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Abstract 
 
Epigenetics is the study of all heritable changes in gene expression and chromatin 
organization that are caused by mechanisms independent of the DNA sequence itself. 
Similar to the genetic information found within the sequence of DNA, epigenetic 
information can also be inherited across generations. Epigenetic gene regulation includes, 
but is not limited to, DNA methylation and histone modification through acetylation, 
methylation, ubiquitylation, phosphorylation, or sumoylation. The roles of epigenetic 
modulation on gene expression and protein function have recently become the focus in 
autosomal  dominant  polycystic kidney  disease (ADPKD). An interactive  picture between  
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PKD gene mutations and the epigenome needs to be developed to understand why 
inherited PKD gene mutations in patients may result in epigenetic changes that increase 
the progression of renal cyst formation. Recent studies demonstrate that PKD1 mutation 
increases the expression of epigenetic regulators, including DNA methyltransferases 
(DNMTs), histone deacetylases (HDACs), histone methyltransferases (HMTs) and 
bromodomain proteins. Conversely, inhibition of epigenetic regulators delays cyst growth 
in Pkd1 knockout mouse models, supporting the importance of abnormal epigenetic 
regulation in ADPKD. One of the exciting findings is that targeting Sirt1, a class III HDAC, 
with nicotinamide (vitamin B3) delays renal cyst growth and preserves renal function in 
three Pkd1 knockout animal models. The hypermethylation of PKD1 gene in gene-body 
regions implicates that DNA methylation-mediated epigenetic silencing of PKD genes is 
also a potential mechanism underlying cystogenesis. In this chapter, we will summarize 
the current knowledge on the role of epigenetics in ADPKD and its translational potential 
to identify much needed new therapies. We will also discuss the tools to study epigenetic 
mechanisms in ADPKD and their applications on understanding how epigenetic events 
intertwine with PKD-associated signaling pathways, including c-Myc, EGFR, HSP90, 
STAT3/STAT6, AMPK, Wnt/β-catenin, ILK/mTOR, hedgehog, GSK3β and  
NF-κB/inflammation signaling.  
 
Keywords: Epigenetics; DNA methylation; Histone modification; PKD associated signaling 
pathways; Vitamin B3 
 
 
Introduction 
 
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common life-
threatening genetic disorders and affects approximately 600,000-700,000 people in the 
United States (1). The hallmark of the disease is the development of fluid-filled cysts in the 
nephrons of both kidneys, resulting in end-stage kidney disease (ESKD) and requiring 
painful dialysis. ADPKD are caused by mutations in either PKD1 gene encoding 
polycystin-1 (PC1), accounting for 85-95% of the cases, or PKD2 gene encoding polycystin-2 
(PC2), accounting for the remainder (2). PC1 can form a complex with PC2 which is a 
calcium-permeable cation channel (3-6). Renal cyst formation can be initiated at all stages 
of kidney development, which is also associated with renal interstitial inflammation and 
fibrosis (7, 8). ADPKD patients also develop various extra-renal manifestations including 
hepatic cysts, intracranial aneurysms and cardiac vascular abnormalities. In addition to the 
necessity to be finely tuned to the expression of polycystins (9, 10), multiple signaling 
pathways downstream of PKD gene mutations have been identified in regulating cystic 
renal epithelial cell proliferation and apoptosis, leading to cyst formation (11-20). 
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Elucidation of the complex pathways that regulate the expression of polycystins or the 
signaling pathways downstream of polycystin signaling are critical for achieving a full 
understanding of ADPKD pathogenesis and for identification of crucial regulatory or 
structural components that may be useful as therapeutic targets. Apart from the genetic 
traits of ADPKD, the roles of epigenetics have recently drawn attention of scientific 
investigation in ADPKD (21-26). This chapter summarizes the current knowledge on the 
role of epigenetics in ADPKD, and its translational potential to identify much needed new 
therapies. 
 
 
The epigenome and mechanisms of epigenetic regulation 
 
In mammals, genomic DNA is spun around histone protein cores containing dimers of 
histones H2A, H2B, H3 and H4 to form chromatin (27). Epigenetic modifications on histone 
proteins and the DNA wrapped around them result in either loose (euchromatin) or tight 
(heterochromatin) states of chromatin. Euchromatin allows RNA polymerases and 
transcriptional factors to bind whereas heterochromatin is associated with transcriptional 
inactivation (27). Epigenetic marks including DNA methylation, histone post-translational 
modifications, and noncoding RNAs collectively form the ‘epigenome’. The close 
association between DNA methylation and histone modification is well established (28). 
Perturbations in the epigenome have been implicated in various pathological conditions 
including cancer and ADPKD (22, 25, 29). 
 
DNA methylation as the first identified epigenetic modification has been intensively 
studied for half a century (30). DNA methylation is catalyzed by a family of DNA 
methyltransferases (DNMTs) which can post-replicatively add methyl groups to the C5 
position of cytosines in DNA (31). DNA methylation is usually associated with 
transcriptional silencing of a number of genes and sequence classes, including tumor 
suppressor genes, imprinted genes, and genes on the inactive X chromosome (32). 
Silencing of these sequences is essential for maintaining chromosome stability. DNA 
methylation is distributed throughout the genome generally at CpG dinucleotides, a 
cluster of large repetitive sequences (called CpG islands) in regions such as centromeric 
repeats or at the 5’ ends of many genes (33). In humans, 50-70% of all CpGs are 
methylated, primarily in heterochromatic regions. In vertebrates, there are five known 
DNMTs with different structure and function. All DNMTs, except DNMT2, have an N-
terminal regulatory domain and a C-terminal catalytic domain. The ubiquitously-
expressed DNMT1, which displays a strong preference for hemimethylated CpG sites, 
functions to maintain the DNA methylation patterns established by the DNMT3 
subfamily, comprising DNMT3a and DNMT3b, on unmethylated DNA (31, 34, 35) 
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during DNA replication and DNA repair (36, 37). The cofactor DNMT3L1 stimulates the 
activity of DNMT3a and DNMT3b (38), but by itself lacks enzymatic activity (39). The 
fifth member of the DNMT family, DNMT2, has very weak activity toward DNA (40, 
41). Promoter DNA methylation is a relatively stable epigenetic modification which 
represses transcription via interference with transcription factor binding or recruiting 
repressor complexes consisting of methyl-DNA binding proteins (42), such as methyl-
CpG-binding domain proteins (MBDs), UHRF proteins (ubiquitin-like, containing plant 
homeo domain [PHD] and really interesting new gene (RING) finger domains) and zinc 
finger proteins (43). DNA demethylation occurs mainly by passive mechanisms during 
development and cell division (44, 45). Aberrant expression of DNMTs and disruption 
of DNA methylation patterns are closely associated with many forms of cancer. In 
general, hypermethylation occurs on tumor suppressor genes and hypomethylation 
occurs on oncogenes (46-48), although the exact mechanisms underlying this link 
remain elusive. 
 
Histone post-translational modifications as epigenetic marks, including histone lysine 
acetylation (HKAc), methylation (HKme) and phosphorylation (49), regulate chromatin 
structure and gene expression (50, 51). Histone acetylation is mediated by histone acetyl 
transferases (HATs) and is generally associated with relaxed chromatin and active gene 
expression. In contrast, histone deacetylation is mediated by histone deacetylases 
(HDACs) and is generally associated with closed chromatin and represses gene 
expression. On the other hand, histone/lysine methylation is mediated by histone 
methyltransferases (HMTs) (52) and can be an active or repressive mark depending on 
the lysine residue modified and the extent of methylation (mono-, di-, or tri-) on different 
lysine residues. Methylation of lysine residues on histone tails can be erased by histone 
demethylases (53). Histone modifications can mark and define distinct regulatory regions 
of the genome, which can serve as docking sites for coactivators, co-repressors, 
chromatin remodeling proteins, and proteins that bind to modified histones (50, 51, 54). 
For example, bromodomain proteins, which have an approximately 110 amino acid 
protein domain called bromodomain, recognize and bind monoacetylated lysine residues 
on the N-terminal tails of histones (55), whereas chromodomain  protein, which has an 
approximately 40-50 amino acid protein domain called chromodomain (chromatin 
organization modifier), only recognizes and binds methylated histones (56, 57) and appear 
in the RNA-induced transcriptional silencing complex (58). In general, trimethylation of 
H3 at lysine 27, namely H3K27me3, is a strong repressor of transcription by attracting 
chromodomain-containing proteins and HP1 (59, 60).  
 
Noncoding RNAs, including short microRNAs (about 22 nucleotides in length) and long 
noncoding RNAs (4200 nucleotides long), are also epigenetic marks which work via 
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epigenetic mechanisms (61-64). The roles of several microRNAs in renal disorders 
including PKD has recently been studied (65, 66) and will be discussed in next chapter. 
 
 
The progression of epigenetic studies in ADPKD  
 
DNA methylation and ADPKD 
 
Aberrant DNA hypermethylation and hypomethylation patterns have been associated with 
human cancer and other diseases (67) and may play a role in the manifestation, progression 
and therapy of PKD. It has been reported that PKD1 is hypermethylated in gene-body 
regions, and its expression is downregulated in ADPKD (Figure 1), implicating DNA 
methylation-mediated epigenetic silencing as one of the mechanisms underlying 
cystogenesis (68). Whether the methylations of the PKD2 gene and autosomal recessive 
PKD (ARPKD) genes, as well as the genes of PKD-associated signaling pathways, are 
changed and contribute to cyst development needs be investigated. In addition, PKD1 
mutations result in the upregulation of DNA methyltransferase 1 (DNMT1) in cystic renal 
epithelial cells (unpublished data); thus genes downstream of PKD mutations (including 
ADPKD and ARPKD genes) may also be hypermethylated during cyst formation. Further 
studies should focus on when and how DNA methylation is altered during cyst 
development, and whether reversal of DNA methylation variations in the early stages of 
PKD can delay cyst growth and the progression to ESKD.  
 
Histone deacetylases (HDACs) in ADPKD 
 
Evidence generated to date indicates that HDACs are important regulators of ADPKD (21-
26). Depending on the sequence similarity and cofactor interactions, HDACs are classified 
into four classes: Class I HDACs (HDAC1, 2, 3 and 8), which are nuclear enzymes and can 
be widely expressed in different tissue types (69); Class II HDACs (HDAC4, 5, 6, 7, 9 and 
10) and class IV HDAC (HDAC11), which are predominantly located within the cytoplasm 
and can be expressed in a tissue-specific manner (69); and Class III HDACs, which are 
called sirtuin family proteins (SIRT1–8) with different subcellular localizations, substrate 
specificities and functions (70). HDACs are able to deacetylate histones or non-histone 
substrates, for example, transcriptional factors, to either regulate the expression of the 
PKD1 gene or genes and proteins involved in regulating cystic renal epithelial cell 
proliferation and apoptosis (Figures 1 and 2) (11, 21). Pharmacological inhibition of HDACs 
delays cyst growth and preserve renal function in Pkd1 (21-26) and Pkd2 mutant mice (71), 
respectively, implicating the potential clinical application of HDAC inhibitors on ADPKD 
treatment.  
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Figure 1. The roles of histone deacetylases (HDACs), Bromodomain proteins (BRDs) and DNA 
methyl transferases (DNMTs) in renal epithelial cells. In this schematic diagram, we depicted 
the roles of HDACs in regulating PKD1 gene expression and PKD associated signaling, 
including that i) HDAC5 is the target of fluid flow-induced calcium signal in renal epithelial 
cells; ii) HDAC6 and SIRT2 regulate cilia disassembly through deacetylation of α-tubulin during 
the normal cell cycle; iii) HDAC6 regulates epidermal growth factor receptor (EGFR) trafficking 
through deacetylation of α-tubulin; and iv) HDAC6 either alone or with EGF regulates β-catenin 
nuclear translocation. We also indicate the potential roles of DNMTs in regulating the 
transcription of PKD1 gene, other PKD genes and PKD-associated genes. The roles of BRDs in 
regulating the transcription of c-Myc and the components of Hedgehog signaling are also 
included. The involvement of calcium signaling in these processes is possible but is uncertain. 
 
 
HDACs are involved in repression of the expression of PKD1 gene 
 
The expression of polycystins is required to be finely tuned to prevent cyst formation  
(9, 10). The PKD1 gene promoter contains a hybrid p53-Sp1-binding motif which has been 
shown to be bound by p53 in vivo. Binding of p53 to the promoter of PKD1 gene decreases 
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its expression. This process is also regulated by HDACs since a pan-HDACs inhibitor 
trichostatin A (TSA) could attenuate p53-induced repression of the PKD1 expression (72). 
Although we propose a model that polycystin signaling activates p53 (73), which in turn, in 
cooperation with HDACs, controls PKD1 gene expression (Figure 1), however, the role of 
p53 in regulating mutant PKD1 gene expression needs be further investigated. In addition, 
the HDAC(s) involved in p53-mediated repression of PKD1 gene is unknown. HDAC1 
interacts with p53 and Sp1, which suggests that it may be involved in p53-mediated 
repression of PKD1 through deacetylation of p53 (74, 75). 
 
HDAC5 is the target of fluid flow-induced calcium signal in renal epithelial cells 
 
HDAC5, a class II HDAC, was identified as one of the targets of polycystin-dependent 
fluid stress sensing in renal epithelial cells by microarray analysis (76). Fluid flow 
stimulation of polarized renal epithelial monolayers results in calcium influx into the cells 
to activate protein kinase C (PKC). PKC then directly or indirectly phosphorylates HDAC5 
at two 14-3-3 binding sites, leading to the translocation of HDAC5 from the nucleus to the 
cytosol (Figure 1) (77). Nuclear export of HDAC5 releases its inhibition on MEF2C-based 
transcription (78, 79). Heterozygous knockout of HDAC5 or inhibition of HDAC5 activity 
with TSA delayed cyst growth in Pkd2-/- mouse embryos, a result that  supports an epistatic 
relationship between Pkd2 and HDAC5 (76). In addition, treatment with TSA also delayed 
cyst growth in kidneys from Pkd1-/- embryonic mice (23). Furthermore, treatment with 
valproic acid (VPA), a class I HDAC specific inhibitor, slowed cyst growth and the decline 
of kidney function in Pkd1 conditional knockout mice (71). These results suggest that class I 
and II HDACs are the potential therapeutic targets for the treatment of ADPKD. 
 
HDAC6 regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation 
as well as β-catenin nuclear localization in renal epithelial cells 
 
HDAC6, a microtubule-associated α-tubulin deacetylase, demonstrates increased 
expression and activity in Pkd1 mutant renal epithelial cells (24). The epidermal growth 
factor-EGF receptor (EGF-EGFR) axis has a documented role in the expansion of renal 
cysts (80). Inhibition of HDAC6 with TSA or tubacin, a specific HDAC6 inhibitor, 
increased α-tubulin acetylation and decreased the expression of EGFR in Pkd1 mutant 
renal epithelial cells. HDAC6, through deacetylation of α-tubulin, affects the stability of 
microtubule, which further regulates EGFR intracellular trafficking and degradation 
along microtubules in normal and mutant renal epithelial cells (Figure 1) for the 
following reasons: 1) targeting HDAC6 with pharmacological inhibitor not only 
increased EGFR endocytic trafficking but also normalized the localization of EGFR from 
apical to basolateral of the cystic epithelial cells in Pkd1 conditional knockout mouse 
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kidneys; and 2) treatment with nocodazole, which depolymerized microtubules, 
decreased the degradation of EGFR and EGFR endocytic trafficking from early 
endosomes to later endosomes in Pkd1 mutant renal epithelial cells stimulated with EGF. 
In addition, HDAC6 is through deacetylation of β-catenin at lysine 49, a site often 
mutated in cancers, to increase the nuclear localization of β-catenin induced by EGF (81, 
82). Inhibition of HDAC6 not only blocks EGF-induced β-catenin nuclear localization but 
also decreases c-Myc expression, leading to decrease epithelial cell proliferation. In 
addition, HDAC6 forms complex with HSP90 and MIF (83, 84), the two recent identified 
PKD associated signaling (7, 11). These results suggest targeting HDAC6 may be a 
potential therapeutic approach for polycystic kidney disease. 
 
SIRT1 regulates cyst development through deacetylation of Rb and p53 in ADPKD 
 
SIRT1, a member of class III HDACs, targets both histone and nonhistone proteins. SIRT1-
mediated histone deacetylation, including histones H1K26, H3K9 and H4K16, is necessary 
to form heterochromatin and to silence the transcription (85). SIRT1 also deacetylates non-
histone proteins, including the retinoblastoma (Rb) protein, E2F1, p53, nuclear factor-
kappaB (NF-κB), FOXO1, FOXO3, c-Myc, β-catenin, heat shock protein 90 (HSP90), and 
Smad7 to potentially regulate cell proliferation and apoptosis (86-89). SIRT1 can remove an 
acetyl group from acetylated lysine residues of histone and non-histone proteins to 
generate lysine, 2’-O-acetyl-ADP-ribose (OAADPr), and nicotinamide which is also a 
noncompetitive inhibitor of SIRT1 (90, 91).  
 
SIRT1 was upregulated in embryonic and postnatal Pkd1 mutant mouse renal epithelial 
cells and tissues, partially through c-Myc and tumor necrosis factor-α (TNF-α) signaling 
(Figure 2) (22). SIRT1 deletion delayed cyst formation and normalized kidney function in a 
Pkd1 mutant mouse model (22). SIRT1 regulates cystic renal epithelial cell proliferation and 
apoptosis through deacetylation and increased phosphorylation of Rb (at residue S780) 
which becomes inactive, in turn enabling transcription of genes that mediate entry into the 
S-phase of the cell cycle (89) and through deacetylation of p53 (22), an important tumor 
suppressor protein, at residue K382, respectively. Inhibition of SIRT1 with nicotinamide or 
EX527, a specific SIRT1 inhibitor, decreased proliferation and increased apoptosis of cystic 
epithelial cells. Targeting SIRT1 with nicotinamide delayed cyst growth, decreased kidney 
weight to body weight (KW/BW) ratio and decreased blood urea nitrogen (BUN) levels in 
Pkd1 knockout mouse models (22). This study provides strong evidence that nicotinamide 
is a particularly attractive candidate for treatment of PKD.  
 
Nicotinamide (also known as niacinamide) is a water-soluble amide derivative of 
nicotinic acid, which represents a major form of vitamin B3. Nicotinamide has been 
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studied in humans for several decades and has an excellent safety profile when given at 
adult doses of no more than 3 g/day (92). Nicotinamide has been used in humans at 
doses ranging from 1 g/m2 to 6 g daily as an anti-oxidant, anti-inflammatory and 
immune modulator in many disease conditions, including type I diabetes mellitus, 
schizophrenia, Alzheimer's disease, neurodegenerative disorders, hyperphosphatemia in 
dialysis patients, and as a radiosensitizer in cancer. Because nicotinamide is a safe and 
inexpensive dietary nutritional supplement that does not require FDA approval, two 
early phase clinical trials are ongoing at the University of Kansas Medical Center 
(KUMC) to test the effect of niacinamide in humans with ADPKD (Clinical Trials.gov. 
Identifier: NCT02140814). Once it can be proven to be safe and effective in PKD patients, 
it could be used to treat patients immediately. 
 
 

 
Figure 2. The relationship between epigenetic regulators and PKD-associated signaling. In this 
schematic diagram, we depicted the interplays of epigenetic regulators, Sirt1 and Bromodomain 
protein, with several already known PKD-associated signaling pathways, including tumor 
necrosis factor-α (TNF-α signaling, c-Myc signaling, STAT3 signaling, heat shock protein 90 
(HSP90) signaling, macrophage migration inhibitory factor (MIF) signaling and Hedgehog 
signaling. The inhibitors of these pathways are marked in red. Solid lines indicate the already 
known connections among these signaling pathways in cystic renal epithelial cells, whereas the 
dashed lines indicate the potential connections of these signaling pathways in cystic renal 
epithelial cells based on the studies in other cell types. 
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SIRT2 and HDAC6 regulate ciliogenesis and SIRT2 contributes to abnormal centrosome 
amplification caused by loss of polycystin-1 
 
The localization of PC1 and PC2 to the primary cilia has led to development of the ‘‘primary 
cilia’’ hypothesis for PKD, in that the abnormalities in primary cilia structure and function in 
tubular epithelia contribute to cyst initiation and development. The primary cilium is a 
microtubule-based organelle that originates from the one of the two basal bodies (centrioles) 
that form the core of the centrosome in quiescent cells. For cell division, the primary cilium 
has to be disassembled to liberate one of the captive centrioles of the centrosome which 
directs assembly of the bipolar spindle during mitosis (93, 94). Thus, cilia may passively affect 
the cell cycle. It has been demonstrated that HDAC6 and SIRT2, another member of class III 
HDACs, regulate the stability of microtubules through deacetylation of α-tubulin and 
regulate disassembly of cilia during the normal cell cycle (Figure 1) (26, 95). The fact that 
SIRT2 and HDAC6 are able to form a complex and α-tubulin binds to the SIRT2-HDAC6 
complex in vitro (96, 97) suggest that SIRT2 and HDAC6 may regulate α-tubulin deacetylation 
and cilial size together. However, inhibition of either SIRT2 or HDAC6 alone is sufficient to 
induce hyperacetylation of α-tubulin and block cilial disassembly (26, 96) suggesting that 
SIRT2 and HDAC6 can regulate ciliogenesis independently. These results may explain why 
knockout of HDAC6 in mice does not cause hyperstable microtubules or persistent cilia (26) 
since SIRT2 may compensate for the loss of HDAC6 in knockout cells and organs. SIRT2-
mediated α-tubulin deacetylation is able to regulate chromosomal segregation during mitosis 
to ensure normal cell division through affecting mitotic structures including the centrosome, 
mitotic spindle and midbody (98, 99). SIRT2 was upregulated in Pkd1 knockdown mouse 
inner medullary collecting duct (IMCD3) cells and Pkd1 knockout mouse kidney cells. This 
was responsible for the aberrant centrosome amplification and polyploidy induced by loss of 
PC1 (26). However, the role of SIRT2 in renal cyst development remains to be determined. 
 
A BET bromodomain protein, Brd4, in ADPKD 
 
Bromodomain proteins specifically bind to acetylated lysine residues on histone tails through 
bromodomains to regulate gene expression (55). Recently, we reported that a BET 
bromodomain (BRD) protein, Brd4, is a novel epigenetic regulator of ADPKD and a novel 
client protein of HSP90 (100). Brd4 was upregulated in Pkd1 mutant mouse renal epithelial 
cells and tissues, which might be partially mediated by the chaperone activity of HSP90, 
leading the cells to escape proteasomal degradation. Targeting Brd4 with JQ1, a selective 
small-molecular inhibitor of BET bromodomain protein(s) (100), slowed cyst growth and 
kidney enlargement in two early stage Pkd1 mutant mouse strains. Brd4 regulates the 
expression of c-Myc and p21, which further affects the phosphorylation of Rb and Rb 
mediated S-phase entry to regulate cystic renal epithelial cell proliferation (100). Our study 
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not only addresses how c-Myc is upregulated in PKD but also provides a rationale for 
targeting Brd4 with JQ1 as a potential epigenetic therapy in ADPKD. In addition, the 
association of Brd4 and HSP90 in ADPKD may also be a general mechanism for the 
upregulation of Brd4 in cancer cells.  
 
 
Other potential functions of epigenetics in PKD 
 
Epigenetic mechanisms in renal inflammation 
 
Interstitial inflammation has been consistently reported in human and animal models of 
PKD. Whether renal inflammation is one of the primary factors for cyst initiation or a 
consequence of renal cyst formation is uncertain. However, its role in promoting cyst growth 
is supported by the findings that depletion of macrophages in kidneys of Pkd1 conditional 
knockout mice and cpk mice, which develop renal cysts via the disruption of cystin (a cilia-
associated protein), caused a significantly lower cystic index, reduced proliferation of cyst-
lining cells, and improved renal function (7, 101). Inflammation in cystic kidneys is 
characterized by increased release of proinflammatory cytokines/chemokines, such as TNF-
α, interleukins (ILs), and monocyte chemoattractant protein-1 (MCP-1), by tubular and 
endothelial cells, as well as dendritic cells and infiltrating leukocytes/monocytes (7, 20, 102). 
In recent years, epigenetic mechanisms have been shown to have a role in renal inflammation 
in kidney disease (102). Changes in histone acetylation and methylation were observed at 
inflammatory genes, including TNF-α and Ccl2/MCP-1 in various models of acute kidney 
injury (AKI) (103, 104). It has been found that endoplasmic reticulum stress can increase the 
levels of SET7, a histone methyltransferase, leading to increased histone 3 lysine 4 (H3K4) 
methylation at the Ccl2/MCP-1 promoter and its upregulation in the kidneys from diabetic 
db/db mice (105). Changes in histone 3 lysine 9 (H3K9) acetylation at inflammatory gene 
promoters had also been observed in diabetic mice models (106-108). In addition, the 
deacetylase Sirt2 also played a proinflammatory role in lipopolysaccharide-induced acute 
kidney injury by induction of NF-κB activation and chemokine production in proximal 
tubular epithelial cells. Deletion of Sirt2 in mice delayed renal function decline and was 
protective against LPS induced infiltration of neutrophils and macrophages, and acute 
tubular injury (109). Together, these studies suggest that epigenetic mechanism may be 
involved in renal inflammation in PKD.  
 
Epigenetic mechanisms in renal fibrosis 
 
Severe interstitial fibrosis has also been associated with sustained enlargement of fluid-
filled cysts in PKD. However, the mechanism for the development of interstitial fibrosis in 
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PKD remains elusive. It has been found that treatment of aberrant histone acetylation in 
experimental kidney fibrosis with TSA attenuates intra-renal inflammation and 
tubulointerstitial fibrosis in mice (110, 111). Administration of MS-275, a selective Class I 
HDAC inhibitor, and tubacin, a specific HDAC6 inhibitor, ameliorated fibrosis through 
inhibition of transforming growth factor (TGF)-β signaling, which is up-regulated in tissue 
fibrosis of several organs and causes fibroblast activation (112). Similarly, administration of 
vorinostat, the first FDA-approved HDAC inhibitor for clinical application, ameliorated 
diabetes-associated renal fibrosis in an animal model through the normalization of EGFR-
mediated signaling (113). Other Class I and II HDAC inhibitors like phenylbutyrate and 
valproic acid could also be of benefit to experimental renal fibrosis (114-116). 
 
In addition, it has been shown that DNMT1 is induced in experimental renal fibrosis (112) 
and Dnmt1 heterozygous knockout mice show ameliorated aberrant promoter methylation 
and reduction of renal tubulointerstitial fibrogenesis (112). RASAL1, a negative regulator of 
Ras signaling, is transcriptional repressed due to its hypermethylation in experimental 
kidney injury, acute renal damage and chronic progressive fibrosis (112). Exposure to TGF-
β further inhibited the expression of Rasal1 by promoting DNA methylation at its promoter 
via DNMT1, leading to Ras activation and increased fibrosis in fibroblasts, which can even 
be persistent after TGF-β is removed (112). Since only DNMT1 but no other member of the 
DNMT family is altered in kidney fibrosis, it suggests a predominant role of DNMT1 
mediated DNA methylation in context of chronic progressive kidney disease. Together, the 
roles of HDACs and DNMT1 in PKD-associated interstitial fibrosis need be investigated. 
 
Epigenetic mechanisms in hypertension 
 
Mutations of PKD1 and PKD2 result not only in renal, hepatic and pancreatic cyst formation 
but also in cardiovascular complications characterized by an increased incidence of cardiac 
valve abnormalities and left ventricular hypertrophy (117-121). It has been suggested that 
ADPKD associated cardiovascular complications result from renal cyst growth induced 
cardiovascular hypertension, which occurs in patients at an earlier age than that in the 
general population even before any substantial reduction in renal function, and is associated 
with a rapid progression toward renal failure (122-125). It has been found that the 
mineralocorticoid aldosterone via upregulation of the tubular epithelial sodium channel 
(ENaC) regulates the disorders of Na+ transport, reabsorption, and excretion in the renal 
collecting duct, leading to abnormal blood pressure in humans (126). Under basal conditions, 
the transcription of ENaC subunit alpha (ENaCα) can be repressed by Dot1a, a lysine 
methyltransferase, mediated the methylation of histone 3 lysine 79 (H3K79) on the ENaCα 
promoter, keeping it constrained but poised for activation by aldosterone and other stimuli. 
Hypertension induced by high-salt diet is also associated with epigenetic mechanism 
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mediated upregulation of angiotensin I converting enzyme (ACE1), which has an important 
role in hypertension by activating the renin–angiotensin system, via increases in activation 
marks (H3KAc and H3K4me) and decreases in repressive mark (H3K9me2) at the promoter 
of ACE1 (127). Study of epigenetics in ADPKD-associated hypertension and its potential 
heritability is clearly warranted. Furthermore, the fact that cardiac hypertrophy also occurs in 
young ADPKD patients with normal blood pressure and renal function (128, 129) suggests 
that cardiac dysfunction in ADPKD patients does not develop solely in response to 
hypertension and/or renal failure. Additional epigenetic or environmental factors may be 
required and more investigations are anticipated. 
 
Epigenetic mechanisms in regulating ADPKD associated signaling pathways  
 
In addition to the well-documented PKD gene mutations that have been associated with cyst 
development, considerable attention is being focused on the participation of epigenetic 
events on the regulation of transcriptional and/or translational activities of PKD-associated 
signaling pathways, including HSP90 (11), STAT3/STAT6 (12-14), AMPK (15), Wnt/β-
catenin (16), GSK3β (130), ILK/mTOR (8, 17), hedgehog (18), MIF (7) and NF-
κB/inflammation signaling (19, 20). Knockout of Thm1 in mice resulted in renal cyst 
formation and the upregulation of the components of hedgehog signaling, including Gli1 and 
Gli2 (131). Knockout of Pkd1 also induced the abnormal upregulation of Gli1 and Gli2 (131), 
which suggested that abnormal regulation of hedgehog signaling contributes to cyst 
development. A recent study found that the expression of Gli1 and Gli2 could be regulated 
by the bromodomain protein, Brd4, an epigenetic regulator that binds to acetylated histone 
tails, in NIH3T3 and mouse embryonic fibroblast (MEF) cells (132). Brd4 may regulate the 
expression of Gli1 and Gli2 through binding to the promoters of these genes in Thm1 and 
Pkd1 mutant renal epithelial cells. Additionally, the HSP90, MIF, GSK3β and Wnt-β-catenin 
signaling pathways have been associated with epigenetic regulators (83, 133). It is highly 
possible that epigenetic event is involved in regulation gene expression and protein function 
of most, if not all, of PKD associated signaling pathways. Thus, determining the nature of 
epigenetic modifications and extent to which they occur on PKD-associated genes, and 
establishing how epigenetic events intertwine with PKD associated signaling pathways is 
highly significant for our understanding of the pathogenesis of PKD and can be achieved 
with the advance of epigenetic tools. 
 
 
Tools to study epigenetic mechanisms in ADPKD 
 
The importance of epigenetic alterations in ADPKD and in regulating ADPKD-associated 
signaling pathways is increasingly being appreciated. Epigenetics research has been spurred 
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by the technological breakthroughs in next generation sequencing (NGS) and advances in 
epigenomics platforms and data analysis tools that have aided in detecting epigenetic 
modifications such as histone modifications and DNA methylation, chromatin structure 
(open or condensed), as well as long-range interaction of enhancers in transcription 
regulation. Utility of these approaches to detect epigenetic changes at PKD genes and at PKD 
associated candidate genes should provide us an opportunity to gain new insights into the 
pathologies of PKD and uncover targets for novel epigenetic therapies. 
 
The fact that PKD1 is hypermethylated in gene-body regions, and its expression is 
downregulated in ADPKD (68) suggests that other ADPKD or ARPKD genes and genes 
downstream of PKD mutations may also be methylated. This can be determined by DNA 
methylation analysis. This mode of  analysis, including Methylation Specific PCR, Bisulfite 
Sequencing, Bisulfite Pyrosequencing, and Genome Wide Methylation Analysis, is based 
on the treatment of genomic DNA with sodium bisulfite. Sodium bisulfite only deaminates 
cytosine but not 5-methylcytosine into uracil, which can be identified by sequencing to 
determine the DNA methylation status (134). During PCR and sequencing, uracil hydrogen 
bonds to adenine which will then hydrogen bond to thymine. Therefore, the unmethylated 
cytosines will become thymines and methylated cytosines will remain cytosines in the 
amplified sequence. DNA methylation analysis with genome-wide quantification of 
sodium bisulfite conversion–based cytosine method can be performed by NGS or the 
widely used Infinium Human Methylation 450K Bead-chips Assay (San Diego, CA), which 
is especially for large-scale clinical projects. In comparing with affinity-based methods, 
including methylated DNA immunoprecipitation-sequencing (MeDIP-seq) or methyl-CpG 
binding domain (MBD) protein-enriched genome sequencing (MBD-seq), Bisulfite 
Sequencing (bisulfite-seq) provides better resolution and genome wide coverage but it is 
more expensive and it involves more complex bioinformatics analysis. 
 
Whole transcriptome profiling by NGS (for coding and noncoding genes) and epigenome-
wide association studies, such as chromatin immunoprecipitation (ChIP) and ChIP-
sequencing (ChIP-seq) analyses which combine immunoisolation of epigenetic marks and 
NGS, have been developed. These new tools can yield information on genome-scale 
dynamic changes and will help to identify novel epigenetic regulators and transcription 
factors involved in the expression of PKD genes or genes associated with PKD as well as 
novel downstream targets. A major advantage of NGS-based studies such as RNA-seq, 
ChIP-seq, bisulfite-seq, and others is that these unbiased approaches provide genome-wide 
and quantitative information unlike microarrays. However, before performing these 
studies, the more expensive costs and the complicated data analyses need to be considered. 
We believe that with advance in new and cheap technologies, epigenome association 
studies should be performed more frequently in experimental and clinical studies in PKD. 

http://www.unmc.edu/ecf/dna_methylation_analysis.htm
http://www.unmc.edu/ecf/dna_methylation_analysis.htm
http://www.unmc.edu/ecf/dna_methylation_analysis.htm
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Perspectives and conclusions 
 
Increasing evidence suggests a critical role for epigenetic modifications, including DNA 
methylation and histone/lysine deacetylation in ADPKD (21-26) (68). Studies have explored 
the potential beneficial effects of HDAC inhibitors in animal models of ADPKD. However, as 
the specificity and the mechanism of action of these inhibitors are not fully clear, more work, 
except for nicotinamide (vitamin B3), is needed before these inhibitors can be evaluated in 
humans. In order to screen novel HDAC inhibitors that could delay cyst growth in PKD 
mouse models, a zebrafish model was recently used and generated very promising results 
(71). Due to other epigenetic regulators, including HMTs and DNMTs, being also potentially 
involved in regulating cystogenesis, this novel screening approach may help to discover 
additional epigenetic modulators specific to PKD. In addition, we may test the epigenetic 
drugs that target histone-modifying enzymes in cancer treatment (135, 136) for preclinical 
treatment in PKD animal models. The links between epigenetic mechanisms and PKD 
associated signaling pathways have encouraged investigators to think about dual therapies, 
such as combining HDAC inhibitors with metformin or mTOR inhibitor in PKD treatment. It 
may be advantageous to sensitize cells by epigenetic therapy followed by treatment with 
chemotherapy, which targets PKD associated signaling pathways, including HSP90 (11), 
STAT3/STAT6 (12-14), AMPK (15), Wnt/β-catenin (16), GSK3β (130), ILK/mTOR (8, 17), 
hedgehog (18), NF-κB/inflammation signaling (19, 20). In summary, epigenetics is clearly an 
exciting emerging field in basic and clinical studies of ADPKD, and the development of 
‘epigenetic therapies’, specifically HDACs, have shown promising effects for PKD treatment. 
To investigate epigenetic mechanisms underlying cystogenesis is an exciting challenge but it 
may lead to a better understanding of cyst development and direct new therapeutic strategies 
of ADPKD. However, several roadblocks and challenges should also be overcome, including 
low specificity/selectivity of inhibitors of epigenetic regulators and unwanted side effects.  
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