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Abstract 
 
Cyclic AMP (cAMP)-driven mechanisms are central to the pathogenesis of polycystic 
kidney disease (PKD). Cyclic AMP stimulates both fluid secretion and cell proliferation, 
making abnormal cAMP-regulated pathways key targets for PKD therapy. The success of 
vasopressin receptor blockade in lowering cAMP levels and ameliorating disease in murine 
models of PKD and in a recent clinical trial, argues that cAMP-regulated mechanisms are 
fundamental to cyst formation and disease progression. This chapter focuses on why cAMP 
is important to the disease process, and how the primary abnormality in PKD is the 
abnormal  response of  cells to  cAMP rather than high levels of cAMP per se. This abnormal  
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cAMP response is a consequence of the calcium environment being disrupted in PKD from 
loss of polycystin function. We have identified signaling mechanisms by which decreased 
intracellular calcium levels can transform normal cells into PKD-like cells. By treating 
normal renal epithelial cells with calcium channel blockers it has been possible to de-
repress B-Raf, allowing its activation by cAMP and subsequent MEK/ERK activation to 
stimulate cell proliferation. Autosomal dominant PKD (ADPKD) cells can also be switched 
back to a normal phenotype by raising intracellular calcium. The abnormal response to 
cAMP is made worse by mechanisms that further raise intracellular cAMP, causing cAMP 
to stimulate cyst-filling fluid secretion in a cystic fibrosis transmembrane conductance 
regulator (CFTR)-dependent fashion. The abnormal PKD-like phenotype is likely a result of 
misregulated gene expression as well as disruption of a number of signaling pathways and 
altered cell cycle control, all resulting in a change in the phenotypic state. It is hypothesized 
that disruption of the calcium/calcineurin/nuclear factor of activated T-cells (NFAT) 
pathway would contribute to this phenotypic change by altering gene expression, and 
activating and upregulating CDK4 causing loss of cell cycle control, events that would 
cause cyst initiation, and that would promote cyst growth and enlargement. 
 
Key words: B-Raf; Calcineurin; CDK4; ERK; NFAT 
 
 
Introduction 
 
Polycystic kidney disease (PKD) is characterized by the abnormal growth of epithelial-
lined cysts from the nephrons and collecting ducts of affected kidneys (1-3). PKD is 
associated with dramatic increases in kidney size, starting before birth, which results from 
the unrelenting growth of thousands of fluid-filled cysts, many undergoing massive 
enlargement. As cysts grow, they compress neighboring tubules and capillary circulation, 
causing functional nephron loss and promoting the development of fibrosis, destroying the 
surrounding renal parenchyma and interstitium (4, 5). 
 
PKD is inherited as either an autosomal dominant condition (ADPKD) or an autosomal 
recessive condition (ARPKD). ADPKD is common, with a frequency of 1 in 400-1000 
individuals, and results in 7-10% of all end-stage kidney disease (6). ARPKD is much less 
prevalent but has many features in common with ADPKD (7). Renal failure can occur in 
newborns or early childhood in the case of ARPKD or later in adulthood in the case of 
ADPKD. Mutations in the PKD1 gene or PKD2 gene are responsible for ADPKD and 
mutations in the PKHD1 gene are responsible for ARPKD. The products of these genes, 
polycystin-1 (PC1), polycystin-2 (PC2), and fibrocystin/polyductin are membrane proteins 
that are thought to regulate intracellular calcium in response to external stimuli (8, 9). PC2 
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is a transient receptor potential channel subunit (TRPP2) that forms complexes with PC1 
and fibrocystin/polyductin, although the relevant cellular locations of these proteins and 
their specific functions at these sites are still being investigated. 
 
Cyst formation occurs with loss of PKD gene function and a subsequent disruption in 
calcium homeostasis (10). In ADPKD, most cells appear to function normally in the 
heterozygous state and cysts form only sporadically throughout the kidney (Figure 1). As 
such, it is likely that there is a second initiating event – either a second somatic mutation or 
threshold event causing haploinsufficiency. As ADPKD cysts grow in size, they often 
remodel and pinch off from the tubule, and become isolated, self-contained structures 
(Figure 1, Right). These cysts continue to enlarge over years through a slow proliferative 
process, and they fill as they enlarge by secretion of fluid into the cyst lumen. 
 
 

 
Figure 1. The process of cyst formation in autosomal dominant polycystic kidney disease. Each 
cyst is thought to initiate from a single cell, as the result of either a second somatic mutation or 
from a haploinsufficiency or threshold effect.  Once that has occurred, it is thought that the 
abnormally proliferating cells, being incapable of forming a normal tubule, would cause a small 
region of the tubule to begin to dilate. As the cyst grows in size, it would become isolated by 
pinching off from the nephron. The cyst would then continue to enlarge over decades, through 
continued abnormal cell proliferation, and it would fill as it enlarges through a process of cystic 
fibrosis transmembrane conductance regulator -dependent fluid secretion. Cyclic AMP is 
important in driving both cell proliferation and fluid secretion. 



Calvet 

172 

In ARPKD, every tubule cell is homozygous for the PKHD1 mutation and thus is poised to 
initiate cell proliferation and cyst formation. It appears that large groups of cells or whole 
nephron segments lose their normal tubule morphology causing tubule dilatation along the 
axis of the nephron, in contrast to the focal cyst formation seen in ADPKD that is thought 
to arise initially from the transformation of a single cell. These cyst-like tubule dilatations 
in ARPKD may expand initially through glomerular filtration, although it is likely that 
they, too, depend on net fluid secretion as they enlarge. 
 
However, in both ADPKD and ARPKD, loss of gene function alone is not sufficient to 
trigger abnormal cell proliferation. There is also an important role for cAMP. This chapter 
will examine the primary mechanisms in the cyst forming process: how normal cells 
become abnormal through loss of calcium homeostasis and cyclic AMP-driven cell 
proliferation and fluid secretion, mechanisms that are fundamental to cyst development 
and the progression of PKD. 
 
 
A brief history of cAMP in cystic disease 
 
Early studies carried out in cell culture demonstrated that cAMP is the key driver of cyst 
growth and expansion (11-20). Some of the earliest research recognized that ADPKD cysts 
enlarge in association with an accumulation of fluid within cysts as they form by the 
abnormal proliferation of tubule epithelial cells. In the initial stages of the disease 
(Figure 1), cysts appear as isolated structures throughout the kidney. At end-stage, 
polycystic kidneys are typically very large and packed full of fluid-filled cysts of various 
sizes. Cyclic AMP has been implicated in all aspects of the disease, from initiation, to 
progression, to end-stage (21).  
 
There is no question that the growth and expansion of renal cysts in ADPKD is driven by 
cell proliferation. This idea came from early studies that showed the abnormal expression 
of genes involved in regulation of cell proliferation, including in particular, the oncogene  
c-myc (22-25). Renal cysts have been described as benign neoplastic growths, which unlike 
typical tumors are filled with fluid rather than being solid (26, 27). 
 
Cyclic AMP was implicated in the growth of renal cysts using cell culture systems, with the 
demonstration that cAMP accelerates the enlargement of microcysts derived from MDCK 
and ADPKD cyst-lining epithelial cells growing in three-dimensional (3D) collagen gels 
(12, 14). These studies demonstrated increased microcyst growth, increased cell 
proliferation, and stimulation of transepithelial fluid secretion by prostaglandin E1 (PGE1), 
arginine vasopressin (AVP), cholera toxin, forskolin, 8-Br-cyclic AMP, and the phosphodie-
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sterase inhibitor 1-methyl-3-isobutylxanthine (IBMX), in both established renal cell lines 
and primary cultures of normal human kidney and human cystic cells (11-20). All of these 
treatments would be expected to raise intracellular cAMP. 
 
These studies further showed that fluid secretion by these cells is dependent on cAMP-
mediated chloride secretion (18-21, 28, 29). As would be expected, it was found that in the 
absence of cAMP-based secretagogues, fluid was measurably absorbed from the microcyst 
cavity made up of ADPKD cells in collagen matrix (28). In contrast, 8-Br-cAMP plus IBMX 
induced a reversal in the net transport of fluid causing secretion into the lumen of the 
microcysts (28). Cellular chloride was also monitored, and changes in short circuit current 
(ISC) induced by forskolin in monolayers in the presence and absence of external chloride 
showed that cultured ADPKD cells can transport fluid in either direction, and that cAMP 
stimulates secretion dependent on the presence of chloride (28). Importantly, it has been 
demonstrated that CFTR-dependent chloride secretion drives net fluid secretion by 
ADPKD cyst epithelial cells (20, 29-31). Thus, cyst-filling fluid secretion is driven by cAMP. 
 
The importance of cAMP and chloride secretion was further demonstrated in metanephric 
organ culture using embryonic kidneys from Pkd1-/- mice (32). These kidneys thrive in 
culture over a 4-5 day period and can be treated with various agonists and inhibitors to 
determine their effects on the formation of cyst-like tubule dilations. As was shown in 
Magenheimer et al. (32), embryonic kidneys from Pkd1-/- mice responded to the addition of 
8-Br-cAMP to the culture medium by forming tubule dilatations that grew in size over 
several days. These dilatations were reduced by treatment with a protein kinase A (PKA) 
inhibitor, and were completely eliminated by genetic deletion of the CFTR gene, 
supporting the essential role of CFTR-dependent chloride secretion in this model system.  
 
In summary, these studies identified that there are two essential cAMP-dependent 
components to cyst growth – cell proliferation and fluid secretion. Cyst growth cannot 
occur without both processes (see Figure 1). Cell proliferation is necessary to start the 
process, dilate the tubule, and enlarge the cyst from microscopic size to macroscopic. 
However, cell proliferation alone would not produce a cyst – only a relatively small solid 
clump of cells or adenoma, which would be much more benign than a cyst. Fluid secretion 
is also required, to fill the dilating structure and to enable it to swell to its enormous 
dimensions. However, fluid secretion alone would not produce a cyst. Without the 
formation of an actual enclosed cyst, increased secretion would only drain more fluid 
down the nephron. Thus, cAMP was shown to have two vital and essential roles in cyst 
formation, growth, and expansion, to stimulate both cell proliferation and cyst-filling fluid 
secretion. 
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High cAMP levels are associated with PKD 
 
Yamaguchi et al. (33) found abnormally increased levels of cAMP in the kidneys and urine 
of homozygous pcy/pcy mice, which have a slowly progressive form of nephronophthisis 
(NPHP3). The cyst fluid from these mice and also from humans with ADPKD (34, 35) 
contained a lipid compound, later identified as forskolin (36), that stimulated both cAMP 
accumulation and cell proliferation of MDCK monolayers and increased transepithelial 
fluid secretion by these cells. Other studies have also shown that PKD kidneys have higher 
than normal levels of cAMP. Gattone et al. (37) showed higher renal cAMP in both pcy/pcy 
mice and PCK (PKHD1) rats, late in disease progression. Cyclic AMP levels were also 
measured in the kidneys of juvenile cystic kidney (jck/jck) mice, which have a mutation in 
the Nek8 gene, during early cyst formation at 26 postnatal days and later at 50 days (38). 
While there were no significant increases in the early phase of disease, there was very 
significant cAMP upregulation in the jck/jck cystic samples late in disease progression at 
50 days. Large increases in cAMP were also seen in the urine of male Han:SPRD Cy/+ rats 
(39), and in a Pkd1 conditional null model in advanced-stage disease (40). As such, the 
results are consistent – that cAMP levels increase significantly in parallel with the degree of 
cystic disease.  
 
 
What is the cause of the high cAMP? 
 
Several potential causes for the increases in cAMP in PKD have been proposed. Gattone 
et al. showed that vasopressin receptor (V2R) mRNA was increased dramatically in early-
stage postnatal cpk/cpk disease (41). Activation of V2R stimulates an increase in cAMP. 
This observation served as the basis for successful attempts to decrease cAMP and slow the 
development of cystic disease using the V2R antagonist OPC31260 in the cpk/cpk mouse 
and in later experiments using another OPC V2R antagonist Tolvaptan in other cell culture 
and animal models of PKD and in clinical trials (42-44). Consistent with these experiments, 
Wang et al. (45) showed that cyst formation could be effectively inhibited in PCK  
(PKHD1-/-) ARPKD rats by crossing them with AVP deficient (AVP-/-) Brattleboro rats, and 
that treatment of these rats with the AVP analog desmopressin (DDAVP) initiated cyst 
growth, clearly demonstrating the requirement for cAMP as an essential cyst-promoting 
factor in this genetically cystic model. The successful use of V2R blockade to lower cAMP 
and significantly slow or prevent cyst growth confirms the central importance of cAMP-
driven mechanisms in PKD and is consistent with the major site of cyst formation being the 
collecting duct. However, the fact that cysts also form in other tubule segments, albeit with 
less overall impact, suggests that there are other mechanisms, as well, for increasing cAMP 
in addition to V2R stimulation. 
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Because of the calcium-impaired environment in PKD mutant cells, it has been suggested 
that calcium-regulated adenylate cyclases (ACs) and calcium-regulated phosphodiesterases 
(PDEs) may contribute to increasing cAMP. Pinto et al. (46) have shown that there is 
increased expression of the calcium-inhibited ACs 5 and 6 in ADPKD cells (but also an 
abnormally increased dependence on the calcium-stimulated AC3). Increased levels of ACs 
5 and 6 and loss of their calcium-inhibition would be expected to generate increased cAMP. 
Indeed, this was supported by studies in which collecting duct conditional knockout of the 
AC6 gene ameliorated collecting duct-specific cystic disease (47). There was little or no 
impact of targeted AC6 knockout on overall kidney or urinary cAMP, indicating that 
decreasing cAMP specifically in the cyst cells per se was sufficient to reduce cyst growth. 
Recently, Pinto et al. (48) showed evidence for compartmentalized phosphodiesterase 
isoform regulation, where PDE4 appears to have a global role in regulating cAMP and 
cAMP-dependent fluid secretion, whereas the calcium-dependent PDE1 has a major role in 
regulating cAMP-dependent cell proliferation. Chebib et al. (49) have proposed an 
interesting hypothetical model in which increased cAMP in PKD cells results from a 
combination of events that ultimately causes the dysregulation of cAMP, including 
increased calcium-inhibited AC activity, decreased calcium-activated phosphodiesterase 
activity, and decreased calcium-dependent ATP release leading to decreased purinergic Gi-
signaling that would normally limit vasopressin-dependent cAMP production. The result 
of this combination of events would be spiraling increases in cAMP in response to normal 
levels of vasopressin (49).  
 
It is also quite possible that other mechanisms play a role in increasing cAMP. Of note is 
the observation that cyst fluid was found to contain a cyst-activating factor that promoted 
both cell proliferation and fluid secretion (33-35). When this factor was purified and 
identified by mass spectrometry, it was found to be a forskolin-like molecule (36). If it can 
be shown that forskolin, ordinarily thought to be specific to plants, is synthesized by 
animal cells, and particularly cyst-lining epithelial cells, this would provide a new 
mechanism for non-receptor-mediated upregulation of cAMP by direct stimulation of AC. 
 
Pharmacological activation of the somatostatin receptor with somatostatin analogs has been 
used in clinical trials for ADPKD (50-52). These compounds activate Gi signaling, which down-
regulates AC activity and lowers cAMP, indicating that Gi signaling has a significant impact on 
cAMP levels in PKD kidneys. Thus, since this is possible, it may also be the case that decreased 
Gi signaling by loss of PC1 activation of heterotrimeric G-protein signaling (53, 54) could lead to 
increased AC activity and higher cAMP. Finally, as an additional mechanism, GSK3β has been 
shown to upregulate vasopressin-induced cAMP, promoting cyst growth in PKD through a 
positive feed-forward mechanism (55, 56). Thus, abnormal  GSK3β  activation  in  PKD  (57)  
could  contribute  to  high levels of cAMP in the collecting duct.  
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Thus, there are many possible mechanisms for increasing cAMP, and for maintaining high 
levels in the collecting ducts and elsewhere in the kidney. These observations support the 
view that cAMP-driven mechanisms are important in PKD. However, it should be 
recognized that cAMP levels are often normal early in the disease process. Furthermore, 
cAMP itself is not cystogenic in wild-type animals (45), and there is no evidence that 
elevated cAMP alone can convert a normal cell to a cystic cell. Therefore, while cAMP is an 
essential (or critical) cyst-promoting factor, abnormally elevated cAMP alone cannot be the 
sole cyst-forming determinant.   
 
 
Why high cAMP alone is not the main disease culprit? 
 
Hanaoka et al. (31) and Yamaguchi et al. (58) demonstrated that cAMP directly stimulates 
ADPKD cell proliferation, and Yamaguchi et al. (58) went on to demonstrate that this 
involved activation of the mitogen-activated protein kinase (MAPK) pathway (Figure 2). In 
these studies, primary epithelial cells from cysts of ADPKD kidneys and from normal 
human kidney cortex were studied in culture. The effects of agonists and inhibitors on cell 
proliferation and activation of the extracellular signal-regulated kinase (ERK1/2) pathway 
were determined. Direct stimulation with 8-Br-cAMP was seen to increase the proliferation 
of the ADPKD cells (58), and this proliferation was inhibited by PKA inhibitors. The cAMP-
generating agonists AVP, DDAVP, secretin, vasoactive intestinal polypeptide (VIP), 
forskolin, and prostaglandin E2 (PGE2) also stimulated proliferation. The MEK 
(mitogen/extracellular signal-regulated kinase) inhibitor PD98059 effectively inhibited 
ADPKD cell proliferation in response to cAMP agonists, whereas genistein, a receptor 
tyrosine kinase inhibitor, did not block cAMP-dependent proliferation (58). Importantly, 
cells from normal human kidneys responded in an opposite fashion to cAMP agonists by 
showing decreased cell proliferation (Figure 2, Left vs. Right) (31, 58).  
 
Thus, it was evident from these studies that cAMP agonists stimulate the proliferation of 
ADPKD but not normal epithelial cells through PKA activation of the ERK pathway 
through a B-Raf dependent mechanism and that cAMP may play a critical role in ADPKD 
by driving cell proliferation (58, 59). Indeed, it appeared that cAMP could stimulate the 
proliferation specifically of ADPKD cyst cells, while not affecting the surrounding normal 
renal tubule cells, resulting in focal cyst growth. These experiments showed that it was not 
the level of cAMP, but the response to cAMP that characterized the cyst-promoting activity of 
cAMP, and this being the case that higher levels of cAMP would certainly exacerbate this 
pathogenic process. 
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Figure 2. Cyclic AMP signaling in normal and PKD cells. Signaling pathways are shown from 
cAMP and calcium to extracellular signal regulated protein kinase (ERK) and cell proliferation. 
Left. Normal signaling pathways. Right. Signaling pathways in PKD due to loss of polycystins 
and/or disrupted intracellular calcium and NFAT-regulated gene expression. Solid lines = 
active pathways. Dotted lines = diminished pathways. PKD cells, shown on the right, differ 
phenotypically from normal cells (on the left) in part because loss of polycystin signaling in 
ADPKD disrupts the PI3K/Akt pathway and NFAT signaling, converting the cellular response 
to cAMP from anti-mitogenic to mitogenic. The same effect is seen by stably transfecting normal 
M-1 cells with a dominant negative polycystin-1 C-tail construct. ADPKD cells or PKD-like cells 
can be rescued by treatment with a calcium ionophore. Adapted from Figure 11 in Yamaguchi 
et al. (61). 
 
 
The preceding experiments were instrumental in showing that ADPKD cyst-derived cells 
have a demonstrable phenotypic abnormality – their abnormal response to cAMP made 
worse by high levels of the cyclic nucleotide. However, it was not clear from these 
experiments, which used human ADPKD cystic cells cultured from end-stage kidneys, 
whether this abnormal responsiveness to cAMP was due only to PKD mutation and loss of 
polycystin function, or to other secondary events resulting from decades of accumulated 
genomic mutations and/or epigenetic changes. In principle, a second-hit initiation event 
could set off a cascade of secondary mutagenic events whose accumulated effects might 
lead to an abnormal, transformed cellular phenotype manifested by an altered sensitivity to 
cAMP. 
 
Sutters et al. (60) answered this question by the development of a cell line that stably 
expressed a dominant-negative  Pkd1  construct in  immortalized M-1 renal  collecting duct 
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cells. Cells expressing the mutant PC1 C-tail construct (Clone 20) were dexamethasone 
inducible and could be directly compared to cells transformed with a control construct 
(Clone 17) that while integrated did not express the mutant PC1 C-tail. Thus, comparable 
cell lines, induced to overexpress a mutant PC1 construct or no PC1 construct, could be 
grown in culture and their responses to cAMP examined. In proliferation assays, the 
mutant PC1 clone grew somewhat faster than the control clone, due presumably to low 
levels of endogenous cAMP, and when exogenous cAMP was added to the culture 
medium, the differences in their growth rates were pronounced, with Clone 20 being 
stimulated to proliferate, and Clone 17 being inhibited. The behavior of other clones was 
also examined, and in every case, cells carrying these dominant-negative PC1 constructs 
responded like the ADPKD cyst cells while the cells carrying control constructs behaved 
like normal renal epithelial cells (and the parental wild-type M-1 cells). These mutant PC1 
clones responded in the same way to 8-Br-cAMP and other cAMP agonists, including 
forskolin, AVP, DDAVP, VIP, secretin, and PGE2, and this response could be blocked by 
PKA inhibitors but not by the tyrosine kinase inhibitor, genistein. The fact that the MEK 
inhibitor PD98059 was effective in blocking proliferation suggested that activation of the 
MAPK pathway was necessary for the cAMP stimulated cell proliferation. As such, these 
experiments showed that cells could be made to change their phenotype by overexpressing 
the PC1 C-tail to mimic the cAMP-responsive cyst-forming phenotype of ADPKD cells. 
 
Expression of a dominant-negative PC1 construct changed the phenotype of these cells 
from one that was inhibited by cAMP to one that was stimulated by cAMP. The mutant 
PC1 C-tail construct did not act simply to alter the degree of cAMP-responsiveness of these 
cells, but acted by switching cells from one state to another. This phenotypic change was 
not caused by a changing level of cAMP, since both the control cell line and the mutant cell 
line increased their cAMP levels when treated with cAMP agonists. As such, it is not the 
high levels of cAMP but the opposite responses to cAMP that distinguish and define the 
normal and PKD phenotypes.  
 
 
What is the primary abnormality?  
 
While there is general consensus that the PKD genes regulate intracellular calcium, there is 
uncertainty as to where and under what conditions the gene products function, and what 
the calcium signal actually does to the cell. Despite this critical lack of knowledge, we 
reasoned that if the polycystin proteins regulate calcium, and since there is loss of the 
polycystins in PKD, then perhaps a decrease in intracellular calcium is the primary 
causative abnormality in PKD, converting the cell proliferation phenotype from cAMP-
inhibited to cAMP-stimulated. If so, it might be possible to model the PKD phenotype in 
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cell culture by artificially reducing the levels of intracellular calcium in genetically normal 
cells (see Figure 2, Left vs. Right). 
 
This experiment was accomplished by Yamaguchi et al. (61) using primary normal human 
kidney cells and immortalized M-1 cells treated in various ways to lower intracellular 
calcium, and then assayed for cell proliferation and ERK activation. Both M-1 cells and 
normal HKC (human kidney cortex) cells showed decreased cell proliferation when treated 
with 8-Br-cAMP, but increased cell proliferation when pre-treated with the calcium 
channel blockers, Nifedipine, Gadolinium, or Verapamil, prior to treatment with 8-Br-
cAMP. Lowering free extracellular calcium with EGTA also resulted in cAMP stimulation. 
Thus, normal cells could be made to switch their phenotype to PKD-like cells simply by 
lowering intracellular calcium. Of interest was the observation that the above-mentioned 
stably transfected M-1 Clone 20 cells, which behaved like PKD cells (60, 62), could be 
normalized with respect to their cAMP-responsiveness by treatment with the calcium 
ionophore A23187, further validating the PC1-mutant Clone 20 cells as a faithful model of 
ADPKD cells and underscoring the importance and relevance of calcium in controlling the 
cAMP-response. 
 
Cyclic AMP stimulation of the calcium-restricted HKC and M-1 cells was further analyzed 
and found to function through activation of the Ras/MAPK pathway in a PKA and Src-
dependent fashion (61). This analysis revealed how the phenotypic switch is controlled by 
calcium. Normally growing cells in culture, in response to serum and other autocrine or 
paracrine growth factors in the medium, have an active Ras/MAPK pathway leading to 
ERK activation and cell proliferation. The absence of cAMP allows signal transduction 
through the MAP3K, Raf-1. If these cells are treated with 8-Br-cAMP or a cAMP agonist 
(Figure 2, Left), the growth factor signal will be inhibited by PKA phosphorylation and 
inactivation of Raf-1, and there will be decreased ERK phosphorylation and decreased cell 
proliferation. Under conditions of calcium restriction, as in PKD (Figure 2, Right), there is 
decreased intracellular calcium, which inhibits calcium-dependent PI3K and deactivates its 
downstream target Akt. These events result in the loss of an inhibitory Akt 
phosphorylation of B-Raf, causing its de-repression, allowing the cAMP signal to bypass 
inactive Raf-1 to upregulate ERK phosphorylation and increase cell proliferation. In other 
words, the ADPKD state is caused by cAMP-activated mitogenic stimulation in a cellular 
context made permissive by decreased calcium, as can be modeled simply by lowering 
intracellular calcium levels and then treating cells with cAMP agonists. These studies are 
the first to describe a phenotypic switch of this nature, in which a genetically normal cell is 
transfigured to adopt an abnormal phenotype simply by lowering tonic intracellular 
calcium levels. 
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The primary ADPKD cells described above (58) have an approximately 20 nM lower 
intracellular calcium concentration than their normal counterparts (63), which can explain 
their mitogenic response to cAMP. Importantly, these primary human ADPKD cells and 
primary human ARPKD cells (63) can be switched back to normal simply by raising 
intracellular calcium using the calcium channel activator Bay K8644, or the calcium 
ionophore A23187 (Figure 2, Rescue). Of significance is that these experiments take a 
genetically-programmed cell with an abnormal phenotype and reestablish its normal 
behavior with increased cellular calcium, which overrides the genetic damage (63).  
 
Animal studies have supported and extended these observations. Using the Cy/+ 
Han:SPRD rat model of dominant PKD, it was possible to show that treatment of cystic rats 
with Verapamil dramatically exacerbated cystic disease, as determined by kidney weight 
and cystic index (39). A dose of Verapamil was used sufficient to normalize blood pressure 
increases in these animals. Increased cyst growth was accompanied by increased cell 
proliferation, and phosphorylation and activation of ERK, and was presumed to be in 
response to the endogenous cAMP. These responses were not seen in wild-type kidneys. 
Thus, in a non-orthologous model in which cyst formation occurs predominantly in 
proximal tubules, calcium appears to play a role in the disease state, consistent with the cell 
culture models. Experiments using the calcimimetic R-568 to raise intracellular calcium in 
pcy/pcy mice reduced cyst enlargement and renal fibrosis (64). Interestingly, the Chinese 
herbal active ingredient Triptolide, which acts by increasing intracellular calcium, has been 
shown to slow cell proliferation and ameliorate cystogenesis in fetal mouse kidneys when 
administered during pregnancy, and in a postnatal conditional Pkd1 mouse model (65, 66). 
Calcium has also been shown to be important in 3D microcyst cultures in which 
knockdown of PC2 or the inositol 1,4,5-trisphosphate receptor supported cyst growth (67); 
and in metanephric organ culture in which cystic dilations were reduced by treatment with 
a calcium ionophore (68). 
 
In the experiments by Yamaguchi et al. referred to earlier (61), it was evident that lowering 
intracellular calcium using a variety of approaches was effective in converting normal cells 
to PKD-like cells (see Figure 2). However, in these experiments, it was noted that calcium 
restriction required hours-long treatments. With EGTA, a minimum of 3 hours was 
required, and with Verapamil, a minimum of 5-8 hours was required, depending on the 
dose, with 16 hours treatment being most effective. It was also demonstrated that once the 
phenotypic switch was established with an 8-hour Verapamil treatment, it remained in 
place following up to a 12-hour washout period in which cells were no longer exposed to 
Verapamil. These observations were inconsistent with a simple model in which the sole 
effect of decreased calcium is inhibition of the PI3K/Akt signaling pathway since 
Verapamil treatment is likely to affect intracellular calcium within minutes. A requirement 
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for hours-long treatments is suggestive of a need to alter gene expression through changes 
in gene transcription, protein translation, and/or turnover of existing mRNAs and proteins 
to bring about a change in the differentiated state of the cell.  
 
In thinking about a role for the protein products of the PKD genes in regulating gene 
expression, the following should be considered. As mentioned earlier, PC1 and PC2 are 
thought to regulate intracellular calcium, probably in response to a ligand-mediated event 
or a mechanosensory stimulus (69). While PC2 is known to be a calcium-regulated cation 
channel (70), PC1 has also been shown to be capable of elevating intracellular calcium 
through a heterotrimeric G protein-coupled mechanism (53, 54, 71). Thus, it is likely that 
PC1 and PC2 proteins function together as part of a multi-protein membrane complex to 
regulate a number of calcium-dependent signaling pathways that ultimately regulate gene 
expression. Importantly, among the downstream targets regulated by polycystin-1 is the 
calcium-dependent phosphatase calcineurin and its immediate substrate, the transcription 
factor NFAT (Figure 2, NFAT) (71). 
 
 
What causes the phenotypic switch?  An hypothesis 
 
We suggest that calcium-restriction does two things to renal epithelial cells. In the short 
term, it inhibits PI3K/Akt thus de-repressing B-Raf, but then, in the long term, it alters 
calcium-dependent gene expression. It is proposed that both are needed to bring about the 
switch to the PKD state. As shown in Figure 2, it is suggested that the calcium-dependent 
transcription factor NFAT is involved in mediating this phenotypic switch. The 
significance of this idea is that polycystin-dependent calcium signaling, acting to regulate 
the phenotypic state, may protect cells from the effects of normal fluctuations of cAMP, or 
to increases in cAMP above normal levels. Loss of polycystin-regulated calcium signaling 
would render cells inappropriately vulnerable to this cAMP. 
 
There are four calcium/calcineurin-regulated NFAT family members NFAT1 (p, c2), 
NFAT2 (c, c1), NFAT3 (c4), and NFAT4 (x, c3), all expressed in the kidney (72-79). The 
NFAT proteins are maintained in an inactive state in the cytosol as phosphoproteins (P-
NFAT) (Figure 3). Various phosphatases and kinases regulate the nuclear (active) or 
cytoplasmic (inactive) localization of NFAT. Regulation of NFAT involves calcium-
dependent activation of the serine threonine phosphatase, calcineurin (Caln, PP2B, 
Ppp3ca), which dephosphorylates NFAT resulting in its translocation to the nucleus 
(Figure. 3, Left). Once in the nucleus, NFAT can bind DNA elements in target promoters 
often in association with other co-induced nuclear proteins, such as AP-1, GATA, and  
NF-κB, to regulate gene expression. The continuous maintenance of NFAT in the nucleus 
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requires sustained, oscillatory, calcium increases (80) to keep calcineurin in an activated 
form. This calcineurin-dependent signal is sensitive to inhibition by calcium channel 
blockers such as Verapamil or calcineurin inhibitors such as Cyclosporin A (CSA) or 
Tacrolimus (FK-506) (Figure 3, Right) (81-83). A number of protein kinases, in particular, 
GSK3β, act to phosphorylate nuclear NFAT, driving it back to the cytoplasm (84). As such, 
there is a continuous, calcium-regulated ‘push-pull’ of phosphorylation-dephosphorylation 
affecting active nuclear NFAT levels. 
 
The NFAT proteins are highly homologous and have partially overlapping functions. 
Interestingly, calcineurin A-α knockout results in impaired kidney growth, consistent with a 
role for NFAT in kidney development (85, 86). Additionally, calcineurin knockout alters 
trafficking of aquaporin-2 (AQP2) and causes diabetes insipidus (87), suggesting that NFATs 
are involved in adaptive responses in the kidney. Recent data have demonstrated that renal 
development is absolutely calcium-dependent (88) requiring the non-canonical 
calcium/NFAT Wnt signaling pathway (86). A role for NFAT in the kidney is consistent with 
the known nephrotoxicity of Cyclosporin A (89). Additionally, the Cox-2 gene is an NFAT 
target in the kidney (90), and disruption of the Cox-2 gene gives rise to cysts (91), suggesting 
that there may be a connection between NFAT and cystic disease through Cox-2. 
 
 

 
Figure 3. Mechanism of nuclear factor of activated T-cells (NFAT) regulation. Shown are cells 
containing cytosolic or nuclear NFAT (blue shading). (Left) The inactive hyperphosphorylated 
NFAT (P-NFAT) which resides in the cytosol, is dephosphorylated by calcineurin following 
activation by calcium oscillations, allowing NFAT to translocate to the nucleus where it activates 
or represses genes together with other transcription factors. NFAT is then re-phosphorylated by 
cellular kinases, including GSK3β, returning it to the cytoplasm. (Right) NFAT activation can be 
inhibited by treating cells with calcium channel blockers, such as Verapamil, or with calcineurin 
inhibitors, such as Cyclosporin A. It is hypothesized that decreased intracellular calcium 
resulting from polycystin loss inhibits NFAT activation, contributing to the PKD phenotypic 
switch. 
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Importantly, the calcium/calcineurin/NFAT pathway also has a cell cycle role that may be 
directly relevant to PKD. The cyclin-dependent kinase CDK4 has been shown to be a key 
player in cell proliferation associated with PKD (92-96). CDK4 is under the regulation of 
cAMP (97) and other pathways relevant to PKD (94), but also calcineurin and NFAT 
through different mechanisms. NFAT transcriptionally down-regulates the CDK4 gene (98, 
99). As such, decreased nuclear NFAT activity would be expected to increase CDK4 
protein. For its activation, CDK4 requires phosphorylation of Threonine-172 (T172) by an 
ill-defined cyclin-activating kinase, which is regulated indirectly by cAMP (97). T172 
phosphorylation is reversed by calcineurin phosphatase activity (100), causing its 
inactivation. Therefore, decreased calcium/calcineurin signaling in PKD would lead to 
increased CDK4 levels and activity, promoting cell cycle entry, a requirement for cyst 
growth and enlargement. As such, impaired calcium signaling in PKD could bring about a 
phenotypic switch at multiple levels, both upstream and downstream of ERK (Figure 2). 
 
 
Conclusions 
 
There is ample evidence demonstrating that PKD is associated with abnormally high levels 
of cAMP. However, it is also evident that the essential abnormality in PKD is not high 
cAMP per se, but the response of cells to cAMP. The basis for this abnormal response to 
cAMP is that calcium regulation is disrupted in PKD as a consequence of abnormal 
polycystin function, resulting in a number of signaling and gene expression changes that 
cause cells to respond abnormally to cAMP regardless of whether the levels are 
physiologically normal or elevated. One of the abnormal signaling events is the loss of 
calcium inhibition of B-Raf, which allows cAMP to activate B-Raf, MEK, and ERK. 
However, it is likely that additional abnormalities are required to transform the phenotype 
of a cell. It is hypothesized that one such abnormality results directly from decreased 
calcium, which would impair calcineurin function and decrease the activity of the NFAT 
transcription factor, affecting the differentiated state of these cells and their cell cycle 
control, and leading to the transformation of normal tubular epithelial cells to cystic 
epithelial cells that would continue to divide unchecked as they grow into massive fluid-
filled cysts. 
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