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Abstract: Although less common than in adults, stroke is the sixth leading 
cause of death in children, affecting ~2–13 children per 100,000 under 18 years 
of age. Because it is underappreciated clinically, the diagnosis of pediatric stroke 
is often delayed or even missed, or misdiagnosed as more common conditions 
such as migraine, epilepsy, or viral illnesses. Since pediatric stroke is caused by 
unique etiologies and can present differently than in adults, diagnostic imaging 
should be tailored to the specific and diverse causative entities and distinctive 
needs of the pediatric population. This chapter provides a comprehensive 
review of pediatric stroke, including the etiologies, diagnosis, and management, 
emphasizing the role of neuroimaging in diagnostic and treatment pathways. 
Understanding the distinct clinical entity of pediatric stroke and the role of 
imaging in diagnosis is important for early detection and treatment of this 
underappreciated disease.
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INTRODUCTION

Stroke is increasingly recognized as an important cause of morbidity and mortal-
ity in the infant and child, now among the top 10 causes of childhood death 
(1–4). While not as common as in adults, stroke affects 2.3 to 13 children per 
100,000 per year (4–9). The etiologies and presentation of stroke in children may 
be different than in adults and vary with age, often resulting in delayed or missed 
diagnosis. Accurate recognition of childhood stroke is important for the rapid 
implementation of targeted and neuroprotective therapies. It is therefore impor-
tant that clinicians be familiar with risk factors, etiologies, and treatment of pedi-
atric stroke. 

Etiologic and developmental differences in children limit extrapolation from 
the adult stroke experience to pediatric patients. Neuroimaging is nevertheless 
essential for accurate diagnosis, as well as for differentiating stroke from stroke 
mimics and in guiding therapy. In this chapter, we discuss the unique causes of 
arterial ischemic, hemorrhagic, and venous stroke in the pediatric population and 
the role of imaging in diagnosis, treatment decisions, and long-term prognosis. 
Imaging patterns in primary energetic failure, such as from mitochondrial disor-
ders, and diffuse ischemic or inflammatory brain injury, including hypoxic isch-
emic encephalopathy, are beyond the scope of this chapter and are reviewed 
elsewhere (10, 11). Because of the unique and varied causes of pediatric stroke 
and the need for accurate and timely diagnosis, the neuroimaging and the unique 
etiologies, presentations, and management of pediatric stroke will be the focus of 
the following discussion.

DEFINITIONS

Pediatric stroke, which occur between 29 days and 18 years of age, can be divided 
into ischemic and hemorrhagic etiologies. Ischemic stroke, with parenchymal 
injury related to loss of perfusion in a vascular territory, occurs in 55% of pediatric 
strokes and can be caused by arterial ischemic stroke (AIS) or venous  infarction (4). 
Transient ischemic attach (TIA), defined in adults as sudden onset of focal 
 neurologic symptoms that resolve fully within 24 hours and without radiologic 
ischemia, is less common in children; however, 6% of children with transient 
neurologic symptoms may demonstrate evidence for ischemia on acute imaging 
and 13% of children with TIA may eventually progress to strokes (12). Hemorrhagic 
strokes, by comparison, comprise nontraumatic intracerebral hemorrhage, intra-
ventricular, and/or subarachnoid intracranial hemorrhage (13).

CLINICAL PRESENTATION

Since the clinical presentation of stroke in children and infants can be unrecog-
nized or an alternative diagnosis may be favored, imaging is often the most reveal-
ing aspect of the diagnostic workup. Acute stroke can present with seizure, altered 
mental status, headache, and lethargy in children. Perinatal stroke diagnosed later 
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in infancy or in childhood (presumed perinatal ischemic stroke) manifests with 
early hand preference, developmental delay, motor impairment, and seizures (14). 
Older infants and children can present with symptoms similar to those in adults, 
with acute onset of neurologic deficits (15).

ETIOLOGIES

The causes of stroke in children vary with age and relate to often different etiolo-
gies than those in adult stroke. Childhood strokes may be associated with vascu-
lopathies (inherited or acquired), infection/inflammation, genetic/metabolic 
disorders, cardiac disorders, or disorders of coagulation (Table 1) (16–20). 

TABLE 1 Medical Conditions Associated with Childhood 
Arterial Ischemic Stroke and Cerebral 
Sinovenous Thrombosis (20)

Vasculopathy

•	 Sickle cell disease

•	 Moyamoya syndrome

•	 Alagille syndrome

•	 Grange Syndrome

•	 Acardi-Goutières Syndrome

•	 ADAMTS13 thrombotic microangiopathy

•	 ACTA2 mutation

•	 Cerebroretinal Vasculopathy and Hereditary Endotheliopathy With Retinopathy, Nephropathy, 
and Stroke Syndrome

•	 Radiation vasculopathy

•	 Arterial dissection

•	 Collagen vascular disorders:

○	 Ehlers-Danlos type IV

○	 Marfan syndrome

○	 COL4A1 mutations

○	 Fibromuscular dysplasia

•	 Focal cerebral arteriopathy

•	 Primary angiitis of the central nervous system

•	 Systemic vasculitides and autoimmune disorders:

○	 Wegener granulomatosis

○	 Microscopic polyangiitis

○	 Polyarteritis nodosa

Table continued on following page
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TABLE 1 Medical Conditions Associated with Childhood 
Arterial Ischemic Stroke and Cerebral 
Sinovenous Thrombosis (20) (Continued)

○	 Takayasu arteritis

○	 Systemic lupus erythematosus

○	 Mixed connective tissue disease

○	 Henoch-Schönlein purpura

○	 Hemophagocytic lymphohistiocytosis

○	 Kawasaki disease

○	 Inflammatory bowel disease

○	 Human immunodeficiency virus

•	 Vasospasm:

○	 Reversible cerebral vasoconstriction syndrome

○	 Subarachnoid hemorrhage

○	 Cocaine use

Prothrombotic conditions

•	 Polycythemia

•	 Deficiency of protein C, protein S, antithrombin III

•	 Factor V Leiden mutation/activated protein C resistance

•	 Prothrombin 20210 gene mutation

•	 Elevated factor VIII

•	 Elevated von Willebrand factor antigen

•	 Hyperhomocysteinemia (MTHFR mutation)

•	 Elevated lipoprotein(a)

•	 Antiphospholipid antibodies

•	 Migraine with aura

•	 Estrogen-containing oral contraceptive use

•	 Pregnancy and postpartum

•	 Malignancy

•	 L-asparaginase and other chemotherapeutics

Cardiac disorders

•	 Congenital heart disease, especially with right-to-left shunt

•	 Cardiac catheterization or surgery

•	 Extracorporeal membrane oxygenation

•	 Left ventricular assist devices

•	 Endocarditis

•	 Valvular abnormalities

•	 Cardiomyopathy

Table continued on following page
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Arterial ischemic stroke 

Focal cerebral arteriopathy (FCA), also known as transient cerebral arteriopathy, 
is a common cause of pediatric AIS in previously healthy children (Figure 1) 
(16,  17, 21–24). Defined by an acute, monophasic illness causing unilateral 
 stenosis of the intracranial cerebral arteries, mainly involving the anterior circula-
tion, FCA was found in 36% of children presenting with acute stroke in one 

TABLE 1 Medical Conditions Associated with Childhood 
Arterial Ischemic Stroke and Cerebral 
Sinovenous Thrombosis (20) (Continued)

Genetic/metabolic disorders

•	 Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)

•	 Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy 
(CADASIL)

•	 Cathepsin A–related arteriopathy with strokes and leukoencephalopathy (CARASAL)

•	 Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy 
(CARASIL) 

•	 Homocystinuria

•	 Fabry disease

•	 Menkes Disease

•	 Organic acidemias:

○	 Glutaric aciduria type II

○	 Methylmalonic acidemia

○	 Propionic acidemia

○	 Isovaleric acidemia

•	 Congenital disorders of glycosylation

•	 Adenosine deaminase 2 deficiency

•	 Sulfite oxidase deficiency

•	 Pseudoxanthoma Elasticum

Infection

•	 Meningitis

○	 Streptococcus pneumoniae

○	 Tuberculosis

○	 Aspergillus species

•	 Varicella vasculopathy

•	 Sinusitis

•	 Mastoiditis

•	 Sepsis

•	 COVID-19
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series (23). FCA can be further subdivided into the following subtypes: FCA– dis-
section type (FCA-d), FCA–inflammatory type (FCA-i), primary and secondary 
Moyamoya disease, genetic or syndromic arteriopathies (such as PHACE 
 syndrome), vasculitis, fibromuscular dysplasia, and iatrogenic forms (Figures 2) 
(25, 26). The appropriate diagnosis is important to establish because prognosis 
can be improved by treatment of the inflammation, when present. FAC-i is associ-
ated with viral infection and vaccination may reduce the incidence (16, 17, 
24,  27). Varicella zoster virus (VZV) is an established cause of FCA, although 
other pathogens, including other herpes viruses, likely play a role as FCA contin-
ues to occur in VZV vaccinated children (16, 28, 29). Age of onset differs between 
arteriopathy subtypes, with FCA-i tending to affect older school-aged children, 
Moyamoya affecting younger children, and dissection generally presenting no age 
predilection (30). COVID-19 has been reported as a cause of FCA, also resulting 

Figure 1. A six-month-old male who presented with acute right hemiparesis. DWI 
(A) demonstrates acute infarct in the left basal ganglia and deep white matter (white arrow). 
MRA (B) shows severe stenosis of the left M1 middle cerebral artery segment (black arrow). 
Follow-up 4 months later, demonstrates evolution of the infarct, now with encephalomalacia 
and gliosis without new acute infarct (white arrowhead) (C). MRA at that times shows mild 
improvement but persistent MCA stenosis (black arrowhead) (D). Findings are most 
compatible with focal cerebral arteriopathy. 



Pediatric Stroke Imaging 31

stroke related to the prothrombotic effects leading to AIS and venous sinus throm-
bosis (31–33). Inherited vasculopathies include, such as mutation in ACTA2, 
with distinctive imaging features which may suggest such diagnoses (34). 
Disorders of coagulation may be identified, including deficiencies of proteins C 
and S, G20210A prothrombin mutations, and factor V Leiden, as well as the pres-
ence of anticardiolipin antibodies (19, 35–38). In patients with no underlying 
metabolic disorders, trauma and previous viral infection are significantly more 
common (16, 17, 39, 40). Genetic or acquired conditions causing thrombophilia 
are less common causes (41).

Hemorrhagic stroke

The incidence of pediatric hemorrhagic stroke is 1.1 per 100,000 (4, 42). Causes 
of hemorrhagic stroke include venous sinus thrombosis, rupture of vascular mal-
formations or aneurysms, coagulopathy, and hemorrhagic conversion of ischemic 
infarct (arterial or venous) (Table 2) (13, 20). Some genetic arteriopathies of child-
hood are associated with both pre- and post-natal hemorrhagic stroke, including 
collagen IVA (COL4A1 or COL4A2) or JAM3 mutations, which can appear identi-
cal to hemorrhagic venous infarction (43–50). Hemorrhage due to collagen IVA 
mutations can be mild, presenting with vasculopathy or leukoencephalopathy in 
teens and adults, or very severe, resulting in even prenatal, fetal hydranenceph-
aly (51). Affected infants commonly present with seizures and diffuse neurologic 
signs, whereas older children more commonly manifest alteration of conscious-
ness, headache, or focal neurologic signs (52). 

Venous infarct 

Venous infarcts secondary to cerebral sinovenous thrombosis (CSVT) are fairly 
common, both prenatally and in childhood (52). The incidence in childhood is 
between 0.4 and 0.7 per 100,000 children per year (52–54). Up to 40% suffer 
venous infarctions, of which approximately 70% are hemorrhagic (52). Venous 
thrombosis should be suspected in any child who has an unexplained hemor-
rhage or a brain injury not fitting an arterial vascular distribution in the absence 
of trauma or infection (55, 56). Risk factors include head and neck infections in 
preschool children and trauma or chronic diseases such as connective tissue 

Figure 2. A six-year-old female with B-ALL receiving intrathecal methotrexate and Cerubidine, 
presenting with new left facial palsy. MR angiography (A) demonstrates multifocal stenosis of 
the intracranial arteries, most severe along the right ACA (white arrowhead), likely 
representing vasculitis. DWI (B) and corresponding ADC map (C) demonstrate diffusion 
restriction along the right aspect of the corpus callosum and paramedian frontal and parietal 
lobes (white circle). Follow-up MRA (D) demonstrates resolution of arterial stenoses. 
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disorders in older children (52, 55, 57). If spontaneous venous thrombosis is 
identified, the patient should be evaluated for disorders of coagulation, such as 
factor V Leiden or proteins C and S, high coagulation factor VIII, G20210A pro-
thrombin mutations, MTHFR polymorphism, increased lipoprotein A, and the 
presence of anticardiolipin antibodies (37, 55, 58–65).

IMAGING 

The role of imaging in pediatric stroke is to confirm the diagnosis of stroke, iden-
tify the etiology of the stroke, establish the timing of insult, document evolution, 
exclude stroke mimics, facilitate treatment decisions, and provide prognostic 
information. 

Choice of imaging modality

The choice of radiologic study depends on the age of the patient, the clinical sce-
nario, and the available hospital resources. Although requiring the use of ionizing 

TABLE 2 Conditions Associated with Childhood 
Hemorrhagic Stroke (20)

Vascular anomalies:

•	 Arteriovenous malformation

•	 Arteriovenous fistula

•	 Aneurysm

•	 Cavernous malformation

•	 Venous angioma

Vasculopathy:

•	 Sickle cell disease

•	 Moyamoya syndrome

Coagulation disorders:

•	 Thrombocytopenia

•	 Hemophilia

•	 Hepatic failure

•	 Vitamin K deficiency

•	 Anticoagulant therapy

Other:

•	 Brain tumor

•	 Cerebral sinovenous thrombosis

•	 Hemorrhagic transformation of ischemic infarction
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radiation, non-contrast head CT (NCCT) is often the initial study in a child pre-
senting with possible stroke due to the widespread availability, speed, and sensi-
tivity for intracranial hemorrhage. However, NCCT has limited sensitivity for the 
detection of acute childhood AIS and stroke mimics, failing to identify the diag-
nosis in more than 40% of children (66). In children who are medically unstable, 
in whom MRI is contraindicated, or in environments unable to perform MRI rap-
idly, CT angiography of the head and neck, with or without CT venography (using 
either an equilibrium or additional venographic phase to ensure opacification of 
the venous system) may be preferable but remains a second-line option due to the 
considerably greater ionizing radiation doses inherent to high resolution, large 
coverage angiographic imaging as well as the dependency upon exogenous iodin-
ated contrast dye. 

MRI, MR arteriography (MRA), and MR venography (MRV), potentially with 
the addition of perfusion imaging, are preferred to obtain a definitive diagnosis of 
both ischemic and hemorrhagic lesions, as well as to identify underlying arteri-
opathy, thrombus, or arterial dissection in both neonates and older children 
(Figure 3). Because of limited scanner time and need for patient sedation, many 
centers have implemented rapid or abbreviated brain MRI protocols for stroke. 
The protocols typically include diffusion-weighted imaging (DWI) and apparent 
diffusion coefficient (ADC) maps to diagnose ischemic stroke as well as gradient 
echo (GRE) sequences or susceptibility-weighted imaging (SWI) to detect hemor-
rhage (67). Perfusion maps using arterial spin labeling (ASL) to assess for areas at 
risk can also be performed, if available, but are not extensively validated in pedi-
atric stroke (68). Contrast-enhanced perfusion imaging using either dynamic 
bolus passage of gadolinium with rapid T2* weighting (i.e., dynamic susceptibil-
ity contrast, DSC) or T1 (dynamic contrast enhancement, DCE) are less often 
utilized in children; however, if intravenous contrast administration is already 
anticipated for remaining post-contrast brain imaging sequences, DSC can seam-
lessly be added with a nominal investment of time. Mural arteriography, or so-
called vessel wall imaging (VWI), particularly with gadolinium enhancement has 
emerged for its sensitivity to disorders within the vessel wall, including in the 

Figure 3. An 11-year-old previously healthy male who presented with left-sided headache, emesis 
and changing voice. Axial (A) and coronal (B) CT images of the head demonstrate a 
geographic region of hypoattenuation in the left superior cerebellar hemisphere with loss of 
grey-white differentiation (circle). C. Axial DWI from MRI the same day demonstrates 
corresponding reduced diffusion in the left superior cerebellar artery territory (circle). 
2D Time-of-Flight MRA of the neck demonstrate irregularity of the right (D) and left 
(E) vertebral arteries at the junction of the V2 and V3 segments (arrows). Axial CT angiogram 
(F) confirms irregularity in the vertebral arteries, compatible with bilateral vertebral artery 
dissection (arrows).  
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setting of active inflammatory process, such as in FCA, as well as to assess for 
intracranial arterial dissection on pre-contrast imaging (69).

Catheter angiography can be considered when the cause of the infarction is 
unclear from clinical or laboratory features, or non-invasive imaging studies, and 
when high clinical suspicion of an arteriopathy remains, due to its sensitivity for 
vasculopathy in medium and small vessels, shunt physiology, aneurysms, or other 
structural vascular disorders (70). Perfusion imaging is particularly important in 
the setting of vasculopathy such as moyamoya disease, when revascularization 
procedures such as bypass or synangiosis are considered, to assess hemodynamic 
changes before and after revascularization (71). We hasten to add that the use of 
commonly cited perfusion parameters in adult AIS, whether from DSC or CT 
perfusion, in the management of childhood AIS remains unestablished and con-
siderable baseline anatomic, physiologic, and hemodynamic differences are to be 
anticipated. 

Arterial ischemic stroke

AIS is defined as the presentation with a focal deficit or seizure that localizes to an 
ischemic area of brain injury in a known arterial territory. Knowledge of intracra-
nial vascular territories and the predilections for certain pathologies may aid in 
narrowing the differential diagnosis. For example, posterior circulation infarc-
tions are unusual in children and should raise suspicion for traumatic injury to 
the vertebrobasilar circulation, vasospasm secondary to migraine, or MELAS, par-
ticularly if the infarct is not in a strict vascular distribution (72–76). Thalamic 
strokes in older children typically occur in the setting of meningitis (infectious 
vasculitis), congenital heart disease, migraine, or trauma, while basal ganglia 
infarctions are often associated with infectious or parainfectious vasculopathy 
(i.e., FCA-i) (17, 77). 

As noted above, while CT is often the first imaging modality performed, it is 
generally not the diagnostic modality of choice in children unless MRI is not avail-
able, or the child is too unstable. CT is sensitive for acute intracranial hemorrhage, 
appearing as hyperdense compared to normal parenchyma on non-contrast scans, 
but insensitive for hyperacute or small ischemic infarctions and more generally 
due to the widespread adoption of low-dose CT protocols in pediatric neuroimag-
ing. If CT is obtained, cerebral infarction in the infant has a similar appearance to 
that in the older child or adult, manifesting as a well-defined, often wedge-shaped 
region of hypoattenuation in an arterial distribution. 

MRI is the modality of choice in pediatric AIS. The MR appearance of infarc-
tions in children and adolescents follows the appearance in adults (Table 3), as is 
the MR appearance of hemorrhagic infarcts. The sequence of choice to identify 
infarctions in the first few days is DWI, which shows reduced diffusivity within 
minutes of the infarction (78–80). The acute infarct is seen as high signal on DWI 
and low computed diffusivity values on accompanying ADC maps. Diffusivity 
remains reduced for several days, varying based upon the severity of injury and 
the presence, if any, of either spontaneous or therapeutic reperfusion, either of 
which may occur non-uniformly throughout the ischemic tissues. High signal on 
DWI increases continually in the hyperacute and acute phases, peaking com-
monly after several days under the combined influences of reduced diffusivity and 
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T2-shine through effects arising from increasing tissue water. Transient pseudo-
normalization either reducing or eliminating the visible changes in DWI may then 
be observed to last for a period of days of less, with diffusivity then increasing to 
supranormal levels, generally beginning near the second week (81–84). 
Importantly, the development and evolution of pseudonormalization on ADC will 
commonly precede that on DWI, potentially by many hours or even days, yet 
depends heavily upon the age of the patient, size of the stroke, severity of isch-
emia, how quickly collateral blood flow is recruited, and even technical variables 
related to diffusion imaging (85, 86).

Similar to the Alberta Stroke Program Early Computed Tomography Score 
(ASPECTS), which was developed as a system for scoring early ischemic changes 
on axial non-contrast CT and correlates highly with clinical outcomes, a pediatric 
modification of the ASPECTS (pedASPECTS) score was developed using DWI 
MRI (87–89). PedASPECTS has been shown to predict subsequent cerebral palsy, 
neurologic impairment, and epilepsy after symptomatic neonatal AIS (89). The 
score includes two regions of the anterior (A1 and A2), 10 regions of the middle 
(M1, M2, M3, M4, M5, M6, insula, internal capsule, caudate, and lentiform 
nucleus), and three regions of the posterior cerebral artery territories (P1, P2, and 
thalamus) in each hemisphere. One point is allocated to each region affected by 
infarction; the total pedASPECTS ranges from 0 for normal to 30 for maximal 
severity (15 per hemisphere) (90).

Assessing AIS onset time is critical for the determination of whether a patient 
can be treated with tPA or thrombectomy. The mismatch between DWI and fluid 
attenuated inversion recovery (FLAIR) changes has been proposed for determina-
tion of the time window for potential intervention but may suffer significant inter- 
or intra-rater disagreement and subjectivity by comparison to quantitative 
alternatives (91, 92). In adults, DWI appears to reliably predict the core infarct 
and the DWI-perfusion weighted imaging (PWI) mismatch using DSC profiles 
may then be used to assess tissue at risk (penumbra) (93). Although a number of 
perfusion parameters, including mean transit time, time to peak, and time to 
maximum (Tmax) using various thresholds have been used for determination of 
the ischemic penumbra in adults, their validation in children is lacking. Although 
arterial spin labeling (ASL) is correlated with DSC perfusion parameters in assess-
ment of mismatch in AIS, the correlation is imperfect and improved methods are 
needed before routine clinical use in acute stroke (94).

MRA can help define the site of stenosis, helping narrow the diagnosis in 
patients with arteriopathy, or identify a large vessel occlusion (Figure 4) (17, 23, 
95, 96). A “banding” pattern is considered a pathognomonic feature for FCA-i but 
is less commonly identified by CTA or MRA than catheter angiography, presenting 
in less than one-quarter of cases, and is therefore specific but not sensitive for the 
diagnosis (Figure 5) (30). If arteriopathy is suspected and MRA is equivocal, ves-
sel wall imaging, utilizing black-blood, T1-weighted volumetric imaging after 
gadolinium can demonstrate abnormal vessel wall enhancement in the setting of 
active inflammatory processes, as well as assess for intracranial arterial dissection 
on pre-contrast T1-weighted imaging (69). Between 64% and 74% of arterial 
defects in pediatric ischemic infarctions are located in the supraclinoid carotid 
artery or M1 segment of the middle cerebral artery (70). Stenosis in FCA may 
change in appearance over the short term. Over the long term, they usually nor-
malize (~25%), stabilize after improvement (32%), or stabilize (45%) without 
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Figure 4. A 19-year-old female with a history of Down syndrome and repaired ASD and VSD. 
The patient presented with 2 days of aphasia, alerted mental status, and right upper quadrant 
field cut. Axial CT (A) demonstrates hypoattenuation with loss of gray-white differentiation in 
the left middle cerebral artery territory (black circle). DWI (B) and corresponding ADC 
(C) confirm acute left MCA territory infarct (white circle). MRA (D) demonstrates focal left 
MCA M2/M3 occlusion (arrow). She was found to be positive for Lupus anticoagulant. 

Figure 5. A 13-year-old previously healthy female who presented with new left-sided facial 
weakness. Diffusion weighted image (A) demonstrate acute infarcts in the right middle 
cerebral artery (MCA) territory (black arrows). Time-of-Flight MRA (B) shows stenosis of the 
proximal right M1 MCA segment (white arrowhead). Vessel wall imaging (C) demonstrates a 
cuff of enhancement at the stenosis (white arrow). Digital subtraction angiography 
(D) demonstrates a focal arterial irregularity and banding (black arrowhead) resulting in mild 
stenosis, compatible with focal arteriopathy of a likely inflammatory nature. 
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further infarctions (23, 24). Outcome is better in patients in whom the arteriopa-
thy stabilizes or improves than in those in whom it progresses, with a high risk of 
recurrent stroke in the latter population, approaching 25% within 1 year (17, 24). 
Some genetic arteriopathies have unique imaging appearances, such as ACTA2 
mutation, which demonstrates dilation of the proximal internal carotid arteries, 
occlusion or narrowing of the distal internal carotid arteries, straight “broomstick-
like” arteries of the circle of Willis, and absence of lenticulostriate collaterals 
(Figure 6) (34).

ASL can identify areas of reduced or increased perfusion, helping to differenti-
ate lesions causing stroke or stroke symptoms from mimics (17, 23, 95, 96). The 
arterial transit time of blood from the labeling plane to the brain is age-dependent 
and therefore multi-post-label delay or age-specific labeling protocols should be 
employed. If the post-label delay is too short, perfusion is overestimated in proxi-
mal large vessel regions and underestimated in distant brain tissue. These so-
called “arterial transit artifacts” can be used to identify focally delayed perfusion 
in stroke imaging and are tentatively associated with positive outcome, possibly 
related to collateral flow when occurring more distally (97).

Perfusion imaging (DSC) is useful to identify regions of relative ischemia that 
are at risk for infarction in moyamoya syndrome and to assess changes in perfu-
sion after therapy. Increased capillary mean transit times and macrovascular 
delays (e.g., time-to-maxima) may be the result of arterial stenoses or the devel-
opment of moyamoya collateral vessels (Figure 7) (98). An increase in mean 
transit time associated with reduced cerebral blood volume or with a lack of 
increase in cerebral blood volume after administration of intravenous acetazol-
amide is more suggestive of tissue at risk; although, in the non-acute setting, 
benign, compensated oligemic delays cannot be discriminated from regions of 
severe hemodynamic stress with exhausted cerebrovascular reserve, and in this 

Figure 6. ACTA2 Mutation. Axial ADC (A) demonstrates reduced diffusivity in the 
periventricular white matter, compatible with acute infarct. 3D Time-of-Flight MRA (B) shows 
enlargement of the internal carotid arteries (arrowheads) with narrowing of the distal 
internal carotid arteries (arrow). Follow-up axial T2-weighted image (C) shows evolution of 
the infarct to cystic encephalomalacia. Case courtesy of Dr. Tamara Feygin, Department of 
Radiology, Children’s Hospital of Philadelphia.
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setting, cerebrovascular reactivity or direct oximetry may be required for mean-
ingful prognostication (99).

Hemorrhagic stroke

Vascular malformations, primarily arteriovenous malformations (AVMs), cavern-
ous malformations, and aneurysms, are the most common causes of pediatric 
hemorrhagic stroke (100, 101). CT is often the first neuroimaging performed 
because of its sensitivity for detection of hemorrhage, at which time CTA can be 
performed to assess for underlying vascular malformations or aneurysm. 
Importantly, CTA does not accurately discriminate venous lumenal enhancement 
of a physiologic nature from that arising across arteriovenous shunts, and CT 
should be considered of relatively limited sensitivity and specificity for detection 
of small shunt malformations. In a stable child, MRI brain with DWI, SWI or 
GRE, FLAIR, MRA, and MRV can diagnose hemorrhage, differentiate hemorrhagic 
transformation of arterial or venous infarction from primary hemorrhage, and 

Figure 7. A 17-year-old female who presented with an episode of left facial droop and 
difficulty speaking. DWI (A) with corresponding ADC (B) and FLAIR (C) MR images 
demonstrate an acute infarct (arrow) in the left frontal lobe with additional remote infarcts 
in the bilateral frontoparietal white matter, more on the right than the left. MRA 
(D) demonstrates occlusion of the right ICA terminus and proximal right ACA and MCA 
with associated collaterals (circle). DSC perfusion mean transit time (MTT) map 
(E) demonstrates prolonged MTT in the right middle cerebral artery territory. MTT 
perfusion map after encephaloduroarteriosynangiosis (F) demonstrates improved, now 
symmetric transit times between cerebral hemispheres. 
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evaluate the brain parenchyma for an underlying mass or vascular malformation. 
Time-of-flight techniques, particularly without exogenous gadolinium, generally 
highlight brisk arteriographic flow and consequently suppress slow-flowing 
venous blood; consequently, extensive venographic signal may raise suspicion for 
shunting of arterial flow but must be discriminated from potential technical 
sources of venographic enhancement. ASL may be useful for detecting arteriove-
nous shunting in an AVM, owing to the nearly complete extraction of tagged 
water across the blood brain barrier and T1-mediated tag decay, which together 
leave venous signal unlikely in conventional tagging schemes without arteriove-
nous shunting (102). Catheter angiography may be considered if no lesion is 
identified on initial imaging to assess for small vascular malformations. If no vas-
cular malformation is identified, repeat neuroimaging should be obtained after 
the hematoma has resolved, as small vascular lesions can be compressed by the 
hematoma (103).

Venous sinus thrombosis and venous infarct 

Venous thrombosis is a common cause of spontaneous cerebral hemorrhage, both 
intraparenchymal and, rarely, epidural, with nearly 70% of pediatric venous 
infarcts becoming hemorrhagic (Figure 8) (104, 105). Parasagittal injuries are 
seen with superior sagittal sinus thrombosis, temporal lobe hematomas with 
transverse sinus thrombosis, and thalamic hemorrhage with vein of Galen/straight 
sinus thrombosis. 

In infants and children, MRI is the imaging modality of choice. Routine T1- 
and T2-weighted images should be obtained (and FLAIR in older infants and in 
children), in addition to DWI, GRE or SWI images, and MRV. Acute (<7 days old) 
thrombus exhibits low signal intensity due to the presence of deoxygenated hemo-
globin beginning quickly following its development, often with apparent expan-
sion of the affected sinus on GRE and reduced diffusivity (106). If the thrombosis 
is subacute (between 6 and 15 days), T1-weighted images show high signal inten-
sity of the clot, potentially with persistently reduced diffusion during the intracel-
lular stages of hemoglobin breakdown (107). 

CT venography, showing thrombi as hypodense areas within the affected 
venous structure (“empty delta sign” with thrombosis of the superior sagittal sinus 
or other veins captured in cross section), is very sensitive and specific for the 
diagnosis of dural sinus thrombosis, but of limited diagnostic value for diagnosing 
cortical vein thrombosis and often avoided due to the utilization ionizing radia-
tion (108). Multiple MRI techniques have been developed to detect venous throm-
boses, including time-of-flight and phase contrast venography, both of which are 
performed without the use of gadolinium, as well as contrast-enhanced tech-
niques. With DSA as reference standard, contrast-enhanced MRI was shown to be 
more accurate for diagnosing cerebral sinus thrombosis than noncontrast-
enhanced flow-related and native contrast MR sequences, likely due to superior 
performance where flow-related enhancement is diminished due to slow flow or 
flow parallel to the imaging plane (109, 110).

On CT, venous infarcts are usually poorly delimited, hypodense, or mixed-
attenuation, with the low attenuation likely related to cerebral edema and 
high attenuation hemorrhage (20). The thrombosed vein may be seen overlying 
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the infarction as a curvilinear region of high attenuation. On MR, early venous 
infarcts may demonstrate high signal on T2-weighted sequences in characteristic 
regions (most commonly frontoparietal parasagittal and temporal). SWI can iden-
tify the thrombosis in the superficial and/or deep venous systems. DWI may show 
reduced, normal, increased, or a mixture of diffusivity in areas of venous infarc-
tion, and potentially reduced diffusivity of the pathologic vessel itself in the acute 
phases of thrombosis as noted above. Venous sinus occlusion initially reduces 
venous outflow, with resultant vasogenic edema, which causes increased diffu-
sion (111). If adequate collateral venous outflow is not established, venous infarc-
tion will occur, resulting in cytotoxic edema. The paramagnetic effects of blood 
products, often present in venous infarcts (up to 70%), may also contribute to this 
heterogeneity of diffusion characteristics in the tissues, and may be accompanied 
by phase accrual and signal decay within the deep and superficial venous circula-
tion on the filtered signal phase maps of susceptibility weighted images, respec-
tively. Hemorrhage in such cases may vary from large subcortical hematomas to 
petechial hemorrhages within edematous brain parenchyma (52, 112).

Figure 8. An 18-year-old male who presented with intractable headache found to have left vein 
of Labbe thrombosis and hemorrhagic venous infarct. DWI (A) and associated ADC 
(B) demonstrates associated vasogenic and cytotoxic edema. Noncontract T1-weighted 
image (C) shows high signal within the left vein of Labbe (white arrowhead) with associated 
filling defect on contrast enhanced study (white arrow) (D). No underlying vascular 
malformation or mass was identified. T2-weighted MRI (E) demonstrates a left posterior 
temporal hematoma with associated edema. Noncontrast axial CT image (F) demonstrates 
parenchymal hemorrhage with hyperdensity within the vein of Labbe (black arrow). 
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STROKE MIMICS

The diagnosis of stroke is often difficult in infants and children due to the non-
specific localizing signs of stroke, such as lateralized weakness after seizure or 
ataxia, are often overlooked (67). In a study of 209 children with acute AIS, 70% 
of children reached a hospital within six hours of stroke symptom onset, but 
only 20% were diagnosed with stroke within six hours and stroke was not sus-
pected in more than 62% of children at initial presentation (66). Other serious 
neurologic diagnoses can present similarly, including posterior reversible leuko-
encephalopathy, epilepsy, intracranial infection or inflammation, focal lesions 
(i.e., tumors), complicated migraine syndromes, and drug toxicity (Figure 9) 
(113, 114). 

TREATMENT

Although observational studies and expert consensus support the use of intrave-
nous tissue plasminogen activator (tPA) in pediatric patients, the safety and effi-
cacy have not been validated in prospective trials (115–117). The Thrombolysis 
in Pediatric Stroke (TIPS) Trial was a phase I multicenter study evaluating the 
safety of tPA in childhood stroke but was closed early due to low enrollment (118). 
Intravenous tPA administration is currently given within 4.5 hours of documented 
onset in children. In children with sickle cell disease, the mechanism of stroke is 
different and treatment is directed toward reducing the proportion of sickled red 
cells and reestablishing cerebral vascular patency. Exchange transfusion should be 
performed urgently to decrease the fraction of HbS to below 30%. Transfusion 
may also be appropriate in the setting of acute anemia. Endovascular therapies, 
including intraarterial tPA and mechanical thrombectomy, are increasingly used 
for acute revascularization in adults with ischemic stroke and are used in children 

Figure 9. A 21-month-old Female who presented with headache and right-sided weakness.  DWI 
(A) and corresponding ADC map (B) demonstrate diffusion hyperintensity throughout the 
left cerebral hemisphere, some of which is cytotoxic and some vasogenic edema. FLAIR 
(C) demonstrates edema in the left cerebral hemisphere with gyral swelling. No associated 
enhancement was noted on post-contrast imaging (D). The patient was diagnosed with 
familial hemiplegic migraine and found to have an underlying CACNA1A mutation.
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on a case-by-case basis, although evidence is growing for its efficacy (119). For 
CSVT, anticoagulation is used in patients who do not have significant intracranial 
hemorrhage. About 30% of CSVTs propagate, with 40% of these developing 
venous infarctions, thus in children with CSVT and milder hemorrhage, the ben-
efits of preventing further infarction and hemorrhage by anticoagulation may 
debatably outweigh the risks of worsening the existing hemorrhage (120). 
Approximately 40–50% of infants and children affected by CSVT are neurologi-
cally normal after approximately two years (52, 55). 

PROGNOSIS

More than 75% of children will suffer long-term neurological deficits after AIS 
and 10% will die, with 19% recurrence at five years (3, 4, 121–123). Long-term 
prognosis of children with focal infarctions and no underlying disorder varies 
with the location of the infarction and the age of the patient at the time of the 
injury (124). Poor motor outcome is associated with basal ganglia involvement, 
while seizures, poor cognition, and delayed development are associated with cor-
tical involvement (24, 125). Larger infarct volumes or infarctions involving elo-
quent regions show more substantial residual deficits (123, 126). Among children 
with infarcts of similar size or location, younger patients typically have smaller 
clinical deficits (124). The greater neuroplasticity of the brain in childhood may 
facilitate many functions normally performed by the injured brain regions being 
assumed by spared functional loci (123). When epilepsy develops, however, cog-
nitive recovery may be impaired (123). 

CONCLUSION

Stroke in the pediatric period is increasingly being recognized as an important 
cause of morbidity and mortality. Understanding the unique presentation and 
etiologies is important for accurate and timely diagnosis. The use of appropriate 
neuroimaging is essential for making the correct diagnosis, directing treatment, 
excluding alternative diagnoses, and determining prognosis. As the understand-
ing of the mechanism of pediatric stroke progresses and treatments improve, neu-
roimaging will continue to be an essential component of patient management. 
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