inhibiting miR-21 retards the progression of kidney fibrosis in 
murine models (77-79). These observations have provided the basis for initiating clinical 
trials to assess the safety and therapeutic efficacy of antimir-21 drugs in patients with 
Alport syndrome, a genetic condition that cause progressive kidney fibrosis. 
 
Given that cancer and PKD share several common characteristics, it is not surprising that 
miR-21 has also been implicated in the pathogenesis of PKD. Our initial observations 
indicate that miR-21 is markedly up-regulated in multiple rodent models of PKD. miR-21 
expression is also increased in cyst epithelial cells from human ADPKD samples. An 
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intriguing aspect of miR-21 transcriptional regulation is that its expression is activated by 
cAMP-CREB signaling. Thus, aberrant cAMP signaling may mediate its cyst promoting 
effects, at least in part, through up-regulation of miR-21. miR-21 expression is also 
activated by other cyst promoting pathways such as Janus Kinase (JAK)/STAT and 
mitogen activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 
pathways indicating that multiple pathogenic signaling pathways converge and 
cooperatively activate miR-21expression. Importantly, inhibiting miR-21 expression slows 
cyst growth in a mouse model of ADPKD. Like cancer, miR-21 aggravates cyst growth by 
inhibiting apoptosis and promoting the survival of cyst epithelia. A potential molecular 
mechanism by which miR-21 aggravates cyst growth may be through direct inhibition of 
the pro-apoptotic, tumor suppressor Pdcd4. Interestingly, Pdcd4 knockout mice 
spontaneously develop kidney cysts indicating that Pdcd4 inhibition is sufficient to produce 
cysts. In summary, increased levels of miR-21 may promote disease progression in ADPKD 
by promoting the survival of cyst epithelial cells.  
 
Other miRNAs 
 
 Several other microRNAs have been implicated in the pathogenesis of PKD. Microarray-
based screening approaches have been used to identify miRNAs that are aberrantly 
expressed in mouse and rat models of PKD as well as human ADPKD samples (80, 81). 
These studies have shown that miR-214, miR-185, miR-146b, miR-503, miR-34a and miR-10 
are upregulated whereas miR-204 and miR-488 are downregulated in cystic kidneys 
compared to normal kidneys. An aberrant miRNA expression profile has also been 
observed in epithelial cells derived from bile duct cysts from animal models of ARPKD  
(82, 83). Though insightful, further studies will be required to determine if the differentially 
expressed miRNAs directly promote PKD pathogenesis. 
 
 
The potential for a miRNA-based therapeutic approach in PKD 
 
The basic understanding of miRNA biology and the fact that miRNAs appear to play direct 
pathogenic roles in various diseases has led to the development of novel miRNA-based 
therapeutic approaches. These approaches involve the use of synthetic oligonucleotides 
called antimirs and miRNA-mimics (25, 26, 84, 85). Antimirs harbor sequences that are 
complementary, whereas miRNA-mimics harbor sequences that are identical to the 
sequences of a mature miRNA of interest. Once inside the cell, the antimirs bind to the 
targeted miRNAs and inhibit their function. In contrast, the miRNA-mimics associate with 
the miRISC complex and ‘mimic’ the function of the targeted miRNAs. While both antimirs 
and miRNA-mimics are being developed as novel drugs, antimirs have shown more early 
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promise. Antimirs possess several characteristics that make them an ideal therapeutic agent 
for a chronic disease such as PKD. Antimirs inhibit miRNA function most efficiently in the 
kidney and the liver, the two organs most affected by ADPKD and ARPKD. Antimirs can 
be self-administered (similar to insulin) and appear to be safe with no adverse effects 
reported in human clinical trial (18). Interestingly, antimirs have a long duration of action 
(as long as 4 weeks) (26) and may need to be taken only once every few weeks. These 
attributes are particularly well-suited for treatment of a chronic disease like ADPKD, which 
will require life-long therapy. As highlighted in above sections, miR-17 and miR-21 directly 
promote cyst growth in PKD. Therefore, it is tempting to speculate that antimir-mediated 
inhibition of miR-17 and/or miR-21 can be used as a therapeutic approach to slow cyst 
growth. Another possibility is that antimirs may be used along with other drugs, such as 
tolvaptan(86), to synergistically slow disease progression in ADPKD. 
 
Despite this early excitement, significant challenges remain with regards to using 
antimirs to treat ADPKD. While antimirs are easily delivered to normal kidneys, 
delivery to cystic kidneys may not be that straightforward because the cystic kidney is 
severely anatomically distorted. Moreover, the majority of cysts in PKD arise in the 
distal segments of nephron and collecting ducts, while the antimirs primarily appear 
to be taken up by proximal tubules. Finally, while antimirs are well-tolerated in short 
term clinical trials, whether they can be safely tolerated for long periods of time is not 
known. Recently, early-stage clinical trials have been launched to test the therapeutic 
potential of antimir-21 in a genetic disorder called Alport syndrome that causes 
kidney fibrosis and like ADPKD will also require life-long therapy. These studies will 
provide important insights into whether antimirs can be safely used for long-term 
therapy. 
 
 
Conclusion 
 
miRNAs have emerged as important new regulators of normal kidney development as 
well as being involved in the pathogenesis of many kidney diseases, including PKD. At 
least three different miRNAs families – miR-17 and related miRNAs, miR-200 family 
and miR-21- have been implicated in the pathogenesis of PKD (Figure 2). These 
miRNAs are thought to promote cyst pathogenesis through regulation of key aspects of 
cyst pathogenesis such as proliferation and apoptosis of cyst epithelia, and direct 
regulation of PKD gene dosage. New approaches involving antimirs that 
pharmaceutically inhibit miRNA function holds promise as a novel therapeutic 
strategy for PKD. 
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Figure 2. A model for potential mechanisms by which miRNAs regulate cyst growth.  miR-
17 promotes proliferation of cyst epithelia and reduces ADPKD gene dosage. miR-21 
inhibits apoptosis and thus, promotes survival of cyst epithelial cells. miR-200 reduces 
Pkd1 gene dosage and inhibits epithelial to mesenchymal transition (EMT). Loss of miR-
200 may result in partial-EMT and increased Pkd1 dosage, which collectively may 
aggravate cyst growth. 
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