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Abstract 
 
Autosomal dominant polycystic kidney disease is the most common life-threatening 
genetic disease, affecting 1/400 to 1/1000 live births. It represents the 4th leading cause of 
end-stage kidney disease and accounts for 13% of kidney transplants in the United States. It 
is characterized by irreversible cyst growth leading to progressive parenchymal damage. 
Despite promising results, there is currently no Food and Drug Administration approved 
therapy to cure or slow the progression of the disease. The  growing  understanding  of  the  
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pathophysiological mechanisms   leading   to cyst formation and growth has led to the 
development of several therapeutic agents, some with very promising results. In this chapter, 
we will review the past and ongoing clinical trials that explored these specific targets, focusing 
mainly on drugs targeting the cyclic adenosine 3’,5’-monophosphate pathway (vasopressin V2 
receptor antagonists and somatostatin analogs), mammalian target of rapamycin (mTOR) 
inhibitors and renin-angiotensin blockade. We will discuss novel therapeutic targets currently 
being explored in pilot clinical studies, including high dose niacinamide, tyrosine kinase 
inhibitors and others. Given its slowly progressive nature and lack of early sensitive 
biomarkers, clinical trials are limited by the need for long follow-up periods to assess the 
beneficial effect on kidney function of any therapeutic intervention. There is a growing need of 
new biomarkers of PKD progression to help accelerate the progress of clinical trials in this field. 
We will finally explore the current accepted and candidate biomarkers in PKD and discuss 
current challenges to the development of clinical trials in PKD. 
 
Key words: Clinical trial; Drug therapy; Glomerular filtration rate; Kidney volume 
 
 
Introduction 
 
The genes for autosomal dominant polycystic kidney disease (ADPKD), PKD1 and PKD2 
encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively, were first identified 20 
years ago (1-3). In the intervening years a vast amount of information has emerged regarding 
the cellular mechanisms and signaling pathways that are dysregulated in PKD, and 
numerous potential targets and candidate drugs have been proposed (4), but as yet there is 
no drug approved in the United States for treating the disease. Thus, PKD is "therapy-ripe" 
and represents a very exciting area for clinical trials. The first 8 interventional trials in PKD 
have been published in the past five years (Table 1) and we are poised for a deluge of novel 
drugs and other therapeutic candidates that will need to be tested. 
 
 
Challenges in drug development and the design of clinical trials in ADPKD 
 
A number of challenges are faced by investigators attempting to bring therapies to clinical 
trials and ultimately obtain regulatory approval. 
 
Preclinical models may not predict clinical efficacy 
 
The pathogenesis of PKD is complex and still poorly understood.  It is fairly well 
accepted that renal tubule epithelial cell proliferation is increased, and that there is 
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abnormal secretion of fluid into the lumen. Thus, assays of PKD cell proliferation (5) and 
of cyst growth from PKD cells in 3D culture (6) have been used to test drugs. However, 
existing PKD cell lines and primary cells all have their limitations and so it is unclear if in 
vitro assays truly predict clinical drug efficacy. Rodent PKD models are widely used for 
preclinical testing but they do not completely mimic the human disease (7). Most require 
homozygous gene deletion from birth or early embryonic life, and then exhibit an 
accelerated disease progression with numerous cysts developing contemporaneously. By 
contrast PKD patients are heterozygous and have a slowly progressive disease with cysts 
of varying ages emerging over several decades of life (8). Moreover, in nonorthologous 
models that do more closely mimic the human disease (e.g. pcy mouse, or Han:SPRD-cy 
rat) it is unclear whether the underlying disease mechanism is the same as that for 
ADPKD. Finally, the rodent kidney is several orders of magnitude smaller and is simpler 
in structure than the human kidney, so the mechanical effects of cysts on normal kidney 
tissue may not be faithfully modeled. Some of these limitations will hopefully be 
overcome with the development of hypomorphic (9) or delayed-onset disease 
models (10), and large animal models (11). 
 
Difficulty in assessing biological efficacy 
 
In early phase trials, a critical component is determining whether the drug, at the dose and 
route given, has the intended pharmacodynamic effect on its target in the cystic kidney, for 
proof of biological efficacy. If the drug has a measurable physiological effect (for example, 
tolvaptan causing a reduction in urine osmolality) this can be used, but such a convenient 
readout is unlikely to be available for most drugs. Another possibility is to employ a 
biomarker that is informative of the drug effect. For technical and ethical reasons cystic 
kidneys are not generally biopsied. Thus the only practical way to access information about 
intrarenal biochemical events is to sample soluble factors, cells or exosomes that are 
excreted in the urine. However, the urine also contains small molecules and peptides 
filtered from the circulation, as well as cells and probably exosomes shed from the lower 
urinary tract, diluting the signal of interest. Many intracellular signaling molecules that 
might be drug targets are not found in urine at all. Finally, cyst fluid, which contains 
factors secreted from cyst epithelium is usually sealed within large non-communicating 
cysts and not in continuity with the tubular fluid of functioning nephrons, leaving only the 
younger and smaller communicating cysts to deliver relevant molecules into the urine. 
 
The use of mammalian target of rapamycin (mTOR) inhibitors for ADPKD illustrates this 
challenge well. While mTOR inhibitors at high doses were shown to be effective at treating 
PKD in mice (12, 13), their use in humans, at the usual doses used for immunosuppression 
and that were known to be well tolerated, showed equivocal or no clinical efficacy in 
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retarding progression of ADPKD (14, 15) (see detailed discussion below). However, in 
these studies there was no determination of whether the mTOR pathway in the epithelium 
of kidney cysts or precystic tubules was effectively inhibited, presumably because there are 
no urinary biomarkers of this pathway. A fortuitous occurrence in a patient in France 
provided evidence to suggest that the usual clinical doses of mTOR inhibitors are 
insufficient to achieve biological efficacy within the PKD kidney (16). This patient was 
inadvertently transplanted with an ADPKD kidney, given sirolimus for post-transplant 
immunosuppression and then underwent a routine kidney biopsy at 1-year post-transplant. 
In peripheral blood mononuclear cells from the patient, phosphorylation of p70 S6 kinase 
by mTOR was effectively inhibited by sirolimus, confirming that there was a systemic drug 
effect. However, the kidney biopsy from the same patient showed persistently high levels 
of both phospho-S6 ribosomal protein and phospho-4E-BP1, indicating absence of 
biological efficacy of sirolimus within the kidney. 
 
Long natural history of disease 
 
In ADPKD, cysts likely begin forming before birth (17) and grow exponentially throughout 
the life of those kidneys (18), a duration that averages about six decades (19). During this 
time, cysts progressively compress and injure neighboring structures, including tubules 
and vasculature, and incite inflammation and eventually fibrosis. However, the glomerular 
filtration rate (GFR) remains well-preserved for several decades, likely due to 
compensatory hyperfiltration of the remaining functional nephron units. Thus, clinical 
trials are likely to show the greatest therapeutic benefit in early adulthood (or perhaps even 
in childhood), when most of the damage from cyst growth is being inflicted and is 
reversible (20). However, at this stage in the disease it is difficult to demonstrate any 
improvement in the course of the GFR and virtually impossible to assess the rate of 
progression to end-stage kidney disease (ESKD). This highlights one of the limitations of 
using improvement in GFR as a measure of drug clinical efficacy (others are discussed in 
the next two subsections). By the time the GFR begins to decline, there is already extensive 
kidney fibrosis, there has presumably been so much nephron dropout that the remaining 
nephrons can no longer compensate adequately, and the kidneys are set on a course of 
rapid and likely irreversible decline that usually leads to ESKD within a few years. A trial 
of therapy at this late stage is unlikely to alter the natural history of the disease. 
 
 
Age-related decline in GFR 
 
GFR declines slowly with age even in normal individuals, with an average slope of 
approximately -0.8 mL/min/1.73 m2 (21, 22). Thus, the slope of GFR in ADPKD patients 
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represents the additive effect of two processes: cyst growth-induced kidney injury, which is 
the target of our therapy, and age-related GFR decline, which presumably would not be 
ameliorated by PKD therapy. This limits the magnitude of the improvement in GFR slope 
that we could reasonably expect to see in a clinical trial. 
 
Acute effects of drugs on GFR 
 
A number of drugs have acute hemodynamic effects on GFR that differ from, and mask 
their long-term effect, on kidney function (23, 24). For example, drugs that block the renin-
angiotensin system, such as angiotensin-converting enzyme inhibitors (ACEI) and 
angiotensin II receptor AT1 blockers (ARB) cause vasodilation of the glomerular efferent 
arterioles and acutely reduce GFR. However this same effect ameliorates glomerular 
hypertension and contributes to the long-term effect of these drugs to reduce the slope of 
decline in GFR (25). In a study in which the outcome is the slope of GFR measured from the 
start of the trial, before drug treatment is initiated, to the end of the trial while on-drug, the 
short-term detrimental effect may partially or totally mask the long-term beneficial effect. 
A similar effect is seen simply with marked lowering of the blood pressure (BP) and 
probably accounts for the lack of beneficial effect of a low BP target as compared to a 
standard BP target on the overall slope of the GFR in the HALT A trial (see detailed 
discussion below) (26).  
 
This phenomenon can be addressed by modifying the study design. In the TEMPO 3:4 
study (see detailed discussion below), it was anticipated that the vasopressin receptor-2 
antagonist tolvaptan would have a similar hemodynamic effect. The study was therefore 
designed so that the slope of reciprocal creatinine (a secondary outcome that was used as a 
surrogate for GFR) was determined “on-drug”, starting after the drug had been titrated to 
its target dose, and ending with the last encounter in which the patient was still taking the 
drug (27). 
 
Lack of sensitive early clinical biomarkers acceptable to the FDA as endpoint 
 
Given the aforementioned limitations of using GFR or ESKD as endpoints in clinical trials 
of ADPKD, much effort has focused on identification of alternative clinical biomarkers that 
are closely associated with the rate of disease progression and predictive of the rate of 
future kidney function decline. The best biomarker to date is the total kidney volume 
(TKV). TKV (often adjusted for height and abbreviated as htTKV) has the merit of being a 
direct readout of cyst growth, which is the essence of the disease. TKV increases 
exponentially at a rate that is unique for each patient and averages 5% per year across the 
ADPKD population (18). The TEMPO 3:4 study provided the first evidence that the rate of 
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increase of TKV could be reduced by a drug and that this was associated with a salutatory 
effect on the rate of decline of kidney function (27). In the United States, TKV is not 
currently accepted by the Food and Drug Administration (FDA) as an outcome for the 
purposes of drug approval. However, the FDA did recently issue a Letter of Support for 
the use of TKV as a prognostic biomarker for enriching for patients with more rapidly 
progressive disease in clinical trials. 
 
Long-term tolerability needed for drug acceptability 
 
Finally, because the pathogenesis of ADPKD involves abnormal cell proliferation, 
resembling a benign neoplasm (28), many drugs currently in development for this disease 
are repurposed cancer therapies (29, 30). However, anticancer drugs are usually 
administered for short durations and, because of the acute life-threatening nature of the 
disease, even substantial toxicity can be considered acceptable. By contrast, therapy for 
ADPKD would likely need to be lifelong, and start when the patient is young and 
asymptomatic, so the bar in terms of drug tolerability and safety has to be set very high. 
This should influence the design of any clinical trial and the overall development strategy. 
 
 
Ongoing or recently completed clinical trials of therapy 
 
Blood pressure and the renin-angiotensin system 
 
Hypertension is an early and major manifestation of ADPKD and is associated with 
accelerated progression to ESKD as well as increased cardiovascular morbidity and 
mortality (31, 32), as it is in other kidney diseases. Activation of the renin-angiotensin-
aldosterone system (RAAS) has been shown to be a major contributor to the hypertension 
of ADPKD (33). There is also some evidence to suggest that the RAAS might directly 
promote cyst growth (34, 35), perhaps via its mitogenic effects. Inhibitors of RAAS such as 
ACEI are already standard of care for the treatment of hypertension in chronic kidney 
disease (CKD), but suppression of RAAS is incomplete. This is due to the existence of non-
ACE pathways for angiotensin II generation, such as chymase, which has been shown to be 
upregulated in ADPKD (36). Thus, addition of an ARB to ACEI could potentially suppress 
the RAAS further. 
 
To test these hypotheses, the Halt Progression of Polycystic Kidney Disease (HALT-PKD) 
Study Group designed two National Institute of Diabetes and Digestive and Kidney 
Disease (NIDDK)-sponsored concurrent, multi-center, randomized controlled trials (RCT), 
the HALT study A of 558 ADPKD patients with early disease (estimated GFR by the 
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MDRD equation, eGFR > 60 mL/min/1.73 m2), and the HALT study B of 486 patients with 
late disease (eGFR 25-60 mL/min/1.73 m2) (37). Study A tested whether low BP control (95 
to 110/60 to 75 mm Hg) would delay progression of kidney disease compared to standard 
BP control (120 to 130/70 to 80 mm Hg), and both study A and B tested whether 
combination therapy with an ACEI and ARB (lisinopril + telmisartan) would delay 
progression of kidney disease compared to ACEI monotherapy (lisinopril + placebo). 
 
In Study A (26), the primary outcome, the annual rate of growth of TKV, was 14.2% slower 
in the low BP group compared to the standard BP group (5.6% vs. 6.6%, p=0.006). The 
overall change in the eGFR over the course of the study was no different between the 
groups. A pre-specified analysis of the short-term (0-4 months) and long-term (>4 months) 
effects showed that the low BP group as compared to the standard BP group experienced a 
short-term decline in eGFR after starting treatment (−3.1 vs. 0.5 ml/min/1.73 m2 per 4 
months, P<0.001) which masked a beneficial effect on the slope of the eGFR in the long-
term phase that reached marginal statistical significance (−2.7 vs. −3.1 ml/min/1.73 m2 per 
year, respectively; P = 0.05). The low BP group had slightly more dizziness and light-
headedness but no other adverse effects. 
 
In both Study A and Study B (26, 38), there was no additional benefit of combination 
therapy with ACEI and ARB, as compared to ACEI monotherapy. This is consistent with 
several recent studies in other conditions that have shown that any benefits from dual 
blockade of the RAAS are outweighed by increased incidence of hypotension, AKI and 
hyperkalemia (39-41). Importantly though, in HALT-PKD combination therapy with an 
ACEI and ARB was not associated with excess adverse events, showing that combination 
therapy can be administered safely if needed in this population.  
 
Vasopressin V2 receptor antagonists 
 
Cyclic adenosine-3’,5’-monophosphate (cAMP) plays a major role in driving cyst growth in 
PKD, by stimulating both fluid secretion and cell proliferation in cyst-lining epithelial cells 
(42). ADPKD cysts largely originate from the collecting duct, a nephron segment that 
expresses vasopressin V2 receptors (V2R) which signal through GS, adenylate cyclase and 
generation of cAMP. Thus, vasopressin, signalling through V2R, accelerates cyst growth. 
Moreover, one can surmise that cAMP is probably an early and central node in the 
signaling cascade that drives cyst growth because when Brattleboro rats that have genetic 
absence of vasopressin were bred with a strain of rats with polycystic kidneys (PCK), 
cystogenesis was almost completely inhibited (43). V2R antagonists have been tested in a 
number of rodent PKD models and found to be effective at retarding disease progression in 
all of them (44-46). 
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Based on these findings tolvaptan, a V2R antagonist already clinically approved for the 
treatment of hyponatremia, was tested in ADPKD. The Tolvaptan Efficacy and Safety in 
Management of Autosomal Dominant Polycystic Kidney Disease and Its Outcomes 
(TEMPO) 3:4 trial was a multicenter, double-blind RCT (27). 1445 patients with ADPKD 
with a TKV of >750 mL and estimated creatinine clearance >60 mL/min were randomized 
to tolvaptan or placebo and followed for 3 years. The annual rate of change of TKV was 
reduced by half by tolvaptan, from 5.5% to 2.8%. Tolvaptan treatment was associated with 
a slower decline in kidney function (eGFR slope of −2.72 ml/min/1.73 m2/yr in the 
tolvaptan group versus −3.70 in the placebo group). Patients on tolvaptan had more 
adverse events related to increased aquaresis (thirst, polyuria, nocturia, and polydipsia), 
and 8% of patients in the treatment group discontinued the trial drug for this reason. More 
patients who received tolvaptan than those who received placebo (4.9% vs. 1.2%) had 
elevations of alanine aminotransferase to greater than 2.5 times the upper limit of the 
normal range. However, due to the design of the TEMPO 3:4 trial, the effects of tolvaptan 
on patients with more advanced ADPKD are not available. 
 
In summary, tolvaptan convincingly slowed down ADPKD disease progression and 
reduced the rate of decline in eGFR by 1 ml/min/1.73 m2/yr which might be expected to 
delay the onset of ESRD significantly. Unfortunately, tolvaptan was poorly tolerated by 
some patients, and the increased incidence of abnormal liver function tests raised some 
concern that there might be a risk of serious hepatotoxicity associated with its use. 
 
Largely on the basis of TEMPO 3:4, tolvaptan has now been approved for treatment of 
ADPKD in Japan, Canada and Europe. In the US, tolvaptan was not approved by the FDA. 
However, Otsuka is sponsoring another trial, REPRISE, which will be conducted under 
FDA guidance and will recruit patients with more advanced stages of CKD with the goal of 
obtaining more accurate estimates of the treatment effect on decline in kidney function and 
the incidence of hepatotoxicity. 
 
Somatostatin analogs 
 
Somatostatin is a peptide inhibitory hormone that signals via somatostatin receptors to 
inhibit the generation of intracellular cAMP. Somatostatin receptors are expressed in the 
kidney and liver, so somatostatin analogs might be expected to ameliorate cyst progression 
in both the kidney and the liver in ADPKD patients. In the ALADIN trial (A Long-Acting 
somatostatin on DIsease progression in Nephropathy due to ADPKD), 79 patients with 
eGFR >40 ml/min/1.73 m2 were randomized to receive, every 4 weeks, injections of 
octreotide-LAR, a synthetic analog of somatostatin encapsulated into microspheres for 
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long-acting release, or placebo injections, and were followed for 3 years (47). After 1 year, 
the increase in TKV was reduced by 2/3 with octreotide compared to placebo (p=0.032). 
Over the entire 3-year duration of the trial, the increase in TKV in the octreotide group was 
half that of the placebo group, but this was no longer statistically significant. This suggests 
either that the treatment effect is attenuated over time, or simply that the sample size was 
too small. 10% of patients treated with octreotide developed cholelithiasis or acute 
cholecystitis, raising concerns about its safety with long-term use. 
 
Larger trials of somatostatin analogs are clearly needed. ALADIN 2 is an ongoing Phase 3, 
double-blind, placebo-controlled RCT being conducted in Italy with a planned recruitment 
of 98 patients. The design is similar to that of ALADIN except that patients with eGFR of 
15-40 ml/min/1.73 m2 are being enrolled, presumably to select for patients with rapidly 
declining GFR that might benefit more from the treatment. DIPAK 1 is a Phase 3 RCT in 
300 patients conducted in the Netherlands that will compare open label lanreotide, 
administered subcutaneously every 4 weeks, with standard care (48). 
 
Mammalian target of rapamycin (mTOR) inhibitors 
 
The cytoplasmic tail of polycystin-1 has been shown to interact with tuberin, and the 
mTOR pathway is inappropriately activated in cyst-lining epithelial cells in ADPKD (49). 
Inhibitors of mTOR are widely used clinically as immunosuppressants. In several rodent 
models of PKD, mTOR inhibitors have been shown to ameliorate the disease (13, 49-51). 
However, the clinical trials of mTOR inhibitors have been disappointing.  
 
Walz et al. randomized 433 patients with ADPKD and an average eGFR of 53-56 ml/min/1.73 
m2 to receive the mTOR inhibitor, everolimus, or placebo in a double-blinded fashion, and then 
followed them for 2 years (14). The increase in TKV at 1 year was reduced by about 1/3 in the 
everolimus group compared to placebo. There was a similar reduction at 2 years but it was no 
longer significant. Despite the improvement in kidney volume, eGFR declined faster in the 
everolimus group than in placebo (5.5 ml/min/1.73 m2 vs. 3.5 ml/min/1.73 m2 respectively, 
p<0.001). The reason for this is unclear, but a number of possibilities have been proposed. First, 
the mTOR pathway mediates glomerular hypertrophy and hyperfiltration, thus maintaining 
GFR after nephron loss, so everolimus may have deprived the kidneys of this compensatory 
mechanism. Second, short-term changes in GFR do not necessarily correctly predict long-term 
changes and so 2 years of follow-up is probably too short to ascertain the true long-term trend. 
Indeed, if glomerular hyperfiltration is harmful in the long term, then it would be predicted that 
amelioration of hyperfiltration would reduce the decline in GFR given sufficient follow-up time. 
Third, as more patients on everolimus experienced edema and needed diuretics, this might 
have worsened kidney function. Finally, the selection of a patient population with relatively 
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advanced CKD and probably significant fibrosis and irreversible kidney injury may have 
obscured any potential benefit conferred by everolimus (52). 
 
In a smaller, open label trial, Serra et al. randomized 100 patients to receive sirolimus or placebo 
(15) and found no difference in the rate of increase of TKV. The study was not powered to assess 
kidney function and so not surprisingly, eGFR did not differ significantly between the groups.  
 
An additional consideration is that inability to administer sufficient dosage to achieve 
biological efficacy may have accounted for the lack of clinical efficacy of the mTOR 
inhibitors, as compared to the preclinical studies. As discussed earlier, the study by 
Canaud et al. suggested that sirolimus dosed as an immunosuppressant post-transplant is 
inadequate to inhibit mTOR activity in PKD cysts (16). However, higher doses are unlikely 
to be achievable. In the study by Walz et al. (14), one third of patients did not complete the 
study because of drug-related adverse events, including proteinuria which might adversely 
affect kidney function in the long-term. In the study by Serra et al. (15), the drug dose was 
lower than intended because of dose-limiting side-effects. 
 
High water intake 
 
Given the importance of vasopressin in the rate of cyst growth, it has been suggested that 
simply increasing water intake would be sufficient to suppress vasopressin secretion, and 
hence retard disease progression in ADPKD (53). Studies in PCK rats confirmed that 
increasing water intake by 3.5-fold retarded cyst growth and the decline of kidney function 
(54). Wang et al. developed a simple clinical method based on a measurement of urine 
osmolality to estimate the amount of additional water that should be ingested (55). 
However, many nephrologists are already recommending that their ADPKD patients 
empirically increase their fluid intake. The practice is widespread in the community, thus 
making it challenging to test the efficacy of high fluid intake in a randomized controlled 
trial. The only clinical study of high water intake that has so far been conducted was by 
Higashihara et al. They assigned 30 patients to high and free water-intake groups based on 
patient preference, and found that the slope of TKV and eGFR were worse in the high 
water  intake  group (56). However,  the study  was  flawed because of the non-randomized 
assignment to the different groups, and was much too small to reach any meaningful 
conclusions.  
 
Other therapies 
 
Statins, or 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors, 
have pleiotropic effects, including inhibiting farnesylation and activation of the monomeric 
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GTP-binding protein, Ras, and hence inhibiting cell proliferation (57). Statins have been 
shown to be effective in preclinical models of PKD (35,58). In a placebo-controlled RCT 
conducted in 110 children with ADPKD, pravastatin was shown to reduce the change in 
htTKV over 3 years (23% vs. 31%) (59). This is notable for being the first substantive 
therapeutic trial in ADPKD to be conducted in children. 
 
The epidermal growth factor (EGF) receptor is overexpressed and mislocalized to the 
apical membrane in autosomal dominant and recessive forms of PKD (60, 61). Tyrosine 
kinase inhibitors that block EGF receptor catalytic activity and downstream mitogenic 
signaling appear to be effective at retarding disease progression in rodent PKD models (62, 
63). Two tyrosine kinase inhibitors are currently undergoing early phase clinical trials in 
ADPKD (Table 1). A concern with this approach is that this antiproliferative strategy may 
not be sufficiently specific for PKD cyst epithelium and hence would have significant 
adverse effects in other proliferating tissues. While such side-effects might be acceptable in 
a drug being developed for short-term treatment of a life-threatening malignancy, 
tolerability is a major concern in a drug being developed for treating asymptomatic young 
adults with ADPKD over a large duration of their lifetime.  
 
Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide–dependent protein deacetylase 
that was recently found by Zhou et al. to be a novel pathway responsible for cyst growth 
(64). SIRT1 was shown to promote cyst growth by deacetylation and increased 
phosphorylation of retinoblastoma protein which becomes inactive, enabling transcription 
of genes that mediate entry into the S-phase of the cell cycle (65) and also by inhibition of 
apoptosis via deacetylation of p53 (66), an important tumor suppressor protein. By 
promoting a base-exchange reaction at the expense of deacetylation, niacinamide serves as 
a noncompetitive inhibitor of SIRT1 (67). Niacinamide (also known as nicotinamide) is a 
water-soluble amide derivative of nicotinic acid (also known as niacin) and these two 
molecules represent the two major forms of vitamin B3. Administration of either high-dose 
niacinamide, a pan sirtuin inhibitor, or EX-527, a SIRT1-specific small-molecule inhibitor, 
delayed cyst growth and improved kidney function in two orthologous mouse models of 
ADPKD (64).  
 
The dose of niacinamide that would likely be needed for clinical efficacy in ADPKD is 30 
mg/kg/day (compared to the recommended daily dietary allowance of vitamin B3, which 
is 14 to 16 mg/day). Fortunately doses of niacinamide of this magnitude have already been 
tested both in adults and in children over 3 years and found to be safe (68). Niacinamide is 
classified as a dietary supplement, so if it is found to be effective in the treatment of 
ADPKD, it would not need approval by the FDA, and would be widely available to 
ADPKD patients at very low cost. Because of this, niacinamide is being tested in two early 
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phase clinical trials at the University of Kansas Medical Center (KUMC). These trials are 
designed to assess biological efficacy, as determined by the level of phosphorylation of Rb 
and acetylation of p53 in peripheral blood mononuclear cells, to estimate the clinical effect 
in terms of reduction in the increment of htTKV at 1 year, and to assess the tolerability and 
safety of niacinamide in this population.  
 
Triptolide is an active diterpene found in the traditional Chinese medicine, Lei Gong Teng. 
It has been shown to induce intracellular calcium release in a mechanism dependent on 
polycystin-2. By restoring calcium signaling it seems to inhibit PKD cell proliferation and 
delay cyst growth (69). In orthologous mouse models of ADPKD, triptolide delayed disease 
progression (70, 71). The only published clinical study was an open label trial of 9 patients 
with ADPKD and proteinuria >1 g/day, which is rather unusual in this disease (72). 
Triptolide appeared to reduce proteinuria in this uncontrolled study. An RCT of triptolide 
was initiated at Nanjing University School of Medicine (ClinicalTrials.gov Identifier: 
NCT00801268) but is currently reported as being terminated because of a high rate of drop-
out. Another trial being conducted at Shanghai Changzheng Hospital is currently 
recruiting.  
 
 
Future directions 
 
Clinical testing of therapies in ADPKD presents a number of daunting challenges, 
particularly in the US. These include the long lead time of disease progression before GFR 
falls predictably, failure of the FDA to accept TKV as a surrogate endpoint for drug 
approval, and the cost of large-scale clinical trials. The following are recommendations and 
predictions for future directions that may best address these issues.  
 
We urge continued emphasis on repurposing already-approved drugs and testing dietary 
supplements. These have the advantage that there is already some knowledge about their 
safety, thus dramatically reducing the risk and cost of their development. In addition, even 
if the clinical trial data fall short of meeting FDA criteria for approval for the indication of 
PKD  treatment, it  may be  sufficient  to convince the nephrology community to use a drug 
off-label (especially if it is inexpensive), or to use a dietary supplement off the shelf. 
 
Along those same lines, we believe that diet could be a major determinant in PKD disease 
progression. This includes not only water intake, but also sodium intake (73) and the 
balance of acid and base equivalents (74). At KUMC we are completing a pilot study to test 
the feasibility and acceptability of a diet low in salt and animal protein and enriched 
infruits and vegetables, and its efficacy at reducing net acid excretion (NCT01810614). 
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Controlled trials that test the clinical efficacy of dietary intervention, while not particularly 
exciting, could have a major impact on the management of ADPKD. 
 
Because ADPKD is a lifelong disease, we believe that early treatment has the greatest 
potential to change its long-term course and so treating children is likely to have the 
greatest benefit (20). Clinical trials are rarely conducted in children because of 
concerns about safety and ethics but they are certainly possible, and therapies such 
as niacinamide that have already been shown to be safe in children (68) could lead 
the way.  
 
Because falling GFR is a late event in ADPKD and an indicator of irreversible, fibrotic 
changes within the kidney, earlier biomarkers of disease progression that reverse in 
response to effective therapy are badly needed. While a number of blood and urine 
biomarkers have been identified (75-81), none has yet been shown to have the sensitivity 
and reliability needed. One promising new area of biomarker discovery is that of urinary 
exosomes, which are a rich source of renal tubule epithelium-derived proteins and, 
particularly, of proteins that are complexed to the polycystins (82). 
 
Another approach might be to test therapies in a cystic kidney disease with a more 
rapid and aggressive course. Because the pathogenesis of autosomal recessive PKD 
(ARPKD) closely resembles that of ADPKD, testing therapies in children with ARPKD, 
who generally have a rapid decline in kidney function in childhood, might enable one 
to see a change in the GFR slope early on. Even detecting a change in the incidence of a 
hard outcome, such as ESRD, might well be feasible. Moreover, ARPKD (unlike 
ADPKD) is unequivocally a rare disease and as there is also no currently approved 
treatment, any candidate drug would be considered an orphan drug and qualify for 
regulatory and financial incentives that would greatly facilitate its commercial 
development (83). 
 
Rigorously designed and adequately powered late-stage trials to definitively prove 
the clinical efficacy of a therapy requires large numbers of patients and, particularly 
for off-patent drugs and for therapies that cannot be commercialized, such as dietary 
interventions and dietary supplements, the cost may be prohibitively expensive. 
Pragmatic trials that test therapies in real-world clinical settings using the existing 
infrastructure and protocols of standard care may allow such trials to be conducted 
at much lower cost and may even be better at predicting their real clinical 
effectiveness (84). 
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