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ABSTRACT

The role of molecular imaging with positron emission tomography (PET) for diag-
nosis, treatment planning and post-treatment monitoring of brain tumors has
grown substantially in the last decades. In the last 25 years, almost 50 different
PET agents have been developed and tested in human clinical studies. While
some of these PET agents are yet to make their way into clinical practice, others
have already established pivotal roles in brain tumor imaging. Although all these
agents share an affinity for brain tumor cells, they target different tumor-altered
molecular pathways within these cells: some agents are taken up by the cell
through overexpressed transporters and become trapped, altered, or incorporated
into upregulated metabolic pathways, while other agents bind to overexpressed
receptors or to cells present in the tumor microenvironment. In this monograph,
we explore the major genetic and molecular changes characteristic of brain
tumors, how they are used by PET agents to gain access to tumor cells and their
environment, and how this translates to uptake in clinical practice. Gaining
insight in these processes is essential for correct image interpretation and helps to
understand why some agents are more successful than others.
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PET Agents for Primary Brain Tumor Imaging. Brisbane (AU): Exon Publications.
ISBN: 978-0-6458663-0-8. Doi: https://doi.org/10.36255/pet-agents-for-primary-brain-tumor-imaging
Copyright: The Authors.

License: This open access article is licensed under Creative Commons Attribution-NonCommercial
4.0 International (CC BY-NC 4.0) https:/creativecommons.org/licenses/by-nc/4.0/


https://doi.org/10.36255/pet-agents-for-primary-brain-tumor-imaging�
https://creativecommons.org/licenses/by-nc/4.0/
mailto:Anja.vanderKolk@radboudumc.nl
https://doi.org/10.36255/pet-agents-for-primary-brain-tumor-imaging�

van der Kolk AG et al.

INTRODUCTION

Primary brain tumors are devastating tumors with high morbidity and mortality,
even after optimal treatment consisting of surgery and chemoradiation (1).
Imaging and histological assessment of mutation status play indispensable roles in
the diagnostic workup, treatment, and follow-up of these tumors. Although MRI
(magnetic resonance imaging) is the primary imaging technique for both initial
diagnosis and subsequent follow-up, structural sequences often fall short in
distinguishing between WHO (World Health Organization) types and grades (2).
Image contrast in MRI relies primarily on imaging (protons in) water, which is the
most abundant substance in the human body and, consequently, not very specific
for any type of tissue in particular. In addition, some advanced imaging techniques
such as diffusion and perfusion MRI may lack specificity in tumor assessment.
These limitations reduce the value of conventional MRI in primary brain tumor
assessment.

Molecular imaging techniques like molecular MRI and positron emission
tomography (PET) on the other hand generate image contrast by visualizing or
measuring specific molecular characteristics of tissues. Since tumors are
characterized by various grades of molecular dysregulation that depend on and
are often specific for the type of tumor, these imaging techniques could be more
tumor-specific than conventional MRI. Indeed, molecular MRI sequences like MR
spectroscopy and chemical exchange saturation transfer have shown promise in
better delineating brain tumors and differentiating between brain tumor types.
However, current limitations in spatial and spectral resolution significantly affect
the success rate of metabolic MRI (3). PET has been the classic molecular imaging
technique over the last decades, and has a strong track record for cancer imaging
in the body. Instead of measuring the static presence of molecules like in MR
spectroscopy, PET images represent a dynamic process of PET agent uptake that is
characteristic of the particular tissue. In addition, PET agents can be designed to
target tissue-specific metabolic pathways and molecules. Compared to MRI, these
advantages together could result in higher brain tumor specificity by providing a
more complete picture of the molecular phenotype of brain tumors.

UNDERSTANDING UPTAKE OF PET AGENTS

Over the last 25 years, more than 50 different PET agents have been evaluated for
primary brain tumor imaging in humans. Most agents have been designed to
target certain molecules, such as transporters or receptors, that are associated with
specific metabolic pathways that are known to be upregulated or even thought to
be unique in brain tumor tissue. Notwithstanding their high target specificity,
success rates of these agents have varied widely because uptake is a dynamic
process that depends on more than just target binding; it also involves crossing
the blood-brain barrier (BBB) and becoming retained (or not) in the tumor cell
through simple trapping or by metabolic incorporation. These processes depend
heavily on the structure of the specific PET agent and which receptor or transporter
it targets. An additional complicating factor is the growing insight that current
target molecules and associated pathways may be less tumor-specific than
previously thought.
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Understanding the underlying mechanisms of PET agent transport, binding or
uptake, and trapping is important for correct interpretation of PET images in
clinical practice, and to aid in choosing the most appropriate agent for the par-
ticular tumor type or individual patient case. In this monograph, we explore the
major genetic and molecular changes characteristic of brain tumors, how they are
used by PET agents to gain access to tumor cells and their environment, and how
this translates to uptake in clinical practice. Several in-depth discussions on the
value of specific groups of PET agents in clinical diagnosis and follow-up of brain
tumors can be found in the literature (4—7); a concise overview of clinical trial
results is given in Table 1.

GENETIC CHANGES IN BRAIN TUMORS

Brain tumor cells are characterized by increased, uncontrolled proliferation and a
tendency to invade healthy tissues, sometimes accompanied by spread to distant
sites. These features result from combinations of genetic changes, like mutations
and deletions, which vary between different tumor types and often even within
the same tumor (8, 9). Many genetic changes have been recognized to play a role
in brain tumor development, the most important of which will be briefly described
below (Table 2).

PI3K-AKT-mTORC signaling pathway

Both increased tumoral secretion of growth factors, for example, PDGF (platelet-
derived growth factor), EGF (epidermal growth factor) and TNF-a (tumor necrosis
factor-alpha), as well as mutation or deletion of the tumor suppressor gene PTEN
(phosphatase and tensin homolog) will stimulate this pathway leading to increased
energy metabolism and angiogenesis. Two other genetic alterations that affect this
pathway are loss or inhibition of the p53 protein (see below) that normally stimu-
lates expression of PTEN, and mutation of the EGF receptor (EGFR) gene with
subsequent increased signaling of EGFR and pathway upregulation (10).

Ras-Raf-MEK-ERK(MAPK) signaling pathway

In addition to the increased growth factor secretion, several genetic alterations also
directly affect the MAPK (mitogen-activated protein kinase) pathway and lead to
cell cycle progression: NF1 (neurofibromatosis-1) mutations activate Ras indepen-
dent of growth factors, while BRAF (B-Raf proto-oncogene) mutations exert the
same effect on Raf. More indirectly, overexpression of the protein COX2 (cyclooxy-
genase-2) will lead to increased pathway stimulation through EGFR (11).

MYC protein

The MYC protein functions as a general transcription factor for a variety of genes asso-
ciated with normal development; overexpression will therefore affect many, if not all,
cellular pathways (some are illustrated in Figure 1). MYC sustained, or over-expression,
can be found in virtually all tumor types, and is seen as a major driving force in
oncogenesis (12, 13). In brain tumors, one of its main roles has been regulation and
proliferation of a highly malignant tumor cell subtype (tumor stem-like cell) (14).
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Figure 1. Simplified illustration of key metabolic and regulatory pathways that can be impaired,
inhibited or upregulated in tumor cells, including the associated PET agents. The grey box
represents the cytoplasm, while the yellow and blue boxes represent mitochondria and
nucleus, respectively. Main results of the different pathways are highlighted by red boxes
(e.g., increased protein synthesis). Red texts indicate oncogenic or tumoral changes
influencing the illustrated pathways. Green texts indicate PET agents. Orange lines (both
solid and dashed, different for clarity only) represent upregulated pathways, while normal
interactions that are nonetheless relevant for the illustration are shown as black (solid or
dashed) lines. The lipid raft (dashed box) was randomly placed, merely illustrating its
function of clustering proteins and associated signaling pathways. Dark blue and light blue
boxes crossing the plasma membrane represent resp. transporters and receptors.

Abbreviations: 2HG, 2-hydroxyglutarate; A;AR, A; adenosine receptor; A;AR, A, adenosine receptor; ACSS,

acyl coenzyme A synthetase; AKT, protein kinase B; AQP, aquaporin; ARF, ADP ribosylation factor; ATP, adenosine
triphosphate; ATRX, alpha thalassemia / mental retardation syndrome X-linked; BRAF, B-Raf proto-oncogene;
CHT1, high-affinity choline transporter; CKa, choline kinase alpha; CoA, acyl coenzyme A; COX, cyclooxygenase;
CTL, choline transporter-like protein; Ctr1, copper transporter 1, CXCR4, C-X-C motif chemokine receptor 4 and
its ligand CXCL12, C-X-C motif chemokine ligand; DAT, dopamine active transporter; DNA, deoxyribonucleic
acid; EGF, epidermal growth factor and EGFR, its receptor; EMT, epithelial-mesenchymal transition; ENT,
equilibrative nucleoside transporter; EP, prostaglandin E2 receptor; ERK, extracellular signal-regulated kinases;
FAP, fibroblast activation protein; G6P, glucose-6-phosphate; GRP, gastrin releasing peptide and GRPR, its
receptor; HIF, hypoxia-inducible factors; IDH, isocitrate dehydrogenase; IDO, indoleamine 2,3-dioxygenase;
LDH, lactate dehydrogenase; MAPK, mitogen-activated protein kinase; MCT, monocarboxylate transporter; MDM,
E3 ubiquitin-protein ligase; MGMT, O°-methylguanine-DNA-methyltransferase; MMP, matrix metalloproteinase;
mTORC, mechanistic target of rapamycin complex 1; NFkB, nuclear factor kappa-B; NF, neurofibromatosis; PDGF,
platelet-derived growth factor; PGE,, prostaglandin E2; PI3K, phosphatidylinositol 3-kinase; PKM2, pyruvate
kinase M2; PS, phosphatidylserine; PSMA, prostate-specific membrane antigen; PTEN, phosphatase and tensin
homolog; Rb, retinoblastoma protein; ROS, reactive oxygen species; SMCT, Na* monocarboxylate cotransporter;
SSTR, somatostatin receptor; TCA, tricarboxylic acid; TERT, telomerase reverse transcriptase; Tf, transferrin;

TFRC, transferrin receptor; TGF-B, transforming growth factor beta; TNF-a, tumor necrosis factor alpha; TSPO,
translocator protein; VEGF, vascular endothelial growth factor and VEGFR, its receptor.
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p53 protein

Mutations of the TP53 tumor suppressor gene (most common) or inactivation of
its protein p53 occur in virtually all tumor types (15). p53 normally regulates
DNA damage repair (including oncogenic alterations), cell cycle progression and
apoptosis (16). Causes of inactivation include deletions or mutations in the INK4/
ARF (ADP ribosylation factor) tumor suppressor locus and increased MDM2/4
(E3 ubiquitin-protein ligase-2 and -4) gene expression. MDM2 and MDM4 are
proteins that both directly inhibit activity of p53 as well as stimulate its degrada-
tion (17). The INK4/ARF locus harbors genes encoding ARE a protein that
normally inhibits MDM2 from impeding p53 function, thereby stabilizing and
activating p53 (18).

Rb1 protein

This tumor suppressor protein (retinoblastoma-1) normally inhibits CDKs (cyclin-
dependent kinases), stabilizes chromosome structure, and binds E2F transcrip-
tion factors, thereby inhibiting gene transcription and subsequent cell cycle
progression. Its functional impairment may be caused by direct mutation of its
gene or (more commonly) increased expression of its regulators (cyclin D, CDK4,
CDK®6) that cause detachment of E2F from Rb (19). Additionally, Rb function can
be influenced by deletions or mutations in the INK4/ARF tumor suppressor locus.
Next to ARF, this locus also holds genes for proteins INK4a and INK4b that inhibit
activity of CDK4/6 and (indirectly) cyclin D (18).

MGMT protein

Methylation of the MGMT (O°-methylguanine-DNA-methyltransferase) gene
promoter renders gene transcription impossible and leads to decreased amounts
of the DNA repair protein MGMT and, consequently, decreased DNA repair.
A ‘positive’ methylation status will enable oncogenic genetic alterations to survive;
on the other hand, DNA damage caused by chemotherapeutics will also evade
repair, leading to chemotherapy-induced apoptosis. This is illustrated in patients
with MGMT promotor methylated tumors who profit more from chemotherapy
than those without ‘positive’ methylation status (20).

IDH protein

The discovery of the IDH (isocitrate dehydrogenase) mutation caused a radical
rethinking of brain tumor development and classification (21). Mutations in the
IDH]1 and IDH2 gene are neomorph, resulting in an IDH protein with a new func-
tion: converting a-KG (alpha-ketoglutarate) to 2HG (2-hydroxyglutarate), which
subsequently accumulates within the tumor cell and ultimately blocks cellular
differentiation. The tumor cell will compensate for the altered flux of a-KG by
increasing glutaminolysis. IDH-mutated tumors are often associated with younger
age at diagnosis and better prognosis (22).
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ATRX & TERT

Mutations in telomere maintenance genes ATRX (alpha-thalassemia / mental
retardation syndrome X-linked) and TERT (telomerase reverse transcriptase) are
often seen together with IDH mutations. In general, the amount of cell divisions
is limited by the length of telomeres, DNA-protein complexes capping chromo-
some ends, protecting them from end-to-end fusion and apoptosis. Successive cell
divisions shorten telomeres, ultimately leading to cellular ‘ageing’ and death.
TERT and ATRX are able to reverse telomere shortening by increasing telomerase
activity and alternative lengthening of telomeres, respectively. Normally, these
genes are downregulated; however, in tumor cells, (promotor) mutations will
activate TERT and ATRX, resulting in telomere conservation and increased cellu-
lar survival (22, 23).

1p19q co-deletion

This genetic alteration has been classified as a key molecular feature of oligoden-
droglioma in the WHO classification of brain tumors (21). Although its exact role
in tumorigenesis has not been elucidated yet, recent histopathological studies
have shown an association with immune suppression in the tumor microenviron-

ment (24).

ENERGY METABOLISM IN BRAIN TUMORS

While several of the above described genetic changes individually affect treatment
options and can be used for prognostication, they have one main effect: the
production of a variety of abnormal proteins and dysregulation of molecular path-
ways within cells (the tumor’s molecular phenotype) that ultimately promote cell
cycle progression, proliferation and survival (2, 25). The most important dysregu-
lated pathways for PET agent uptake are described below, while a more detailed
overview can be found in Figure 1. Readers are also referred to two excellent
reviews by DeBerardinis et al. (general cancer metabolism) and Park et al. (focus
on gliomas) (26, 27).

Increased energy metabolism

A primary feature of tumor cells is upregulation of their energy metabolic pathways.
Cells produce energy primarily by glucose degradation (glycolysis), with either
subsequent incorporation of pyruvate in the TCA cycle and oxidative phosphoryla-
tion — yielding 36 molecules of adenosine triphosphate (ATP) — or degradation into
lactate — yielding only 2 ATP but 10-100 times faster. When necessary, they may
also use amino acids like glutamine as well as fatty acids and molecules like acetate
as substrates. Multiple genetic changes can cause upregulation of these pathways
in tumor cells and are summarized in Table 2 (10, 26, 28). To sustain these path-
ways, tumor cells will overexpress plasma membrane transporters, allowing
increased inflow of energy substrates, or upregulate glutaminolysis and, to a lesser
extent, fatty acid and acetate degradation (29). Upregulation of energy metabolic
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pathways enables tumor cells to proliferate as well as support all other energy-
demanding metabolic processes. As a side-effect, their seemingly counterintuitive
switch to less energy-efficient aerobic glycolysis (Warburg effect) stimulates angio-
genesis and suppresses the innate immune response through production of lactate,
which has emerged as a major factor in oncogenesis (30-32). The subsequently
increased reactive oxygen species (ROS) production, which is potentially toxic,
can be neutralized by cystine influx through the often overexpressed system xc1
transporter (33).

Increased fatty acid, protein, amino acid, and nucleotide synthesis

Increased cellular proliferation necessitates large amounts of cellular building
blocks, like nucleotides for deoxyribonucleic acid (DNA) replication, fatty acids
for plasma membrane construction and amino acids for protein synthesis. Apart
from overexpressing transporters for increased inflow of these building blocks,
tumor cells will also upregulate the associated metabolic pathways, i.e. protein,
amino acid, fatty acid and nucleotide synthesis. The increased energy production
discussed before facilitates these processes.

Increased angiogenesis

To sustain increased inflow of nutrients and building blocks, a high enough
concentration of these molecules outside the cell will be required. Tumor cells
facilitate this by initiating and upregulating several pathways of neovascular-
ization, including vascular co-option, vasculogenesis, and (most commonly)
angiogenesis, hereby significantly increasing the number of vessels supplying
the tumor. Angiogenesis is a complex process in which tissue cells and their
surrounding stroma interact and produce growth factors like vascular endo-
thelial growth factor (VEGF) that attract and stimulate endothelial and mes-
enchymal cells to form new (micro)vessels (16, 34, 35). This will ensure
sufficient supplies of nutrients and other molecules to reach the tumor (36).
Of note, these tumor microvessels are often leaky and dilated because of con-
tinued pro-angiogenic signaling that results, amongst others, in mixing of
tumor cells with endothelial cells and an absence of stabilizing pericytes. This
not only decreases the supply of nutrients like glucose, but also the oxygen
tension. Hence, this poses a clinical dilemma when interpreting uptake on
PET images (34, 35).

The tumor microenvironment

Tumor cells establish the tumor microenvironment (TME), a complex network
with various non-malignant cells like fibroblasts, endothelial and inflammatory
cells, surrounded by extracellular matrix rich in proteins, cytokines and other
signaling molecules. Interaction between the TME and tumor cells further facili-
tates tumor growth and angiogenesis, invasion and migration (metastasis), and
plays an important role in suppressing the body’s natural immune reaction to
tumor cells (37). Many of these interactions rely on increased expression of tumor
cell receptors that subsequently cause upregulation of their associated signal
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transduction pathways. In more malignant brain tumors, they are also facilitated
by hypoxia due to a lack of sufficient vasculature, dysfunctional (leaky) tumor
microvessels, or both. Although tissue with very low pO, will eventually die and
become necrotic, mild to moderate hypoxia can be survived and is used to sup-
press the immune system and stimulate angiogenesis, tumor cell invasion and
migration (38, 39). It also creates a relative resistance to radio- and chemotherapy,
e.g. by inducing cell cycle arrest in the phase least sensitive to ionizing radiation,
by limiting the detrimental effect of free radicals produced by interaction of radia-
tion with water molecules, or by affecting delivery and uptake of chemotherapeu-
tic drugs (39, 40). Consequently, a 2-3x higher radiation dose is necessary for
hypoxic tissue to obtain effects equivalent to normoxic tissue (40). Other path-
ways of immune system inhibition include VEGF secretion and secretion of
kynurenine, both of which attract immunosuppressive regulatory T cells (41) that
inhibit the anti-tumor immune response and stimulate angiogenesis through
suppression of helper T cells (35). The processes of immune suppression and
invasion / migration involve many more mechanisms; however, only those with a
role in PET agent uptake have been discussed here (42).

Targeting tumor molecular pathways for PET imaging

Most PET agents for brain tumor imaging have been designed to use the dysregu-
lated pathways by targeting either upregulated transporters or -receptors on the
tumor cell surface. They can be categorized based on the specific pathway they
target: (i) increased energy metabolism and building block synthesis (glucose,
amino acids and other nutrients); (ii) sustained cell cycle progression; (iii)
increased angiogenesis; and (iv) the tumor microenvironment (hypoxia, growth
factors). The following paragraphs discuss all PET agents used for this purpose in
the last 2% decades under nine broad categories. First, the monograph focuses on
PET agents that target energy metabolism and building block synthesis under four
sections: glucose-based agents, natural and non-natural amino acid-based agents,
other nutrient-based agents, and agents not based on glucose or other nutrients.
This is followed by five sections on various PET agents that target various aspects
of tumor biology such as cell cycle progression, angiogenesis, tumor microenvi-
ronment, multiple pathways, with the last section on pet agents ‘incidentally’
found to accumulate in brain tumors. An overview of expression patterns of the
targeted transporters and receptors can be found in Table 3.

GLUCOSE-BASED AGENTS

Glucose uses both the facilitated diffusion glucose transporter (GLUT) family and
the sodium-glucose linked transporter (SGLT) family to enter brain cells. Due to
increased glycolysis and the TCA cycle, these transporters are upregulated in brain
tumor cells, resulting in high concentrations of glucose inside the cell that facilitate
energy production (10, 43). '8F-FDG and '8F-Me-4DFG are two glucose analogues
that use the increased number of glucose transporters to image brain tumor cells.
8E-FDG mainly uses GLUT-1 and to a lesser extent GLUT-3, both which are pres-
ent on the BBB (Table 2); after entering the cell, it is phosphorylated and becomes
trapped as '8FDG-6-phosphate (Figure 2). 18F-Me-4FDG uses SGLT2, which is not
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Figure 2. lllustration showing uptake mechanism and assimilation process of nutrient-based PET
agents. See also main text. The grey box represents the cytoplasm, while the yellow box
represents mitochondria. Green arrows represent metabolic route of specific PET agent,
while black arrows represent metabolic route of associated nutrient / building block, and
green-black arrows a similar route for PET agent and nutrient / building block. Red

text / arrows show brain tumor cell-specific metabolic alterations. Of note, although
C-MCYS is a derivative of the amino acid cysteine, it is analogous to ""C-MET and therefore
grouped together with "C-MET in this illustration.

Abbreviations: LAT, large neutral amino acid transporter; IDO, indoleamine 2,3-dioxygenase; ASCT, anti-neutral
amino acid transporter; CKa, choline kinase alpha; CoA, acyl coenzyme A; G6P, glucose-6-phosphate; HIF,
hypoxia-inducible factors; IDH, isocitrate dehydrogenase; PEP, phosphoenolpyruvate; PKM2, pyruvate kinase
M2; PROT, proline transporter; SMCT, Na* monocarboxylate cotransporter; MCT, monocarboxylate transporter;
CHT1, high-affinity choline transporter; CTL, choline transporter-like protein; OCT / OCTN, organic cation
transport proteins; GLUT, glucose transporter; SGLT, sodium-glucose linked transporter; TCA, tricarboxylic acid.

present on the healthy BBB, rather only on endothelial cells of tumor vasculature
(Table 3); after entering the cell it becomes trapped without phosphorylation
(Figure 2). In clinical practice, uptake of either agent will reflect overexpression of
the transporters and therefore (indirectly) increased energy metabolism. The BBB
does not hamper the uptake of F-FDG, and the uptake of 8F-Me-4FDG will
additionally reflect increased tumor vasculature +/- BBB leakage. Since energy
metabolism generally increases with increasing malignancy grade, '®F-FDG has
often been used to differentiate between WHO grades, and recently even between
IDH-mutated and IDH-wildtype tumors (44). It can also help differentiate tumor
recurrence from treatment-related changes, and recent radiomics techniques with
also show promise in predicting Ki-67 expression and patient prognosis non-inva-
sively (45, 46). The main limitation of 8F-FDG lies in the generically high rate of
glucose metabolism in the healthy cerebral cortex, leading to low tumor-to-nor-
mal-tissue (T/N) ratios for most tumors except those with very high cellular den-
sity and metabolic rate, like lymphoma (47). '®F-Me-4FDG does not have this
problem since it does not cross the healthy BBB, causing a very low uptake in
healthy brain tissue and consequently high T/N ratio, which is its main advantage
over PF-FDG (Figure 3) (48). For both agents, a major limitation is their intrinsic
low tumor specificity: increased glucose consumption is also seen in other non-
oncological processes such as (acute) inflammatory tissue, although '®F-Me-4FDG
might prove more tumor-specific due to its inability to cross the BBB (49).

NATURAL AND NON-NATURAL AMINO ACID-BASED AGENTS

Amino acids enter cells through a variety of transporters, the most important of
which are system L (LAT) and system ASCT (alanine/serine/cysteine-preferring
transporters) (50). LAT1 and ASCT?2 in particular have been found overexpressed
in brain tumor cells and are therefore the main targets for PET agents (Figure 2)
(51). In the brain, LAT1 is mainly expressed by tumor cells and endothelial cells,
facilitating easy BBB crossing of PET agents that use this transporter, while LAT2
is also expressed in non-tumor cells, and ASCT is minimally expressed in normal
brain. On the other hand, ASCT1 and -2 are not expressed on endothelial cells
and therefore do not facilitate transport across the BBB (50, 52). Both types of
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Me-4FDG MRI with contrast

Figure 3. '8F-Me-4FDG PET (left), T,-weighted post-contrast (middle) and "8F-FDG PET (right)
images of a patient with an anaplastic astrocytoma, WHO grade Ill. The "®F-FDG image shows
mixed uptake within some portions of the mass, with highest uptake comparable to normal
cortical uptake in the healthy contralateral cortex. The 8F-Me-4FDG image, however, shows
uniform tumor uptake without any uptake in the surrounding healthy brain parenchyma,
providing significantly higher T/N ratio than the "F-FDG image. This figure is reproduced -
with new figure legend appropriate for current book chapter — from Kepe et al. (2018),
Figure 4, under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0) (48).

transporters can also be found in other pathological tissues like (chronic) inflam-
matory B- and T cells. After entering the cell, PET agent assimilation depends on
whether the amino acids molecular structure has been significantly altered
(Figure 2). Although all amino acid based agents, especially those using LAT1-2,
have some background uptake because they can be used for energy production
and protein synthesis in healthy brain parenchyma, or become part of healthy
cellular amino acid pools, this is significantly less than F-FDG (50, 53).

LAT-dependent agents

Of the eight amino acid-based agents using LAT transporters, 'C-MET, 'C-TYR,
I8F-FDOPA, '"®F-FAMT and '®F-FIMP are currently believed to solely use LAT1,
which is mainly expressed on tumor- and endothelial cells and will therefore
easily cross the BBB. After entering the tumor cell, only '!C-MET and ''C-TYR
become incorporated into proteins, and to a lesser extent into phospholipids and
DNA, especially 'C-MET (Figure 2) (54, 55). In clinical practice, uptake of these
two agents will reflect overexpression of LAT1 as well as (for 'C-MET partial)
increased protein synthesis indicative of increased metabolism. One must keep in
mind that uptake of PET agents such as ""C-MET may also potentially reflect a
contribution from a more nonspecific process such as blood-brain barrier
disruption that can occur with benign brain pathologies such as vascular lesions,
posttreatment changes, tumefactive multiple sclerosis, and infection (56).
8F-FDOPA and '8F-FAMT do not become incorporated into proteins but instead
stay inside the cytoplasmic amino acid pool (Figure 2); uptake in practice will
therefore reflect LAT1 overexpression similar to ''C-MET and 'C-TYR but with
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only indirect evidence for increased protein synthesis (57-59). An additional
disadvantage of 'BF-FDOPA is its incorporation into dopaminergic neuron
metabolism, causing high uptake in the basal ganglia that can significantly limit
tumor assessment (60). However, 8F-FDOPA reportedly shows greater contrast
for lesions outside the striatum when compared to '®F-FET (61). Of note, there is
evidence suggesting that LAT1 expression alone does not entirely explain intensity
variation in uptake of **F-FDPOA in brain tumors (57).

Moreover, like '*C-MET discussed above, **F-FDOPA is another example of a
PET agent that has been shown to localize to pseudotumoral brain lesions possibly
due to blood-brain barrier permeability, macrophage response, and/or adjacent
reactive astrogliosis (61, 62). '®F-FIMP is a new agent that shows higher accumula-
tion in higher-grade gliomas compared to lower grades and non-gliomas in a small
first-in-human study, and might be better retained in the cytoplasm than e.g., F-
FET below (63). The limited data so far, however, are unclear regarding its assimila-
tion: it is not incorporated into proteins but whether it solely becomes trapped in
the cytoplasm or is partially metabolized is as yet unknown (64). Uptake in clinical
practice is therefore so far similarly interpreted as for '®F-FDOPA and '®F-FAMT.
HC-MCYS and '8F-FET use either LAT1 or LAT2 which is also expressed in non-
tumor cells; after entering the tumor cell, they stay inside the cytoplasmic pool
(Figure 2). It is assumed that '®F-FET transport is mediated predominantly by use
of the LAT1 transporter, since LAT2 transporters are not expressed on the luminal
side of the BBB (65). The use of LAT2 may account for the disappointing results of
MC-MCYS in a recent animal study, showing significantly higher healthy brain
parenchymal uptake than ''C-MET, even though preliminary human results were
promising (54, 66, 67). In clinical practice, uptake can be interpreted similar to
I8F_FDOPA and '8F-FAMT with the addition of LAT2 overexpression. Interestingly,
I8E-FET is one of the only amino acid-based agents for which time-activity curves,
reflective of dynamic uptake, provide additional information on tumor grading and
prognosis (68, 69). This suggests that the uptake mechanism may be slightly differ-
ent from the other agents and although the main route of uptake uses the LAT1
transporter, studies also point to uptake using the Na*-dependent amino acid
transporter B%* and b%*. This uptake mechanism is dependent on the specific cell
type and the differences between intracellular and extracellular amino acid concen-
trations (70). '8 F-OMFD is a metabolite of '®F-FDOPA with very limited and dated
information on uptake and clinical value and will therefore not be discussed.

Even more advanced kinetic analysis will be necessary to interpret uptake of
1C-AMT. This agent, similar to its associated amino acid tryptophan, enters cells
through LAT1 and is not only used for protein synthesis but can also be incorpo-
rated into the kynurenine pathway (71). In tumors, upregulation of this pathway
by increased activity of one or both of its two main enzymes, indoleamine
2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO), plays a key role
in escaping the body’s immune response to the tumor (Figure 1 and Figure 2).
Although IDO overexpression is mainly a characteristic of low-grade astrocytic
tumors, uptake of C-AMT can be seen in both low- and high-grade tumors.
This suggests that the factors influencing uptake in low- and high-grade brain
tumors might be different, with increased IDO activity dominating uptake in
low-grade tumors, while increased transport of ''C-AMT into tumor cells might
dominate in high-grade tumors. In clinical practice, uptake will reflect either an
upregulated kynurenine pathway associated with immunosuppression, or
increased transport due to LAT1 overexpression / increased vasculature,
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depending on the tumor type. High uptake in contrast-enhancing tumor regions
is strongly prognostic for overall survival (72). A drawback is its extensive use for
protein synthesis in healthy brain parenchymal cells, decreasing T/N ratios to
levels quite similar to '8F-FDG (73, 74). The outlier '8F-FBPA is not an amino
acid but selectively uses LAT1 to gain access to the tumor cell (Figure 2). It was
primarily created to assess efficacy of boron neutron capture therapy with boron-
ophenylalanine (BPA) in various tumor types, including gliomas (75, 76). It may
be more tumor-specific than agents that also rely on LAT2 for access to cells (77).
Nevertheless, subsequent studies have questioned whether FBPA can accurately
estimate BPA distribution considering its distinct molecular structure, and it is
relatively unstable with fast deboronation. '®F-FBY (fluoroboronotyrosine) has
recently been introduced as a more stable alternative; it is a boron-derived tyro-
sine using the same LAT1 transporter, and while it is amino acid-based (tyrosine)
it will not be recognized as such by the cell due to its aberrant structure and will
therefore be quickly excreted instead of becoming either trapped in the cyto-
plasm or incorporated (Figure 2), which leads to a lower background activity
than other amino acid-based agents. In addition, like other agents using the LAT1
transporter, uptake will not depend on BBB permeability; indeed, '®F-FBY uptake
has been seen in non-enhancing brain tumor areas and shows a pattern distinct
from the pattern of enhancement. Uptake will therefore primarily reflect overex-
pression of the LAT1 transporter. An additional advantage is that FBY can be used
for treatment by substituting '®F for 'F for boron neutron capture therapy; how-
ever, treatment results with this agent have not yet been published (78, 79).

ASCT-dependent agents

Only three agents — 8F-FGIn, "'C-ACBC and '8F-FACBC — use ASCT(2) trans-
porters. Although ASCTs are absent on endothelial cells, all three agents have
shown to readily cross the BBB, probably through LAT transporters. Their main
advantage over LAT-associated agents stems from the fact that ASCTs are mini-
mally expressed in normal brain, leading to very low uptake in healthy tissues
(Figure 4) (80). After entering the tumor cell, only *F-FGIn becomes incorpo-
rated into proteins; 1!C-ACBC and ®F-FACBC (also called *®F-Flucoclovine), two
non-natural amino acid-based agents, cannot be used in metabolic pathways and
will instead be trapped in the cell (Figure 2) (29). In clinical practice, uptake of all
three agents will reflect overexpression of ASCT2 (and LAT for crossing the BBB);
direct evidence for increased protein synthesis however is only seen for '*F-FGIn
uptake (49, 52, 81, 82).

Non-LAT, non-ASCT PET agents

Three amino acid-based agents use transporters other than LATs or ASCTs.
I8F_FSPG crosses the plasma membrane through system x;~ (Figure 2), a glutamate/
cystine exchanger which is absent from the BBB and becomes overexpressed in
response to increased levels of ROS, a byproduct of tumor-upregulated metabolic
pathways (Figure 1). Although background uptake is very low, in clinical practice
uptake will reflect at least increased BBB permeability, with or without increased
oxidative stress / ROS production and indirectly increased metabolic activity (83).
Tumor cell specificity however may be higher than other amino acid-based agents
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Figure 4. T,-weighted post-contrast (A), FLAIR (fluid-attenuated inversion recovery; B), ""C-MET
PET (C) and "8F-FACBC PET (D) images of a patient with diffuse astrocytoma, WHO grade I, IDH
mutated. The conventional MR images show a poorly enhancing lesion with some high signal
surrounding the lesion. Although increased PET agent uptake can be seen in a small part of
the tumor on both the ""C-MET and "8F-FACBC PET ima$es, this case also illustrates the

relatively high uptake of the natural amino acid-based "C-MET in the healthy brain
parenchyma compared to the unnatural amino-acid based "®F-FACBC which can result in
decreased T/N ratios. This figure is reproduced — with new figure legend appropriate for
current book chapter — from Tsuyuguchi et al. (2017), Figure 1 Case 1, under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0) (80).

because system xc1~ is not expressed on inflammatory cells (49). There are also
significant differences in the uptake curves of primary brain tumors, though not
metastases, of lesions with good versus poor outcomes (84). D-cis-'8F-FPro is
transported across the plasma membrane via the proline transporter PROT.
Uptake is thought to represent pathological cell death / necrosis (Figure 2), as
opposed to the apoptosis-targeting PET agent ®F-ML-10 (see paragraph ‘PET
agents targeting multiple pathways’). However, conflicting results regarding its
transport through the BBB currently restrict any certain statements regarding
its uptake in clinical practice (85). ''C-MeAIB uses the system A neutral amino
acid transporter to gain access to the tumor cell, after which it becomes trapped
(Figure 2) (86). In addition to the natural amino acids alanine, serine and cyste-
ine, the system A transporter accepts MeAIB (an artificial amino acid) as a unique
substrate, and it becomes overexpressed with increasing proliferation rate and
malignant transformation in several carcinoma cell lines (87, 88). While consid-
ered ubiquitously present on mammalian cells, not much is known about the
location of system A transporters in the brain except that it is present on the
abluminal membrane of the bovine BBB, which explains the poor penetration of
11C-MeAIB through the BBB. In a sole clinical study, ''C-MeAIB could differentiate
between low-grade and high-grade astrocytoma with higher T/N ratios than
"C-MET; however, no other studies have been performed since, perhaps because
uptake will likely be highly dependent on BBB permeability (86).

OTHER NUTRIENT-BASED AGENTS

Like choline, "'C-choline and 'F-FCho enter brain cells mainly through high-
affinity choline transporter 1 (CHT1) and choline transporter-like proteins 1 and
3 (CTL1/3), are subsequently phosphorylated to phosphocholine by choline
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kinase alpha (CKa) and become incorporated into fatty acids, facilitating cell
membrane synthesis (Figure 1 and Figure 2). Increased cellular uptake in brain
tumors is caused by both increased expression of CTL1 and increased activity of
CKa, facilitating the growing demand for membrane building blocks and energy
(89, 90). CTL1 is present on the BBB (Table 3) so uptake will not depend on BBB
permeability. In addition, healthy brain cells are generally in a non-dividing state,
requiring little choline and thereby causing a very low background uptake (91).
Nonetheless, vascularity does seem to play a role in uptake since BBB-lacking
tissues as well as benign highly vascularized tumors (e.g., meningiomas) show
highest uptake even though their cellular proliferation rates are generally low
(92, 93). This might also explain the increased uptake seen in abscesses and other
inflammatory processes, further lowering tumor specificity (94). However, there
is potential clinical benefit in metabolic post-operative assessment for residual
tumor and treatment response assessment in diffuse non-enhancing gliomas
where quantitative MRI is limited (95, 96). In clinical practice, uptake will reflect
overexpression of CTL1 and/or increased CKa activity and fatty acid synthesis,
while vascularity needs to be taken into account.

C-acetate crosses the plasma membrane through either sodium monocarbox-
ylate cotransporter (SMCT) or monocarboxylate transporter (MCT), the latter of
which is present on the BBB (Figure 2 and Table 3). After entering the cell, it
becomes primarily incorporated into fatty acid synthesis and the TCA cycle.
Increased lactate can further increase uptake of ''C-acetate by hetero-exchange
through the MCT transporters; consequently, uptake in patients has been most
pronounced in fast-growing, high-grade tumors, although reports vary whether
the agent can differentiate between tumor grades (97, 98). In clinical practice,
uptake will reflect upregulation of both transporters, fatty acid synthesis and
(especially) energy metabolism (99, 100). Drawbacks are the use of (*!C-)acetate
by healthy brain cells, causing significant background uptake, and uptake in non-
tumor tissue like necrotic/fibrotic and granulomatous tissue due to unknown
mechanisms (98).

BN-ammonia freely diffuses across the plasma membrane, and once inside the
cell becomes converted with glutamate into glutamine by the enzyme glutamine
synthetase (GS; Figure 1 and Figure 2) which can subsequently be used for amino
acid synthesis. Although GS has been shown to be overexpressed in glioblasto-
mas, it is also abundantly present in normal and reactive astrocytes, causing high
uptake in healthy brain tissue, especially cerebral cortex. In addition, the agent
does not easily cross the BBB. In clinical practice, uptake will reflect at least
increased BBB permeability, with or without increased expression of GS and amino
acid synthesis (101).

AGENTS NOT BASED ON GLUCOSE OR OTHER NUTRIENTS

One relatively new agent is not based on glucose, amino acids, or other nutrients,
but does target an associated pathway. *®F-DASA-23 binds to pyruvate kinase M2
(PKM2), an isoform of the enzyme pyruvate kinase which catalyzes the last step
in glycolysis by converting phosphoenolpyruvate to pyruvate (Figure 1). Contrary
to the M1 isoform, PKM2 can be dynamically controlled in its activity, a feature
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that tumor cells use — via oncogenes c-Myc and HIF-1 — to regulate their need for
either anabolic or catabolic metabolism. PKM2 is found ubiquitously in human
cells except in muscle, liver and brain, and is preferentially expressed in all types
of cancers; in brain tumors, PKM2 expression is mildly increased in grade I to 11
gliomas but highly expressed in glioblastomas (102). The agent can readily cross
the BBB and binding to PKM2 is slowly reversible; however, it is unclear how it is
taken up inside the cell, either through a transporter or via passive diffusion
(Figure 2). In clinical practice, uptake will therefore reflect PKM2 expression and
therefore glycolytic status within tumor tissue alone, with a potential but as yet
unknown role of the transport mechanism across the cell membrane. This agent
could be of lar interest considering the therapeutic efforts of targeting PKM2 for
various diseases including cancer over the last couple of years (103). A first clini-
cal study showed significant binding of '®F-DASA-23 in brain tumors with a high
T/N ratio, and a follow-up clinical study is underway (Table 1) (104).

PET AGENTS TARGETING CELL CYCLE PROGRESSION

All four nucleoside-based agents — '8F-FLT, ''C-4DST, '®F-FMAU and 'C-TdR
— are based on thymidine, which pairs with adenine in the DNA double helix
and is therefore directly involved in cellular proliferation. These agents use
equilibrative nucleoside transporter 1 (ENT1) to enter cells (Figure 5). Although
ENTI is present throughout the brain including endothelial cells (Table 3),
none of these agents can readily cross the BBB leading to a high T/N ratio. In
clinical practice, uptake of either agent will therefore reflect at least increased

INUCLEOSIDE-BASED PET AGENTS |
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Figure 5. lllustration showing uptake mechanism and assimilation process of the nucleoside-
based PET agents. See also main text. The grey box represents the cytoplasm, while the blue
box represents the nucleus. Green arrows represent metabolic route of specific PET agent,
while black arrows represent metabolic route of associated nutrient / building block,

and green-black arrows a similar route for PET agent and nutrient/ building block.

Red text / arrows show brain tumor cell-specific metabolic alterations.

Abbreviations: ARF, ADP ribosylation factor; ATRX, alpha thalassemia / mental retardation syndrome X-linked;
DNA, deoxyribonucleic acid; ENT, equilibrative nucleoside transporter; MGMT, O°-methylguanine-DNA-
methyltransferase; MDM, E3 ubiquitin-protein ligase; Rb, retinoblastoma protein; TERT, telomerase reverse
transcriptase; TK, tyrosine kinase.
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BBB permeability next to ENT1 overexpression (105). After entering the cell,
most become phosphorylated by thymidine kinase 1 (TK1), which is cell-cycle
dependent and therefore upregulated in tumor cells, or TK2, which is restricted
to mitochondria and is cell-cycle independent. Only '8F-FLT and ''C-4DST
interact with TK1: '8F-FLT subsequently becomes trapped in the cytoplasm
because it lacks an essential hydroxyl group, causing uptake to indirectly reflect
increased cellular proliferation, while ''C-4DST becomes incorporated into
DNA, thereby directly reflecting increased DNA synthesis and proliferation
(Figure 5) (105). Kinetic analyses will be necessary to distinguish uptake due to
disrupted BBB from that due to increased cellular proliferation(106), decreasing
their sensitivity for brain tumor cells compared to amino acid agents like 'C-
MET and '8F-FET (Figure 6), and they should not be used for e.g., recurrent
non-enhancing brain tumors (107, 108). However, uptake of ®F-FLT has been
shown to differentiate between grade IIT and IV gliomas, and is sometimes seen

Figure 6. T,-weighted post-contrast (cT1), T,-weighted (T2), 'F-FLT PET ([18]F-FLT) and "8F-FET
([18]F-FET) images of a patient with a non-enhancing glioblastoma, WHO grade IV. The lesion is
hyperintense on the T,-weighted image but does not show contrast enhancement. Increased
uptake in the T,-hyperintense region can clearly be seen on the "8F-FET PET image, but there
is no uptake visible on the "8F-FLT PET image, illustrating the drawback of PET agents that
cannot easily cross the BBB. This figure is reproduced — with new figure legend appropriate
for current article — from Nowosielski et al. (2014), Figure 1, under the terms of the Creative
Commons Attribution 4.0 International (CC BY) License (http://creativecommons.org/
licenses/by/4.0) (107).
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in non-enhancing areas on MRI, suggesting not all uptake is BBB-related, it has
also been suggested that even a small number of glioma cells can cause BBB
disruption without additional contrast agent leakage (108, 109). Tumor uptake
of 18F-FLT can also be used to predict tumor progression in meningiomas (110).
Background uptake of ''C-4DST is paradoxically high compared with '®F-FLT,
and it has not been studied much (111). '®F-FMAU becomes phosphorylated by
TK2, raising the question whether uptake really reflects cellular progression,
while ''C-TdR is not used anymore because of its high catabolism into *C-CO,
which causes significant background uptake.

PET AGENTS TARGETING ANGIOGENESIS

%8Ga-PSMA, '®F-DCFPyL and %°Zr-Df-IAB2M specifically bind to the prostate-
specific membrane antigen (PSMA), a receptor thought to induce VEGF-
independent angiogenesis in pathological conditions like tumors (Figure 7).
PSMA is variably expressed on tumoral blood vessels and tumor cells depending
on the tumor type, while no expression is seen on healthy brain parenchymal cells
or normal vessels (Table 3); BBB transport will therefore depend on the tumor
type (112). Preliminary studies showed high T/N ratios due to the virtually non-
existent uptake in the healthy brain. Since all tested tumors showed contrast
enhancement, this also raises the question whether uptake on PET images is not
simply representative of increased BBB permeability without any role of PSMA.
This hypothesis is strengthened by early reports on high uptake in enhancing
radiation necrosis and ischemia (113, 114), although more recent studies have
demonstrated the ability to distinguish recurrent high-grade gliomas from radia-
tion necrosis (115). In clinical practice, with the limited data so far, uptake will
likely reflect BBB permeability, overexpression of PSMA on endothelium or tumor
cell (depending on tumor grade), or a combination of both. ®Ga-PSMA is used
most often because of its extensive use in prostate cancer, while '®F-DCFPyL is
similar but uses '8F as radionuclide. 8Zr-Df-IAB2M is a small part of the PSMA
antibody and shows faster clearance, thereby achieving higher T/N ratios than the
other two agents (116).

The arginine-glycine-aspartic acid (RGD)-based PET agents '®F-galacto-RGD,
IBF-FPPRGD2, F-RGD and %Ga-PRGD2 bind to the receptor integrin o,fs,
which is not expressed on healthy brain parenchymal cells but specifically on
tumor endothelial cells and, to a slightly lesser extent, on tumor cells themselves
(Table 3). In glioblastomas, it promotes tumor cell migration and invasion, angio-
genesis, and multiple signaling pathways like the PI3K-AKT pathway leading to
cell proliferation (Figure 7). It has also been observed on activated macrophages,
suggesting a role within the tumor microenvironment (117, 118). Given the lim-
ited clinical data thus far, uptake in clinical practice can reflect overexpression of
a,ps on endothelial cells related to angiogenesis, and/or BBB permeability with
overexpression of o3 on tumor cells related to a pathway such as angiogenesis,
and/or presence of activated macrophages within the tumor microenvironment
(119). Future studies, if feasible, will be necessary to elucidate their clinical
implications.
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Figure 7. lllustration showing binding mechanism and associated signaling pathways of PET
agents that become bound to receptors / transporters. See also main text. The grey box
represents the cytoplasm, while the yellow and blue boxes represent mitochondria and
nucleus, respectively. Green arrows represent binding of specific PET agent, while black
arrows represent signaling pathway of receptor. Red text / arrows show brain tumor
cell-specific alterations. Not shown for the sake of clarity: positive effect of adenosine /
adenosine receptor pathway on tumor invasion and migration, as well as on suppressing
immune reaction to the tumor.

Abbreviations: A;AR, adenosine A; receptor; Ay, AR, adenosine A, receptor; AKT, protein kinase B; AQP,
aquaporin; ARF, ADP ribosylation factor; ATRX, alpha-thalassemia / mental retardation syndrome X; CXCR4,
C-X-C motif chemokine receptor 4; CXCL12, C-X-C motif chemokine ligand 12; EGF, epidermal growth factor
and EGFR, its receptor; EMT, epithelial-mesenchymal transition; FAP, fibroblast activation protein; GLUT,
glucose transporter; GRP, gastrin releasing peptide and GRPR, its receptor; MAPK, mitogen-activated protein
kinase; MDM, E3 ubiquitin-protein ligase; MGMT, O°-methylguanine-DNA-methyltransferase; MMP, matrix
metalloproteinase; mTORC, mechanistic target of rapamycin complex 1; NFkB, nuclear factor kappa-B;
PI3K, phosphatidylinositol 3-kinase; PSMA, prostate-specific membrane antigen; PTEN, phosphatase and
tensin homolog; Rb, retinoblastoma protein; ROS, reactive oxygen species; SSTR, somatostatin receptor;
TERT, telomerase reverse transcriptase; TNF-a, tumor necrosis factor alpha; TSPO, translocator protein; VEGF,
vascular endothelial growth factor and VEGFR, its receptor.

PET AGENTS TARGETING THE TUMOR MICROENVIRONMENT

Hypoxia is one of the hallmarks of more malignant, treatment-resistant tumor
tissue. Five PET agents (!8F-EF5, ©2Cu?*-ATSM, 'SF-FAZA, 'F-FRP170 and
I8E-FMISO) use this feature to become trapped inside the tumor cell. These agents
passively diffuse across the plasma membrane and become reduced to radical
anions, a process which is reversible in normoxia and permanent in hypoxia. This
leads to macromolecular binding and cellular trapping (Figure 8) (120, 121).
IBE-FMISO, '8F-EF5 and ®*Cu?*-ATSM are relatively lipophilic and consequently
have no difficulty crossing the BBB and plasma membranes, but do so relatively
slowly. In the case of ®F-EFS5, this leads to prolonged high background uptake
which significantly restricts its use, while for 8F-FMISO several hours between
injection and PET imaging are necessary for optimal T/N ratios. **Cu®*-ATSM is
similarly lipophilic, but instead of binding to macromolecules it undergoes further
dissociation into H,-ATSM and free Cu*, the latter of which can be used by the
tumor cell in angiogenesis and protein synthesis (Figure 8) (120). Conflicting
results from preclinical and clinical studies regarding the relation between uptake
and cellular hypoxia markers, however, have so far limited its use (122). 18F-FAZA
and '8F-FRP170 are more hydrophilic and therefore have more difficulty crossing
plasma membranes; however, when successful they do so relatively fast. Their
advantage is the faster clearance rates resulting in little to no uptake in healthy
tissue. In the case of '8F-FAZA, this comes at the cost of an unclear role of BBB
permeability; nevertheless, retention of this agent will solely depend on the
hypoxic condition in the tumor tissue (121).

BE-FMISO and '8F-FAZA have been most successful; uptake of these agents
(either dynamic or static ratios) has been correlated with immunohistochemical
hypoxia markers (123). However, due to their different uptake mechanisms, clin-
ical use and image interpretation differ substantially. For F-FMISO, uptake in
clinical practice is thought to solely reflect decreased pO, or hypoxia, and is
therefore almost exclusively seen in more malignant tumors (124). Considering
its slow clearance from the blood, timing of acquisition after injection is still an
area of much debate — varying between 90 minutes and 4 hours in literature — as
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Figure 8. lllustration showing uptake mechanism and assimilation process of nucleoside-based,
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while black arrows represent metabolic route of associated nutrient / building block, and
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Abbreviations: Ctr, copper transporter; NFkB, nuclear factor kappa-B; PS, phosphatidylserine; TME, tumor
microenvironment; VEGF, vascular endothelial growth factor.

is the choice between static and dynamic imaging, the latter providing more
quantitative measurements (40, 125, 126). Interestingly, while F-FMISO is con-
sidered to only accumulate in severely hypoxic tissue, uptake partially overlaps
with areas of increased metabolism, suggesting that at least parts of these hypoxic
areas are still viable (38, 127, 128). For '8F-FAZA, uptake in clinical practice will
likely reflect hypoxia, with an additional role of BBB permeability, the extent of
which is still not clear. It has a superior blood clearance compared with '*F-FMISO
and therefore a higher image contrast. Several preclinical studies have suggested
that redox-disbalancing metabolic changes other than hypoxia might play a role
in FAZA retention, such as fatty acid metabolism and oncogene expression (129).

PET AGENTS TARGETING MULTIPLE PATHWAYS

Unlike transporters, receptors are often connected to a variety of different intra-
cellular pathways. Hence, most PET agents targeting receptors will therefore indi-
rectly target multiple pathways, like the ones discussed below.
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Somatostatin-based (receptor-targeting) agents

Somatostatin binds to one of 5 different somatostatin receptors (SSTRs), of which
SSTR1 and -2 are most abundant in the brain (Table 3) (130). In tumors, SSTR
activation exerts an anti-tumor effect, interfering with PI3K- and MAPK pathways
and VEGF (Figure 1), and inhibiting cell cycle progression; therefore, overexpres-
sion can be seen in low-grade tumors like meningiomas and oligodendrogliomas
(130, 131). %¥Ga-DOTATATE, %8Ga-DOTATOC and °8Ga-DOTANOC are based
on the somatostatin analog octreotide and mainly target SSTR2, especially
%8Ga-DOTATATE (Figure 7). None of these agents can cross the intact BBB; uptake
in clinical practice will therefore reflect at BBB permeability +/- overexpression of
SSTR2, and increased uptake in meningiomas has been associated with faster
growth although no correlation was found with tumor grade (132-134). Among
brain tumors, ®®Ga-DOTA-SSTR is by far the most commonly used PET agent in
the evaluation of meningiomas, and pituitary adenomas are the second most com-
mon indication (135). Tumor specificity is somewhat limited due to the abun-
dance of SSTRs in the pituitary gland and (variably) on inflammatory (T and B)
cells and macrophages (136).

Growth factor-based (receptor-targeting) agents

%8Ga-BBN and ''C-PD153035 target growth factor receptors. ®®Ga-BBN binds to
the gastrin releasing peptide receptor (GRPR), which is involved in PI3K- and
MAPK pathways (amongst others) that ultimately lead to glycolysis, fatty acid
synthesis and cell progression (Figure 1 and Figure 7). Both low- and high-
grade gliomas overexpress GRPR (Table 3) and have shown high uptake of
®8Ga-BBN irrespective of grade; however, healthy brain parenchyma shows very
low uptake even though neurons express GRPR (Table 3). This suggests that the
agent does not cross the BBB even though non-enhancing low-grade tumors do
show uptake (137). In clinical practice, uptake might therefore reflect increased
cellular metabolism and progression, however with an unclear role of the BBB.
Interestingly, Li et al. modified °®Ga-BBN to include a near-infrared fluorescent
dye creating a dual-modality imaging probe known as ®8Ga-IRDye800CW-BBN
that allowed for both preoperative imaging with PET and fluorescent-guided
surgery resulting in improved intraoperative glioblastoma visualization and
optimal resection (138). ''C-PD153035 binds to the epidermal growth factor
receptor (EGFR), which is involved in pathways similar to GRPR, contributes to
tumor cell progression and invasiveness (Figure 7), and is overexpressed in a
majority of primary glioblastomas. !C-PD153035 was able to cross the BBB and
showed high uptake in EGFR-overexpressing tumors, but its popularity was
short-lived, perhaps because therapeutic targeting of EGFR has been disap-
pointing (139).

Adenosine-based (receptor-targeting) agents

I8E-CPFPX and '8F-FLUDA both target adenosine receptors. Adenosine and its
receptors have multiple roles in the brain, including activation of microglia/mac-
rophages and neurons, regulation of the immune response, and modulation of
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neurotransmitter release and neuronal plasticity. In brain tumors, increased levels
of adenosine — created by the tumor microenvironment, e.g., hypoxia — are
thought to inhibit T cells leading to immune response evasion; the effect of ade-
nosine on tumor cell proliferation (through the MAPK signaling pathway) has
been more controversial, with equal reports on anti-tumor effects (140). **F-CPFPX
is a specific ligand for the adenosine receptor A;AR (Figure 7) and in one prelimi-
nary study showed uptake restricted to the peritumoral tissue, suggesting a pos-
sible cellular reaction of this tissue to infiltrating tumor cells; however, T/N ratios
were low and the at that time ambivalent role of adenosine receptors likely pre-
cluded further investigations (141). F-FLUDA was introduced more recently
and is a specific ligand for the adenosine receptor A;,AR which has the highest
expression in the striatum where it interacts with dopamine signaling (142). More
than A AR this receptor plays a crucial role in inflammatory processes involving
microglia. '8F-FLUDA also specifically links with B-lymphocytes and a recent
first-in-human study demonstrated the potential to distinguish primary central
nervous system lymphomas from glioblastoma (143). Nevertheless, whether these
agents readily cross the BBB is as yet unknown, precluding clear statements on
uptake interpretation.

Translocator protein (TSPO) agents

HC-PK11195 and '®F-DPA-714 selectively bind to the mitochondrial translocator
protein (TSPO) located on the outer mitochondrial membrane (Figure 7). In the
brain, TSPO helps maintaining homeostasis and is thought to be involved in ste-
roidogenesis through intramitochondrial cholesterol metabolism (producing ROS
as a byproduct). Although its role in oncogenesis has yet to be elucidated, it has
been found overexpressed in neurological diseases associated with neuroinflam-
mation — being upregulated in pro-inflammatory microglia/macrophages and
astrocytes in preclinical studies — and its presence is increased in glioblastomas
tumor microenvironment (144-146). In gliomas, overexpression is associated
with a higher malignancy grade, increased invasiveness and a poor survival.
Interestingly, due to the high expression of TSPO on inflammatory cells including
those recruited by the tumor (like glioma-associated microglia/macrophages),
TSPO-targeting agents might be able to directly visualize the tumor microenvi-
ronment (Table 3) (147). Both agents can passively diffuse across the BBB so
uptake will not depend on BBB permeability, but how they subsequently reach the
cell nucleus is less clear, limiting clear statements on uptake interpretation
(147-149).

While not targeting the mitochondrial membrane, '®F-FDHT does target a
receptor inside the tumor cell, namely androgen receptor (AR), a nuclear mem-
brane receptor that is translocated into the nucleus after binding with
5a-dihydrotestosterone (derivative from testosterone in males and dehydroepian-
drosterone in females). Within the nucleus, it functions as nuclear transcription
factor, facilitating transcription of genes promoting cellular growth and survival.
AR has been found overexpressed in glioblastoma nuclei and surrounding tumor-
associated arteries. Although the exact role of AR in brain tumorigenesis has not
been elucidated yet, AR antagonists have been shown to suppress MYC expres-
sion, suggesting a role in tumor cell maintenance and proliferation (Figure 7)
(150, 151). A preliminary study showed uptake in glioma and a very low
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target-to-background ratio; however, whether the agent crosses the BBB and how
it enters tumor cells is unknown, limiting clear statements on uptake mechanisms
and its clinical interpretation (Table 1) (152).

Transporter-targeting agents

Three targeted transporters also indirectly target multiple pathways. For entering
tumor cells '**I-CLR1404 uses lipid rafts, dynamic domains within the plasma
membrane that are overexpressed on tumor cells and support a variety of signal-
ing pathways. 2*I-CLR1404 is thought to cross the BBB through passive diffusion
— although there have been some contradictory results — and becomes trapped
once inside the tumor cell. In clinical practice, uptake will reflect lipid raft over-
expression and indirectly upregulation of their associated pathways, with a yet
uncertain role for the BBB (Figure 8). Although CLR1404 can also be labeled with
BT for therapeutic options, mild uptake in benign treatment-related brain paren-
chymal changes may lower specificity of this agent and limit its (theragnostic) use
(153-155). F-ML-10 enters apoptotic cells that are characterized by external-
ized phosphatidylserine (PS) and an intact plasma membrane (Figure 8), features
not present in necrotic, dying cells. The agent does not seem to cross the intact
BBB. In clinical practice, uptake will therefore likely reflect BBB permeability +/-
increased apoptotic rates. High apoptotic rates, however, are common in both
tumor tissue and tissue treated with radiotherapy or e.g., ischemia, decreasing
tumor specificity of this agent as well (156). **CuCl, enters cells through the Ctrl
copper transporter after which it becomes directly incorporated into cellular path-
ways in the same way as Cu* released from °*Cu**-ATSM (Figure 8). The agent has
the added advantage of being both a diagnostic agent (p* decay) and a therapeutic
agent (Auger electrons). Nonetheless, how ®*CuCl, crosses the BBB, if it does at
all, is not known yet, and its use has remained limited to two somewhat older
clinical studies (157).

Miscellaneous agents

For some additional agents, uptake mechanisms are less clear. 'C-TGN-020 is a
ligand for aquaporins (AQP) 1 and 4, water channel proteins that play a role in
cerebrospinal fluid absorption and regulation of BBB permeability; in brain tumors
they stimulate angiogenesis, BBB permeability, tumor cell migration and invasion
(Figure 1 and Figure 7) (158). AQPs are only present on dural and vascular mem-
branes and neurons (Table 3), causing low healthy brain uptake of *C-TGN-020
(Figure 9). The role of AQPs in tumor invasion and microvascular proliferation
suggests ''C-TGN-020 could improve differentiation between tumor grades
(Figure 9); however, so far only WHO grade III and IV astrocytomas have been
studied (159). If and how this agent crosses the BBB is not known yet, although
AQPs have been described next to the BBB (Table 3). %8Ga-citrate binds to trans-
ferrin in blood, and this complex subsequently binds to the transferrin receptor
TFRC after which it most likely becomes endocytosed (Figure 7) (160). TFRC
plays an essential part in iron homeostasis, is often overexpressed on brain tumor
cells (at least partly because of MYC overexpression) and thought to stimulate
multiple tumor cellular pathways by supplying the necessary increased amounts
of iron as building block (Figure 1) (161). Tumor specificity, whether the agent
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Figure 9. T)-weighted MR (left) and ""C-TGN-020 PET (right) images of two patients with an
astrocytoma WHO grade IlI (top row) and glioblastoma WHO grade 1V (bottom row),
respectively. Both tumors show a high T/N ratio; in addition, uptake in the glioblastoma is
more intense than in the WHO grade Il tumor. This figure is reproduced — with new figure
legend (with permission) appropriate for current article — from Suzuki et al. (2018), Figure 1,
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license
(http://creativecommons.org/licenses/bync-nd.4.0/) (159).

crosses the BBB, and what happens after the ®Ga-citrate-transferrin complex is
endocytosed inside the cell however remain to be seen (160).

Fibroblast activation protein (FAP) inhibitor (FAPI) PET imaging using
8Ga-(DOTA)-FAPI or '8F-FAPI is only recently being explored. FAP is a cell
membrane-bound glycoprotein with serine protease activity that can cleave pro-
teins in the surrounding tissue allowing for protein degradation and matrix
remodeling. In tumors, it promotes cellular proliferation, migration and invasion,
angiogenesis, and immune suppression through several pathways, not all of
which have been completely elucidated (Figure 1 and Figure 7). It is generally
absent or shows very low expression in normal cells, but is a universal marker of
tumor-associated fibroblasts (162). In extracranial tumors, %Ga-(DOTA)-FAPI
and 'S8F-FAPI can target these fibroblast within the tumor microenvironment
(163). Fibroblasts are not present in brain (tumors); however, it does appear that
there are FAP-positive cells such as FAP-positive foci of neoplastic cells in gliomas
and FAP-positive vessels in glial tumors, and FAP seems to be overexpressed in
most glioblastomas. Neither agent crosses the BBB, so uptake in clinical practice
will reflect at least BBB permeability, possibly combined with FAP overexpression
(164). One advantage is that FAPI agents have low background activity in the
brain parenchyma (165). There is some initial evidence suggesting that FAPI
agents may be helpful in distinguishing between low-grade IDH-mutant and
high-grade gliomas (166).
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%8Ga-Pentixafor targets C-X-C motif chemokine receptor 4 (CXCR4). CXCR4
is a transmembrane receptor that is involved in multiple physiological processes
such as embryogenesis, neoangiogenesis, hematopoiesis and inflammation. In
tumors, the interaction of CXCR4 and its ligand CXCL12 (C-X-C motif chemo-
kine ligand) plays a critical role in tumor cell growth and survival, angiogenesis,
and regulation of interactions between tumor cells and the TME (Figure 7) (167).
The receptor is overexpressed in numerous human tumor types, including glio-
blastoma and lymphoma, and is associated with poorer progression-free survival
and overall survival (168). Recent studies have demonstrated °®Ga-Pentixafor
uptake in glioblastoma and primary central nervous system lymphoma on PET
and the agent may have therapeutic potential if labelled with '""Lu or *°Y (1609,
170). A recent histopathologic study on glioblastoma tissue samples, however,
showed a large inter- and even intra-tumoral variation in CXCR#4 expression, and
an inconsistent correlation between ex vivo CXCR4 expression and in vivo uptake
of ®Ga-Pentixafor (171). In addition, the agent cannot cross the intact BBB. These
factors bear the question to what extent uptake reflects BBB permeability versus
CXCR#4 overexpression.

82Rb-chloride is an analog of potassium and enters cells through the
sodium-potassium pump or Na/K-ATPase found ubiquitously in human cells
as well as tumor cells. Next to maintaining cellular ionic homeostasis, the
Na/K-ATPase is also involved in many intracellular pathways affecting cellular
proliferation, motility and apoptosis; in glioblastomas its overexpression
sustains growth and invasion (Figure 8) (172). Although the agent can
penetrate the BBB from extracellular fluid, uptake does depend on BBB
integrity since no uptake is seen in healthy brain parenchyma. After entering
cells, retention depends at least partly on ATP-driven transport of the Na/K-
ATPase. In clinical practice, uptake will therefore likely reflect a combination
of vascularization rate, BBB permeability, and efficiency of Na/K-ATPase
(173). All three of these factors are often higher in malignant tumors as
compared to benign tumors, which may allow for differentiation between
malignant and benign gliomas. However, due to its non-specificity,
82Rb-chloride uptake can be seen in both tumors and other lesions such as
AVMs (174).

PET AGENTS ‘INCIDENTALLY” FOUND TO ACCUMULATE
IN BRAIN TUMORS

Three agents were initially developed for imaging of other pathologic processes
such as inflammation (*8F-FDS), Parkinson’s disease ('8F-FP-CIT) and Alzheimers
disease (11C-PiB). Their mechanisms of interaction and assimilation within brain
tumor cells are unclear, and data on brain tumor uptake is limited to case reports.
I8F-FDS showed uptake in spindle cell carcinoma of the pituitary gland, although
the confounding effect of BBB leakage in this case was unclear (175). **F-FP-CIT
has shown uptake in meningiomas, although the cause of its uptake and role of
the dopamine active transporter (DAT) in meningioma oncogenesis is still
unknown(176). ''C-PiB binds p-amyloid in PET-imaging of Alzheimer’s disease
but has also shown uptake in meningiomas. A lack of uptake in other tumors
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suggests 'C-PiB may be able to differentiate between meningiomas and other
brain tumor types; however, the general absence or minimal presence of
f-amyloid within meningioma suggests uptake might primarily be due to high
vascularity (177).

CONCLUSION

Interpretation of PET agent uptake in brain tumors remains complex. This is due
in part to the various factors influencing uptake, such as transporter / receptor
expression in non-tumorous tissues, BBB permeability, and metabolic incorpora-
tion versus ‘inactive’ trapping. For many agents, these factors have not been com-
pletely elucidated. In addition, knowledge on oncogenesis improves rapidly,
shedding new light on brain tumor development and emphasizing molecular
pathways that are not targeted by existing PET agents. Finally, although the
Response Assessment in Neuro-Oncology working group (RANO) published
guidelines for the use of a few common PET agents for glioma imaging, many
countries allow PET agents that have been used in clinical studies to be synthe-
sized and used in the associated institution’s clinical practice, as long as the insti-
tution can substantiate it may improve patient care, increasing exposure of clinical
radiologists to these often less well-known PET agents.(178) We hope that this
monograph of PET agents used for human brain tumors has contributed to a bet-
ter understanding of uptake mechanisms and their clinical implications. None of
the PET agents described have been shown to be the ‘ideal’, tumor-specific agent.
Perhaps in the future, simultaneous PET/MRI, combining the advantages of con-
ventional and molecular MR imaging with targeted PET imaging, could prove the
optimal combination for brain tumor diagnosis, treatment monitoring and
follow-up.
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