
1

In: Stroke. Dehkharghani S (Editor). Exon Publications, Brisbane, Australia. 
ISBN: 978-0-6450017-6-1; Doi: https://doi.org/10.36255/exonpublications.stroke.2021

Copyright: The Authors.

License: This open access article is licenced under Creative Commons Attribution-NonCommercial 
4.0 International (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/

Abstract: Approximately one-quarter of childhood strokes occur in the perinatal 
period, which includes both fetuses and neonates, affecting between one in 2300–
5000 births and representing the primary cause of cerebral palsy. Although the 
pathogenesis is incompletely understood, risk factors for perinatal stroke are often 
unique from strokes at other ages, with a combination of maternal, obstetric, ana-
tomic, and genetic factors or predispositions leading to infarct. Clinical presenta-
tions of perinatal stroke differ from strokes in older children and adults, often 
presenting as encephalopathy, seizure, altered mental status, or neurologic defi-
cits. However, neuroimaging remains equally indispensable for diagnosis and 
prognostication. Here, we provide a comprehensive review of perinatal strokes 
occurring in fetal and neonatal periods, and discuss the etiologies, diagnosis, 
management, and prognosis, with a focus on neuroimaging utilization and find-
ings. Understanding the appropriate use of imaging in the distinct clinical entity 
of perinatal stroke is important for guiding appropriate clinical management.
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INTRODUCTION

Stroke is an important cause of morbidity in the perinatal period, occurring in 
both fetuses and neonates. Accounting for approximately one quarter of all pedi-
atric strokes, it occurs in one in 2300–5000 live births and is the leading cause of 
cerebral palsy (1–3). The presentation of stroke in the perinatal period may be 
different from that in older children and adults, more often presenting with sei-
zures than focal neurologic deficits (2). The etiologies of perinatal stroke are also 
distinct, resulting from maternal, placental, obstetric, anatomic, and genetic risk 
factors unique to the perinatal period, albeit with lower risks of recurrence (4). 
The extrapolation from the paradigms guiding management of stroke in adults 
may be imperfect and remain largely untested or inconclusive. Accurate recogni-
tion of perinatal stroke is nevertheless critical for appropriate management and 
prognostication, although a clinical diagnosis may not be straightforward. In this 
chapter, we discuss the unique causes of arterial ischemic, hemorrhagic, and 
venous stroke in fetuses and neonates and the role of imaging in diagnosis and 
long-term prognosis. Imaging of diffuse ischemic brain injury, such as in hypoxic 
ischemic encephalopathy and white matter injury of prematurity, are beyond the 
scope of this chapter and thoroughly reviewed elsewhere (5, 6). 

DEFINITIONS

The temporal classification of perinatal stroke divides them into three distinctive 
forms, delineated by age of symptom onset and distinguished by differing clinical 
presentations (7): 

(i) Fetal stroke occurs between 18 gestational weeks and onset of labor resulting 
in delivery. It is diagnosed by prenatal imaging or on the basis of neuropatho-
logic examination in the case of stillbirth (2). 

(ii) Neonatal stroke is diagnosed between birth and 28 days of life; it presents with 
acute encephalopathy and seizures in newborns (2). 

(iii) Presumed perinatal ischemic stroke (PPIS) is diagnosed in infants older than 
28 days of age, in whom it is presumed that the ischemic event occurred 
sometime within the perinatal period, with clinically cryptic presentation 
and/or without neuroimaging at the time for definite diagnosis (2).

In addition, perinatal stroke can be divided into ischemic and hemorrhagic types. 
Ischemic perinatal stroke (IPS) represents a heterogeneous group of conditions 
characterized by a focal disruption of cerebral blood flow caused by arterial or 
cerebral venous thrombosis or embolization. Perinatal hemorrhagic stroke is 
defined as a nontraumatic intracerebral hemorrhage in the parenchymal, intra-
ventricular, and/or leptomeningeal locations. 

CLINICAL PRESENTATION

Fetal stroke presents with chronic encephalopathy in the newborn (7). Neonatal 
stroke most often presents with focal or generalized seizures (occurring in 
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80–90%), as well as apnea, hypotonia, or episodes of duskiness, irritability, and 
poor feeding (2, 4, 8). PPIS can present as early hand preference in infancy, con-
trary to the typical absence of hand preference prior to the age of 1 year, or as 
developmental delay, motor impairment, or congenital hemiplegia (3, 9). 
Approximately 30% of congenital hemiplegia cases result from PPIS (2). It remains 
unclear why some children present acutely while others present outside the neo-
natal period, although it may be related to the difficulty of diagnosing seizures in 
neonates or that some neonates may not seize at all (10, 11). Because the clinical 
presentation of stroke in neonates can be subtle, imaging is essential for definitive 
diagnosis. 

IMAGING

Neuroimaging is performed to confirm a diagnosis of perinatal stroke, to identify 
a potential etiology, suggest the timing of insult, follow stroke evolution, exclude 
stroke mimics, assist in treatment decisions, and provide prognostic information. 

Choice of imaging modality

The choice of radiologic study depends on multiple patient-specific and environ-
mental variables, including advanced imaging access and subspecialty expertise. 
Fetal imaging usually begins with ultrasound, although evaluation of the brain is 
often limited by a restricted field of view and suboptimal soft tissue contrast. Fetal 
MRI provides improved soft tissue contrast and adds valuable information unde-
tected on ultrasound in 30–55% of cases (12–14). It is especially important in 
regard to fetal cerebral ischemia, which is essentially undetectable on sonography. 
Diffusion weighted imaging (DWI), which may depict acute ischemic injury in the 
fetal brain, should be a routine part of fetal MR protocol.

As neonates generally present with acute but nonspecific symptoms, ultra-
sound is often the first study performed at most institutions. When properly per-
formed with high-frequency probes, and when the studies are performed four 
days from onset, ultrasound detects up to 87% of neonatal strokes involving the 
basal ganglia and large supratentorial vascular territories (15). However, ultra-
sound is less sensitive in the detection of small white matter infarctions, small 
cortical infarctions over the cerebral convexities, or those in the posterior fossa. 
Although ultrasound can detect intraventricular hemorrhage, it is insensitive for 
subarachnoid and small parenchymal hemorrhage. Duplex Doppler sonography 
can be useful for the diagnosis of dural venous sinus thrombosis in neonates with 
an appropriate acoustic window. Echogenic clot is seen in the affected sinus and 
Doppler analysis shows alterations in flow.

Noncontrast head CT (NCCT) may be the initial study in a neonate present-
ing with possible stroke due to the widespread availability, speed, and sensitiv-
ity for detection of intracranial hemorrhage, despite its dependence upon 
ionizing radiation; however, NCCT suffers low sensitivity for small and poste-
rior fossa infarcts, with the unmyelinated neonatal brain masking subtle hypoat-
tenuation and further compounded by commonly prescribed “low-dose” 
imaging protocols. However, in neonates who are medically unstable, in whom 
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MRI is contraindicated, or in centers without MRI capabilities, NCCT with or 
without contrast, CT angiography (CTA), or CT venography (CTV), remain 
considerations. 

MRI, supplemented by MR arteriography (MRA) and MR venography (MRV), 
is the imaging modality of choice in neonatal stroke. It can firmly establish diag-
nosis of either ischemic or hemorrhagic lesions, as well as identify arterial occlu-
sion or stenosis, vascular malformations, and cerebral sinovenous thrombosis 
(CSVT). Imaging critically ill or preterm neonates, who often require an incubator 
or high-frequency ventilation, presents a challenge for safe and timely neuroimag-
ing. Infants may be transported in an MRI-compatible incubator, while some 
facilities possess MRI machines within the NICU to reduce the need for transport. 
Imaging of neonates requires thorough optimization of MR sequences, because of 
higher water content and lower protein and lipids components of neonatal brain, 
compared with older children and adults. It is therefore important to optimize 
scan parameters to improve grey-white contrast and increase signal-to-noise (16). 
While the need for sedation may further delay the scan, neonates are particularly 
receptive to the “feed and wrap” method of sedation in which the infant is fed and 
swaddled (17).

Although rarely performed in neonates, catheter angiography can be 
 considered in complex cases or persistent clinical conundrums, particularly 
when high clinical suspicion of an arteriopathy or vascular malformation 
remains (18).

Arterial ischemic perinatal stroke 

Although arterial IPS may result from specific identifiable risk factors, many cases 
lack a definable cause. Risk factors for IPS are summarized in Table 1, which are 
identified in approximately 78% of cases (2, 3, 19). Major risk factors include 
intrapartum fever, preeclampsia, oligohydramnios, use of instrumentation in 
delivery, fetal distress, emergency Caesarean section, tight nuchal cord, resuscita-
tion at birth, hypoglycemia, and a birthweight small for gestation age (20). These 
factors exacerbate the combination of the physiological hypercoagulable state of 
pregnancy and the prothrombotic nature of neonatal blood related to increased 
hematocrit, fetal hemoglobin, and procoagulant proteins, leading to thrombus 
formation (21). Although the exact etiology and interplay between various risk 
factors is not known, and likely to be multifactorial, thromboembolism from the 
placenta is widely held as a contributor to perinatal AIS (22, 23). Fetal asphyxia, 
leading to increased flow across the patent ductus arteriosus into the left heart, 
along with placental pathology therefore poses increased risk of AIS. Complex 
congenital heart disease and the associated procedures, as well as rare congenital 
vasculopathies, are also well-established risk factors (24). Bacterial meningitis is 
complicated by stroke in 17–43% of cases, resulting in obliterative vasculopathy 
from exudative collections in the basal cisterns (25, 26). Disorders of coagulation, 
which include deficiencies of proteins C and S, and factor V Leiden, as well as the 
presence of anticardiolipin antibodies, are rare causes of stroke in this age group, 
and testing for such sources of thrombophilia may be low yield in neonates with-
out other systemic thromboses or congenital cardiac diseases because recurrence 
risk is reportedly low (27–34).
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TABLE 1 Risk Factors for Perinatal Stroke (2, 3, 19)

Maternal factors Fetal/infant factors Placental factors

Chorioamnionitis • Infection
○ CNS infection
○	 Systemic infection

Thrombosis

Acquired or Inherited 
Thrombophilia

• Blood disorders
○	 Polycythemia
○	 Disseminated intravascular 

coagulopathy
○	 Factor-V Leiden mutation
○	 Protein-S deficiency
○	 Protein-C deficiency
○	 Prothrombin mutation
○	 Homocysteine
○	 Lipoprotein (a)
○	 Factor VIII

Abruption

Preeclampsia • Cardiac etiologies 
○	 Congenital heart disease
○	 Patent ductus arteriosus

Insufficiency

Autoimmune conditions 
and autoantibodies 
(platelet alloantigen-1)

• Need for resuscitation or low Apgar 
score at 5 minutes

Chorioamnionitis

Infertility and infertility 
treatment

• Trauma or birth asphyxia Infarction

Prolonged rupture of 
membrane (>24 h)

• Twin-to-twin transfusion syndrome Inflammation

Cocaine use during 
pregnancy

• Neonatal hypoglycemia (in preterm 
infants)

Decreased placental reserve 

Nulliparity • Persistent fetal circulation and 
extracorporeal membrane oxygenation 
therapy

• Intrauterine growth restriction

• Congenital vascular abnormalities/
vasculopathy
○	 Vascular maldevelopment
○	 Vasculopathy (collagen 4A1 

mutation, generalized arterial 
calcification of infancy)

• Dehydration

• Extracorporeal membrane oxygenation

• Male sex
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More than half of perinatal AIS occur in the middle cerebral artery territory 
(MCA), more often on the left due to preferential flow in fetal and neonatal right-
to-left shunts, such as patent foramen ovale and ductus arteriosus (22, 35). 
Perforator strokes in the basal ganglia or thalami in newborns are commonly asso-
ciated with difficult deliveries, sepsis, or presence of a central venous catheter (36). 
Multiple arterial territories may be involved in neonates with meningitis, embolic 
showers, thrombophilia, vasospasm, and congenital vasculopathies (such as 
COL4A mutation and generalized arterial calcification of infancy) (35). Stroke in 
preterm and extreme preterm neonates more often involves lenticulostriate and 
posterior inferior cerebellar artery territories (37, 38).

Acute phases of fetal stroke, such as in case of congenital heart disease or twin-
twin transfusion syndrome (TTTS), may only rarely be detected prenatally. Fetal 
stroke often manifests with the chronic features of unilateral ventriculomegaly 
and volume loss with or without associated hemorrhage (Figures 1 and 2). 

Cranial ultrasound is usually the first brain imaging study performed in neo-
nates for screening if they are symptomatic (39). Although not as sensitive as MRI, 
large ischemic lesions, perforator strokes, and thrombus in the superior sagittal 
sinus can be identified. Posterior fossa infarctions are difficult to detect unless 
quite large, although imaging through the posterolateral fontanelle improves sen-
sitivity. Smaller infarcts in the cerebral cortex or white matter may be difficult to 
detect (40). The sensitivity for the depiction of perinatal AIS is 68% in the first 
3 days, increasing to 87% between days 4 and 10 (41). Cerebral infarction appears 
as an ill-defined, hyperechogenic focus in a vascular distribution  that slowly 
develops for several days after the event (42). Differentiation of hemorrhagic from 
bland infarction can be difficult, however, more focal areas of hyperechogenicity 
within the echogenic area may suggest hemorrhage. Cystic degeneration develops 
over 2–4 weeks with associated ex vacuo enlargement of the ipsilateral ventricle 
(Figure 3) (40). Color and power Doppler sonography show changes in regional 
cerebral blood flow after infarction, as well as asymmetric blood flow with loss of 
pulsatility in the MCA in the hyperacute phase (43, 44).

Although CT is often the first imaging modality performed, MR is generally 
preferred for its greater sensitivity, specificity, tissue contrast, and non-reliance 
on ionizing radiation or, in most cases, exogenous contrast agents. CT is never-
theless sensitive for acute intracranial hemorrhage in the acute setting. Cerebral 
infarction in the neonate has a similar appearance to that in the older child or 
adults, manifesting as a well-defined region of hypoattenuation in an arterial 
distribution (Figure 4), although small lesions can be difficult to identify on rou-
tine imaging due in part to unmyelinated brain masking subtle hypoattenuation. 
Additionally, certain areas in the posterior temporal and occipital cortices can 
have low attenuation on CT in normal infants and the risk for false positive 
 classification of stroke merits circumspection. The “hyperdense artery sign” rep-
resenting acute intraluminal thrombus is infrequently observed in neonates, and 
may relate to varying clot compositions, including potential differences in the 
presence, concentration, or composition of red blood cells and iron within the 
heme moiety of hemoglobin (45).

On MRI, acute infarcts demonstrate reduced diffusivity within minutes, exhib-
iting high signal on DWI and low computed diffusivity on ADC maps 
(Figure 5) (46). Diffusivity remains reduced for about 6 days, peaking at about 
3 days, before pseudonormalization occurs, with diffusivity then increasing to 
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above normal by the second week (47–50). Timing of DWI changes can be 
affected by the age of the patient, size of the stroke, and how quickly collateral 
blood flow is recruited. DWI also detects early or pre-wallerian degeneration in 
infants (also referred to as “acute network injury”), characterized by injury to the 
antegrade white matter tracts following acute infarct and manifests as reduced 
diffusivity in white matter pathways affected by the infarction within a few days 

Figure 1. Acute and chronic fetal infarctions. 29 weeks of gestation fetus with a chronic stroke 
in the right hemisphere. (A) Axial HASTE (Half Fourier Singleshot Turbo Spin-Echo) and 
(B) Gradient Recall Echo (GRE) images showing unilateral enlargement of the right lateral 
ventricle, with periventricular white matter loss (white arrow) and linear blood staining 
(black arrowhead). 21 weeks of gestation fetus with congenital heart disease with acute 
stroke in the right hemisphere. (C) Axial DWI and (D) ADC map showing areas of reduced 
diffusion in the left ACA and MCA territories (black arrow) with questionable infarct in the 
right MCA territory (white arrowhead). Case courtesy of Dr. Tamara Feygin, Department of 
Radiology, Children’s Hospital of Philadelphia.
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of the injury (Figure 5) (51). Common pathways affected by acute network injury 
include the corpus callosum, thalamus, and descending corticospinal tract. When 
seen along the corticospinal tracts, acute network injury is highly predictive of 
poor motor outcomes (52, 53).

Due to the immaturity of the brain, MRI appearance of the infarct can evolve 
uniquely in infants. In newborns, the combination of cytotoxic and vasogenic 

Figure 2. Three-day-old girl with chronic encephalopathy. Pregnancy complicated by maternal 
HELLP (H: Hemolysis, EL: elevated liver enzymes, LP: low platelet count) syndrome. Sagittal 
T1- (A) and coronal T2-weighted images (B) show microcephaly and bilateral chronic 
MCA-territory infarctions. Case courtesy of Dr. Tamara Feygin, Department of Radiology, 
Children’s Hospital of Philadelphia.

Figure 3. Coronal brain US in ex-premature 31-week boy. A. At 11 days of life and (B), 2 weeks 
later showing evolution of periventricular infarction. Small arrow in (A) indicates an 
ill-defined subacute infarction in the left frontal white matter. Arrowhead in (B) indicates 
evolution of infarcted area into the focally cystic encephalomalacia. Case courtesy of 
Dr. Tamara Feygin, Department of Radiology, Children’s Hospital of Philadelphia.
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edema results in increased signal in the cortex and white matter on T2-weighted 
imaging 24–48 hours after infarct (54). As the signal increases within the cortex, 
it becomes isointense to the underlying unmyelinated white matter, known as the 
“missing cortex sign” (55). In infants, infarcts may be difficult to see on FLAIR 
images due to unmyelinated white matter. In the subacute phase (1–3 weeks), 
infarcted gray matter may show high signal intensity on T1-weighted images 
because of petechial hemorrhage, lipid laden microglia, high protein content, and 
manganese accumulation related to astrocytes (“cortical highlighting”) and low sig-
nal intensity on T2-weighted images because of petechial hemorrhages, lipids, 
and calcification (46, 56–58). Contrast enhancement of the infarct is typically 
seen related to neovascularization with immature “leaky” vessels lacking well-
formed blood brain barriers (55). Earlier phases of contrast enhancement follow-
ing blood brain barrier ischemia, developing several hours after infarction, are 
commonly uncaptured due to persistent vascular compromise, but may rarely be 
identified if reperfusion occurs early (59, 60).

 The chronic stage (beginning by 3 weeks) is characterized by volume loss and 
varying degrees of gliosis. The final appearance of the infarct is related to the tim-
ing of insult, the maturity of the infarcted brain, and the degree of astrocytic 
response to injury, and may span from none (infarct earlier in gestation) to mild 
(infarct later in gestation and early prenatal period). If injury occurs before 
20 weeks of gestation, schizencephaly will often develop, with the cleft lined by 

Figure 4. A 14-day-old boy with seizures. Axial non-contrast CT image showing unilateral 
diffuse hypodensity in the right PCA distribution (arrows). Case courtesy of Dr. Tamara 
Feygin, Department of Radiology, Children’s Hospital of Philadelphia.
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dysplastic gray matter. Porencephaly results when the insult occurs between 
approximately 20 and 24 weeks from liquefactive necrosis, appearing as a smooth-
walled, fluid-filled cavity isointense to CSF that may or may not communicate 
with the ventricular system. The surrounding white matter typically demonstrates 
normal signal. Encephalomalacia and gliosis results when the insult occurs in the 
late second trimester and onward, as the brain is able to mount an astrocytic 
response to injury, and demonstrates surrounding parenchymal signal abnormal-
ity, best depicted on FLAIR (Figure 6). 

While MRA is technically more challenging to perform in neonates due to 
smaller blood vessels and lower blood velocities, it can help define the site of 
 stenosis or large vessel occlusion and define anatomic variation non-invasively 
(61–64). Most neonates (62%) with AIS have been shown to have findings on 
MRA, including occlusion or thrombus-type flow defect (Figure 3) (65). 
Additionally, some neonates show increased flow in insular MCA branches, which 
has been proposed to be related to early dissolution of clot with loss of autoregula-
tion and hyper-perfusion (54).

Figure 5. Acute neonatal arterial ischemic infarction in a three-day-old girl with seizures. Axial 
DWI (A) and (B), and axial ADC (C) images show extensive area of reduced diffusion in the 
left MCA territory (arrows). Arrowheads (A, B, C) indicate pre-Wallerian degeneration in the 
posterior limb of the internal capsule and left cerebral peduncle along the corticospinal 
tract. D. 3D time-of-flight MRA shows abrupt absence of flow in the left MCA (arrow). Axial 
T2-weighted image (E) at 5-month follow-up shows extensive encephalomalacia and volume 
loss in the left MCA territory. Case courtesy of Dr. Tamara Feygin, Department of Radiology, 
Children’s Hospital of Philadelphia.
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Perfusion imaging is not routinely used in neonatal stroke for technical rea-
sons––dynamic susceptibility contrast-enhanced (DSC) imaging requires a large, 
generally power-injected contrast bolus and noncontrast arterial spin labeling 
(ASL) perfusion is technically challenging in neonates in part due to the faster 
heart rate––and because it does not presently alter patient management in most 
cases, although paradigms for use of neonatal perfusion are emerging (19). ASL 
can be used to assess perfusion without the need for intravenous contrast, with 
pseudocontinuous tagging schemes (pCASL) and ideally flexible prescription of 
post-label delays preferred (66). Compared to the core and penumbral hypoper-
fusion seen in older children and adults, neonates often demonstrate hyperperfu-
sion within the region of decreased ADC (Figure 7), with little evidence of 
adjacent hypoperfusion, which may be related to reperfusion or seizure- associated 
neuronal hyperexcitability (67). Hypoperfusion may be more common in venous 
stroke (67).

Hemorrhagic stroke

The incidence of perinatal hemorrhagic stroke is approximately 1 in 6000–9000 
live births (68–71). Compared with PIS, fairly little is understood about its risk 
factors, etiologies, and outcomes. While intraventricular hemorrhage in prema-
ture neonates originates from a fragile germinal matrix, the mechanisms respon-
sible for late preterm and term hemorrhagic strokes remain unclear, and the 
majority are described as idiopathic (69, 70). In term infants, isolated intraven-
tricular hemorrhage is less common than intraparenchymal hemorrhage and, if 
present, may be the result of CSVT (72–74). Causes of hemorrhagic stroke include 
congenital and acquired coagulopathy, CSVT (particularly cerebral medullary 
veins thrombosis), vascular malformations, and hemorrhagic conversion of isch-
emic infarct (arterial or venous) (69). Hemorrhagic disease of the newborn is 
more prevalent in infants who have not received vitamin K at birth and in infants 

Figure 6. Presumed perinatal ischemic stroke (PPIS). A 10-month-old boy presented with early 
hand preference and medically refractory epilepsy. Axial T2-weighted (A) and coronal FLAIR 
(B) images demonstrate chronic infarction with liquefactive changes in the left MCA territory 
(white arrow) suggesting early injury, with associated decreased perfusion (black arrow) on 
ASL (C). Case courtesy of Dr. Tamara Feygin, Department of Radiology, Children’s Hospital of 
Philadelphia.
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of mothers taking blood thinning medications, such as warfarin, phenytoin, or 
barbiturates, during pregnancy (75, 76). Acquired coagulopathies include neona-
tal alloimmune thrombocytopenia or disseminated intravascular coagulation. 
Some genetic arteriopathies associated with both fetal and neonatal hemorrhagic 
stroke include collagen IVA and JAM3 mutations, which can appear identical to 
hemorrhagic venous infarctions (77–84). In addition to hemorrhages occurring 
later in life, fetal and neonatal patients may present with subpial hemorrhages 
(Figure 8), which may be related to local venous thrombosis or birth trauma 
(85–87). In these cases, blood is seen between the pia mater and the displaced 
brain parenchyma, often accompanied by venous infarction and subarachnoid or 
parenchymal blood.

Although NCCT is sensitive for acute hemorrhage, MRI is the imaging modality 
of choice when clinically feasible due to the diagnostic accuracy and lack of ioniz-
ing radiation. MRI can diagnose hemorrhage, differentiate hemorrhagic transfor-
mation of arterial or venous infarction from primary hemorrhages, and is well-suited 
to evaluation of the brain parenchyma for an underlying mass or large vascular 
malformation. SWI uses magnitude and phase data to create high- resolution 
images to visualize intravascular venous deoxygenated blood and blood break-
down products and can help differentiate hemorrhage from calcification (88). The 
paramagnetic effects of blood products contribute to the heterogeneity of diffusion 
characteristics. Hemorrhage varies from large subcortical hematomas to petechial 
hemorrhages within edematous brain parenchyma (89, 90). 

Catheter angiogram is rarely used in the setting of hemorrhagic infarct, except 
in the diagnosis and management of vascular malformations, due to demand for 
high operator technical expertise and the attendant risks to manipulation of small, 
fragile neonatal vessels (91). Repeat imaging once blood products have resorbed 

Figure 7. Neonatal arterial ischemic infarction. DWI (A) demonstrates reduced diffusion in the 
right PCA territory (white arrow), from acute infarct, as well as the callosal splenium (white 
arrowhead), representing acute network injury, with increased perfusion on Arterial Spin 
Labeling (ASL) perfusion (black arrow) (B). Case courtesy of Dr. Tamara Feygin, Department 
of Radiology, Children’s Hospital of Philadelphia. 
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(approximately 3 months) may be helpful to exclude subtle underlying pathology 
such as arteriovenous malformations or tumor (92, 93).

Venous infarct/CSVT 

Pediatric venous infarcts secondary to CSVT/thrombosis of medullary veins occur 
most often (more than 40%) in the neonatal period (88, 89). The reported inci-
dence of venous thrombosis is 2.6 per 100,000 (1, 88, 90). Approximately 
50–60% percent suffer venous infarction, of which about 75% are  hemorrhagic (21). 
The suggested pathophysiology of venous thrombosis encompasses “Virchow’s 
triad”, including: stasis of blood flow, injury to the endothelial lining, and hyper-
coagulability of blood components (94). As in perinatal AIS, multiple risk factors 
in both the mother and fetus may play a role in neonatal venous thrombosis, 
including gestational diabetes, preeclampsia, chorioamnionitis, neonatal sepsis, 
dehydration, difficult or instrumented delivery, and underlying prothrombotic 
state (95, 96). Venous thrombosis should be suspected in the setting of an unex-
plained hemorrhage or a brain parenchymal injury that does not fit an arterial 
vascular distribution, in the absence of trauma or infection (73, 97). Venous sinus 
occlusion initially reduces venous outflow with resultant vasogenic edema, and if 
adequate collateral venous outflow is not established, venous infarction will 
ensue (98). CT is sensitive for detecting hemorrhage, although the risk of ionizing 
radiation should be considered. On CT, venous infarcts are usually poorly delim-
ited, hypodense, or mixed-attenuation, likely related to the presence of cerebral 
edema and hemorrhage, without respecting arterial territories (Figure 9) (42). The 
thrombosed vein may be seen overlying the infarction as a curvilinear region of 
high attenuation, depending upon the age of the thrombus. Infarctions occur in 
the territory of thrombosed venous, with parasagittal injuries in superior sagittal 
sinus thrombosis, temporal lobe hematomas in transverse sinus thrombosis, and 
thalamic hemorrhage in vein of Galen and straight sinus thromboses (99). 

Periventricular venous infarction occurs in preterm infants as a consequence of 
germinal matrix hemorrhage, typically prior to 32 weeks of gestation (11). Germinal 
matrix hemorrhage may secondarily cause compression of the medullary veins, 
resulting in focal venous infarction in the periventricular white matter  (100). 

Figure 8. Subpial hemorrhage. A 17-day-old female with hypoplastic left heart syndrome 
status post Stage I Norwood with BT shunt. Coronal sonographic images (A) shows a 
heterogeneous lesion in the right temporal lobe. Axial non-contrast CT (B) shows the lesion 
to be a mixed intensity peripheral lesion in the right temporal lobe. T1- (C) and T2-weighted 
(D) images demonstrate a subpial hematoma in the right temporal lobe.
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Primary thrombosis of deep medullary vein can also be seen in full term neonates 
with congenital heart disease or with dehydration/metabolic acidosis, in the 
absence of germinal matrix hemorrhage, hypothesized to be related to hypoperfu-
sion or impaired cerebral blood flow, and resulting in periventricular white matter 
venous infarct, often hemorrhagic (101–103). The “iris sign,” a fan-shaped appear-
ance of restricted diffusion or hemorrhage, most prominent in the deep frontal 
white matter, is a pathognomonic imaging sign of medullary vein thrombosis 
(Figure 10) (104). Delayed findings of periventricular venous infarction include 
periventricular white matter volume loss sparing the cortex and basal ganglia, focal 
irregularity of the ventricular margin, and hemosiderin staining (105). If spontane-
ous venous thrombosis is identified, the patient should be evaluated for disorders 
of coagulation (30, 97, 106–113). 

On MRI, routine T1- and T2-weighted images should be obtained, in addition 
to DWI, GRE or SWI images, and MRV. Acute venous thrombus (<7 days old) 
exhibits marked hypointensity with apparent expansion of the affected sinus on 
GRE or SWI (114). Subacute thrombosis (6 - 15 days) demonstrates high inten-
sity on T1-weighted images (115). Multiple MRI techniques have been developed 
to detect venous thromboses, including 2D Time-of-Flight and phase contrast 
angiography, both of which are performed without the use of gadolinium, as well 
as contrast-enhanced techniques. Contrast-enhanced MRI is more accurate for 
diagnosing CSVT than non-contrast-enhanced flow-related and native contrast 
MR sequences, likely due to superior performance where flow-related enhance-
ment is diminished due to extremely slow flow or where flow is parallel to the 
imaging plane on 2D time-of-flight sequences (116).

In neonates with venous thrombosis, follow-up MRI/MRV may be performed 
between age 6 weeks and 3 months following initiation of anticoagulation (96). 

Figure 9. Venous thrombosis and hemorrhagic venous infarction. A three-day-old girl with right 
sided seizures. Axial non-contrast CT images show left frontal hemorrhagic venous infarction 
(arrow) and hyperdense clot in the superior sagittal sinus (arrowheads). Case courtesy of 
Dr. Tamara Feygin, Department of Radiology, Children’s Hospital of Philadelphia.
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Follow-up imaging may guide therapy, since persistence or extension of the clot 
may lead to extension of full-dose anticoagulation, while resolution of the clot 
may prompt discontinuation of therapy. If anticoagulation is not initiated, short-
term follow-up within one week, or sooner if symptoms worsen, can be consid-
ered and may lead to the subsequent initiation of treatment (19).

STROKE MIMICS

Clinically diagnosing stroke in neonates can be difficult due to the non-localizing 
and nonspecific signs of stroke, such as lateralized weakness after seizure or 
ataxia, are often overlooked (117). Other neurologic diagnoses can have a similar 
presentation, including congenital and acquired metabolic disorders, hypoglyce-
mia, in addition to epilepsy, intracranial infection or inflammation, focal lesions, 
and drug toxicity (Figures 11 and 12) (118, 119). 

TREATMENT

Unlike in adults, no standard acute therapy exists for neonatal AIS, since, by the 
time of presentation, the infarct is often well established, and the affected artery is 
often patent (120). Management is therefore focused on neuroprotection, includ-
ing seizure control (121). Early seizures often cease within days of onset and some 
children can be weaned from antiepileptic medications prior to discharge. 
Experimental neuroprotective therapies, including erythropoietin and stem cell 
therapy, show promising results (122, 123). Anticoagulation is used in patients 
with CSVT who do not have substantial intracranial hemorrhage. In neonates, 
CSVT often resolves without aggressive therapy and without neurologic residua. 

Figure 10. Medullary vein thrombosis and periventricular venous infarctions. Ex-premature at 
32 weeks of gestation neonate, axial T2-weighted image (A) shows intraventricular 
hemorrhage (Black arrowhead), medullary veins thrombosis, and periventricular venous 
infarctions (arrows). A 7-day-old full-term neonate with severe dehydration. Sagittal 
T1-weighted (B) and axial GRE (C) images shows acute thrombus in the straight sinus 
(black arrow) and torcular and extensive thrombosis of the deep periventricular medullary 
veins (white arrowheads). Case courtesy of Dr. Tamara Feygin, Department of Radiology, 
Children’s Hospital of Philadelphia.
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However, since about 30% of CSVTs propagate and result in worsening infarction, 
the risks and benefits of preventing further infarction and hemorrhage by antico-
agulation and worsening the existing hemorrhage by withholding treatment must 
be carefully weighed.

PROGNOSIS

Over half of patients affected by perinatal stroke will have long-term neurological 
disabilities (124). Motor deficits occur in up to 60% of the cases, with hemiplegic 
cerebral palsy being the most common outcome. The upper extremity is often 

Figure 11. A 20-day-old boy with classic-type of maple syrup urine disease (MSUD). Axial DWI 
images showing symmetric pattern of acute restricted diffusion in the basal ganglia, thalami, 
brainstem, characteristic of exacerbation of MSUD. Case courtesy of Dr. Tamara Feygin, 
Department of Radiology, Children’s Hospital of Philadelphia.

Figure 12. A three-weeks-old girl with seizures and hypoglycemia. Axial CT (A) and axial 
DWI (B), and ADC (C) MR images show low density and loss of gray-white matter 
differentiation in the posterior half of the cerebral hemispheres on CT and reduced diffusion 
on MRI. The extent of the signal abnormality is much greater than usually seen with 
watershed infarction in the border zone between the MCA and PCA. Case courtesy of 
Dr. Tamara Feygin, Department of Radiology, Children’s Hospital of Philadelphia.
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more involved than the leg in arterial lesions, with the reverse true for periven-
tricular venous infarction. Poor motor outcome is associated with basal ganglia 
involvement and with periventricular venous infarction (9). Other neurodevelop-
mental problems include recurrent seizures, cognitive disabilities, and behavioral 
disorders (4). Seizures, poor cognition, and delayed development are associated 
with cortical involvement (9, 125). Patients with larger infarctions or infarctions 
involving eloquent regions of cortex have larger residual deficits than do those 
with smaller infarcts and those involving less eloquent regions (126, 127). In 
neonates, hemiparesis typically does not develop unless the cortex, basal ganglia, 
and internal capsule are all affected, whereas later in childhood, hemiparesis may 
develop even if only one or two of those sites are affected (128). In the absence of 
epilepsy, many functions normally performed by the injured regions of the brain 
may be subsumed in regions that have been spared due to neuroplasticity; 
although, when epilepsy develops, cognitive recovery may be impaired (127). 
Although congenital hemiplegia can result from prenatal periventricular venous 
infarctions, these patients are less likely to present with seizures or cognitive 
delays due to sparing of the cortex (129, 130). Language development potentially 
maintains a relatively normal trajectory due to neuroplasticity of the developing 
brain. Since the pregnancy-related circumstances that lead to perinatal stroke 
resolve, the risk of recurrent stroke in neonates is considered comparatively low 
(0–1.8%), except in neonates with congenital heart disease or other predisposi-
tions (14%) (4, 131). Important imaging features indicative of poor long-term 
neurological outcome may be demonstrated by reduced diffusion in the descend-
ing white matter tracts, preceding Wallerian degeneration, while notably T1- and 
T2- weighted sequences often fail to depict this early injury in the maturing brain.

CONCLUSION

A significant cause of morbidity, perinatal stroke results from a combination of 
maternal, obstetric, anatomic, and genetic factors. Understanding the unique eti-
ologies and presentation is important for accurate and timely diagnosis. The use 
of appropriate neuroimaging is essential for making the correct diagnosis, direct-
ing treatment, excluding alternative diagnoses, and determining prognosis. As the 
understanding of the mechanism of neonatal stroke progresses and treatments 
improve, neuroimaging will continue to be an essential component of patient 
management and will evolve. 
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