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Abstract: Early detection of amyotrophic lateral sclerosis (ALS) is critical for 
 better therapeutic outcomes. The median time from symptom onset to diagnosis 
of ALS is 11 months, with a range of 6-21 months. Given that the median life 
expectancy is three years, it is important to shorten the diagnostic journey, initiate 
therapies promptly, and facilitate clinical research participation. Biomarkers may 
be the key to enhancing early diagnosis, tracking disease progression, and testing 
target engagement of promising therapeutics. Clinically valid biomarkers for ALS 
are currently lacking, and research has been ongoing to identify appropriate 
 biomarkers. Ideal biomarkers should be minimally invasive, such as blood. In this 
chapter, we review our current understanding of blood-based biomarker research 
in ALS and discuss future directions. 
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is mostly a sporadic disease that leads to 
 progressive degeneration of the cortical, bulbar, and spinal motor neurons (1–3). 
The median age of onset of sporadic ALS is 55, with a male predominance 
(1.5:1) (2). Diagnosis is based on upper motor neuron signs (spasticity, increased 
tendon reflexes) and lower motor neuron dysfunction, which may be supported 
by electrophysiological findings (1). Weakness and atrophy begin either in the 
bulbar region or in the limb muscles in about a third of cases and spread to the 
contralateral limb. Respiration is usually affected late in the disease and up to 50% 
may have evidence of frontotemporal dementia (FTD). Patients with older onset 
age, bulbar dysfunction, greater clinical disability, and low respiratory function 
have the poorest prognosis (1, 2). The median life expectancy from symptom 
onset is approximately three years, with a five-year survival rate of 20–25% and a 
20-year survival rate of 5% (2). Most cases are sporadic, but 10–15% are of auto-
somal dominant inheritance. 

Biomarkers can serve as tools for early diagnosis, predictors of prognosis, 
indicators of target engagement or therapeutic response, and enablers of discovery 
of future therapeutics for ALS. Biomarker development efforts for ALS have been 
hampered by a number of issues including small sample size, methodological 
variation, and lack of standardized techniques. On average, time from symptom 
onset to clinical diagnosis spans 11 months and this time is critical for life-saving 
interventions and therapies (4). Biomarkers could hasten diagnosis to allow for 
earlier introduction of therapies. Prognostic biomarkers are critical due to the 
heterogeneous nature of ALS and could facilitate prediction of how a subgroup of 
ALS subjects might progress or respond to a therapy. The low prevalence of ALS 
is an important issue that negatively affects clinical trials and biomarker 
development (5–7). In general, recruitment to clinical trials in rare diseases like 
ALS is a challenge. In ALS, several factors reduce the likelihood of participation in 
clinical trials including delay or uncertainty in diagnosis, slow progression, 
respiratory compromise, short life expectancy, and in some cases, dislike of being 
assigned to the placebo group. Discovery of diagnostic, prognostic, and target-
engagement biomarkers are essential for accelerating the research and development 
of ALS therapeutics. In this chapter, we provide an overview of our current 
understanding of blood-based biomarkers for ALS.

POTENTIAL BIOMARKERS FOR ALS

The body of knowledge on biomarkers of ALS is limited. Ideally, a biomarker for 
ALS should be easy to quantify, minimally invasive, specific, reliable with an 
uncomplicated measurement process, and reproducible across multiple 
laboratories (8). Figure 1 summarizes the main areas of biomarker research in 
ALS, all of which target pathological findings in the disease. These aim to measure 
neurodegeneration, neuroinflammation/systemic inflammation, oxidative stress, 
excitotoxicity, mitochondrial function, and protein aggregation/proteostasis. 
Tables 1 and 2 summarize the overall findings of blood-based measures (9–30). 
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Figure 1. Biomarker Focus in ALS. Areas of biomarker development are focused on pathological 
findings in ALS. These include neuroinflammation/systemic inflammation, mitochondrial 
dysfunction, neurodegeneration, and protein aggregation/proteostasis. Created with BioRender.com

TABLE 1 Blood Based Biomarker Studies 

Target Source Sensitivity/Specificity n Source

TDP-43 Plasma NA 319 (9)

Exosome miRNA Plasma NA 40 (10)

Exosome proteomics Plasma NA 22 (11)

Proteomics Plasma 58% and 90% 295 (12)

Glutamate Uptake Platelet NA 82 (13)

Mito-Respiration Platelet NA 15 (14)

Serotonin Platelet NA 114 (15)

NfL Serum/Plasma 84–100% and 76–97% 248 (16)

NfH Serum/Plasma 61–80%,72.1–83.7% 157–331 (16–18)

Cytokines Serum/Plasma NA 87–183 (19–21)

Ferritin Serum/Plasma NA 104–694 (22–24)

Creatine Kinase Serum/Plasma 63.8% and 54.3% 216–834 (22, 25)

Non-coding RNA Whole Blood 73.9–93.7% 88 (26)

Chromosomal Confirmation Whole Blood 83.33–87.5% 58 (27)

Microarray analysis Whole Blood 87% 1,116 (28)

Immune Cell Profiling Whole Blood NA 80 (29)

T-regs Whole Blood 73.9–76.9%, 69.6–73.1% 217 (30)

http://BioRender.com
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In  this section, our current knowledge on biomarkers for both familial and 
sporadic ALS are discussed. 

C9ORF72 protein 

The most common genetic abnormality in frontotemporal lobar degeneration 
(FTLD) and ALS is the expansion of GGGGCC (G4C2)n repeat in an intron of 
chromosome 9 open reading frame72, depicted as C9ORF72 (31, 32). GGGGCC 
repeat expansions are translated through a repeat associated non-ATG (RAN) 
mechanism that does not require the AUG start codon (33). This non-canonical 
type of protein translation takes place without frame shifting or RNA editing, 
resulting in production of dipeptide repeat (DPR) proteins. There are five known 
DPR proteins, Poly-GA, Poly-GP, Poly-GR, Poly-PA, and Poly-PR (34, 35). These 
DPR proteins display different profiles across neurodegenerative diseases and 
could be potential biomarkers. Poly-GA proteins are associated with inclusion 
bodies when TDP-43 aggregation is lacking (TDP-43-negative inclusions) (35). In 
the neurons of post-mortem brain, Poly-GA protein aggregates are surrounded by 
TDP-43 aggregates (36). Poly-GR and Poly-PR DPR proteins cause neurodegen-
eration in drosophila without TDP-43 aggregation (37). Some studies suggest 
Poly-GA aggregation can induce TDP-43 phosphorylation and aggregation (35). 
Thus, the precise role of DPR proteins in TDP-43 aggregation has not yet been 
resolved. The G4C2 repeats can be measured in blood (38) and could serve as a 
blood-based biomarker for ALS. For familial ALS cases, peripheral blood lympho-
cyte levels of mutated SOD1 and mutated C9ORF72 were used to measure target 
engagement in a clinical trial. Although primary outcomes of clinical trials are 
focused on cerebrospinal fluid (CSF)-based biomarkers, blood cell profiles appear 
to be changing as well. For example, SOD1 levels were reduced in peripheral 
blood lymphocytes in a pyrimethamine clinical trial (39). Poly-GP repeats in 
C9ORF72-positive ALS cases are detected in peripheral blood mononuclear cells 

TABLE 2 Blood based biomarkers based on ALS categories (7)

Familial ALS Biomarkers Sporadic ALS Biomarkers

TDP-43 TDP-43

FUS FUS

C9ORF72 Neurofilaments

Extracellular RNA

Stress granules

Progranulin

TNF-a and range of cytokines

Metabolites (i.e., creatine kinase, platelet serotonin)

Mitochondrial biomarkers (i.e., cytochrome oxidase, mitochondrial 
respiration rate, reduced Complex-II activity)
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(PBMCs) (39). The ability to detect these in blood is promising for target engage-
ment in clinical trials with therapies aimed at restoring proteostasis. 

Neurofilaments 

Neurofilaments function to maintain axon structure and transport (40). 
Neurofilaments exist in three isoforms; high-molecular-weight subunit (180–200 
kDa [NfH]), middle-molecular-weight subunit (130–170 kDa [NfM]), and low 
molecular-weight-subunit (60–70 kDa [NfL])—all are exclusively expressed in 
neurons (41). Neurofilaments are considered surrogate biomarkers of neuronal 
degeneration (42). Aberrant NfL accumulation is observed in both familial and 
sporadic ALS patients (43–47). CSF levels are considered better than blood levels 
for the diagnostic confirmation of ALS (48). NfL levels increase during early stages 
of ALS (18). Further studies show NfL increases as early as 12 months prior to 
symptom onset in ALS and could be a predictive biomarker (49). Single molecule 
array technology or SIMOA has enabled the quantification of NfL in serum and 
plasma at pictogram/mL sensitivity (50, 51). NfL is widely used as a biomarker of 
ALS. NfL levels in serum are higher in ALS subjects and correlate well with CSF 
measurements (52). Overall, NfL strongly correlates with survival, but levels are 
largely steady over time and show no correlation with functional diagnostic scores 
such as the El Escorial Criteria (7, 16, 53). Using the SIMOA assay, serum NfL 
may be not only a clinically validated prognostic biomarker for ALS but may also 
be a biomarker of treatment effect (54). Plasma neurofilament heavy subunit 
(pNfH) has shown variable results across studies (7, 53). One study showed ele-
vated pNfH levels predict faster progression at 4 months while another study 
showed it was associated with higher mortality at 12 months (18). Other studies 
show pNfH levels are neither steady nor reliable longitudinally and are not cor-
related with disease progression. Overall, the rate of change in blood pNfH is not 
reliable to predict disease progression and its utility as a diagnostic marker remains 
to be realized (16–18).

TDP-43 

Transactive response (TAR) DNA binding protein 43 (TDP-43) regulates gene 
transcription, mRNA splicing, stability, and translation (55). Mutations in TDP-43 
cause familial forms of ALS and TDP-43 aggregates are found in most ALS subjects 
on autopsy (56–58). TDP-43 and its post-translational modifications can be 
measured across numerous biofluid and could serve as a biomarker for ALS 
(59–65). Within the ALS field, CSF TDP-43 measurements are preferred over 
blood-based samples. However, lumbar punctures are invasive, and patients are 
less likely to agree to this procedure for CSF sampling. Mass spectrometry analysis 
of post-mortem brain tissue from ALS subjects revealed a number of TDP-43 
post-translational modifications including hyperphosphorylation, acetylation, 
ubiquitination, deamidation, and oxidation (66). Hyperphosphorylation (67, 68) 
and lysine acetylation increase TDP-43 aggregation (69). Phosphorylation of 
TDP-43 between amino acids 220-414 is suspected to prevent TDP-43 degradation 
and increase its expression levels (70). Plasma TDP-43 is higher but is unchanged 
in serum (9). TDP-43 is mis-localized in cytoplasmic fractions of PBMCs while 
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overall expression of TDP-43 is not changed. TDP-43 levels in PBMCs correlate 
with disease burden over time (62, 71, 72). Longitudinal studies showed that 
TDP-43 plasma levels are highly variable over time, and between individuals (7). 
These variable findings could be a consequence of blood handling, hemolysis, 
and coagulation. Classification of TDP-43 expression and post-translation 
modifications in the blood of ALS subjects could be used as a biomarker for 
detection/diagnosis and therapeutic outcomes.

Extracellular RNAs, exosomes and stress granules 

Extracellular RNAs are found outside the cells in extracellular vesicles (EVs) 
such as exosomes, micro vesicles and apoptotic bodies, or RNA-binding 
 proteins. Their association with lipids and proteins protect them from degrada-
tion and allows for their measurement. Extracellular RNAs are found in many 
forms, such as tRNA, mRNA, microRNA (miRNA), and circular RNA (circRNA) 
within EVs. tRNA fragments may be disease-specific and should be considered 
for biomarker development (73, 74). Next generation sequencing of neural 
enriched exosomes from plasma of ALS patients identified eight miRNAs that 
could discriminate ALS from healthy subjects (10). circRNA can be detected in 
extracellular fluid (75–78). The function of circRNA is largely unknown but 
regulation of gene expression is a likely function (79). High levels of extracel-
lular circRNA in CSF suggest that the central nervous system (CNS) may secrete 
them (80–82). The potential of circRNA as a biomarker in ALS was recently 
reviewed (83). 

Exosomes are 50-100 nm extracellular vesicles released from cells. In blood, 
exosomes are released by erythrocytes, platelets, endothelial cells, and lympho-
cytes (Table 3). Proteomic analysis of exosomes from ALS and Parkinson ’s disease 
(PD) subjects was able to discriminate between these two diseases (11). Exosomes 
derived from blood, serum, or plasma show high contamination of blood  proteins, 
which decreases the specificity of proteomic analysis (84). 

Stress granules are cytoplasmic RNA complexes that form in response to envi-
ronmental stress. Several ALS-associated proteins, such as FUS (85), TDP-43(86), 
Ataxin2 (87), and SOD1 variants (88) have been identified as integral compo-
nents of stress granules. Currently, measurements of stress granules are limited to 
cell-based assays. 

TABLE 3 Exosome Defining Markers

Exosome Donor Cell Marker

Platelets CD31, CD41, CD61, CD42b, GPIIb-IIIa

Endothelial cells CD31, CD42B, CD51, CD105

Monocytes CCR2, CD14, CD41a

Neutrophils CD43, CD16

Lymphocytes CD4, CD8

Erythrocytes CD235a
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Progranulin

Progranulin (PGRN) is a cysteine-rich secretory protein involved in cell prolifera-
tion, inflammation, and tumorigenesis (89). Brain progranulin is implicated in 
neuronal survival as well as pathogenesis of neurodegenerative diseases (90, 91). 
Progranulin levels can be measured in both CSF and serum of FTD, ALS, and 
Alzheimer’s disease patients (92). Although no comprehensive study is available 
to compare progranulin levels in brain with CSF and serum values (92), blood 
levels are 35 times higher than CSF in ALS subjects with FTD (93). This suggests 
blood measures of progranulin could serve as a biomarker in ALS. 

RNAseq and proteomics 

Microarray analysis of blood cells has allowed for machine learning and identifica-
tion of ALS subjects from the healthy (28) with an accuracy of 87%. Gene expres-
sion changes observed in ALS blood cells include increased neutrophil related 
genes with decreased erythroid lineage-specific genes. The expression of copper 
chaperone of superoxide dismutase (CCS) and other mitochondrial respiration-
linked genes were significantly associated with survival in ALS subjects (28). 
Further, circulating non-coding RNAs have shown a 73.9-93.7% accuracy in 
 discriminating the healthy from ALS populations (26). Proteomic analysis of ALS 
blood samples shows changes in proteins involved in the regulation of metabo-
lism and mitochondrial function, particularly carbohydrate, creatine, and lipid 
metabolism (12). Nitric oxide and reactive oxygen species production are 
 upregulated in macrophages of ALS patients (94). Protein expression of TDP-43, 
cyclophilin A, and ERp57 in PBMCs were found to associate with disease 
 progression in ALS subjects. A multiprotein expression profile in PBMCs could 
discriminate ALS from healthy controls with 98% power, and discriminate ALS 
from other neurologic disease with 91% power. The multiprotein expression 
 profile was further validated in the G93A SOD1 ALS mouse model using both 
PBMCs and spinal cord tissue (62). Chromosomal conformation in blood samples 
can also discriminate between ALS and healthy subjects with a sensitivity of 
83.33–87.5% and specificity of 75.0–76.92% (27). 

Inflammatory markers 

Cytokine expression in blood is altered in ALS subjects but do not change over 
time. Tumor necrosis factor α (TNF-α) and downstream effector interleukins are 
increased in ALS subjects (19–21). Data from 25 independent studies examining 
serum and plasma levels of cytokines show that TNFα, IL-1β, IL-6, IL-8, TNF 
receptor 1, and vascular endothelial growth factor (VEGF) are elevated in ALS (7). 
Other inflammatory markers such as complement components, C reactive pro-
tein, and chitotriosidase have shown equivocal association with ALS (7). Immune 
cell profiling has shown that higher levels of lymphocytes, monocytes, and T cell 
subtypes are associated with longer survival times (29). CD4+CD25High T-regs 
are lower in ALS patients (30, 95), and is a measure of ALS progression. Overall, 
inflammatory markers have not shown specificity for ALS diagnosis and no asso-
ciation with disease progression has been established yet. 



Wilkins HM et al.112

Metabolites 

Serum and plasma creatine kinase are elevated in ALS subjects and correlate with 
the revised ALS functional rating scale (ALSFRS-R) score and other functional 
outcomes in ALS (22, 25). Plasma and serum ferritin levels are higher in ALS 
subjects. In some studies, ferritin levels were associated with survival and in 
others it did not (22–24). Glutamate uptake is impaired in platelets and astrocytes 
derived from ALS subjects (13). Furthermore, platelet serotonin levels are reduced 
in ALS subjects and is associated with an increased risk of death (15). 

Mitochondrial biomarkers 

Mitochondrial dysfunction is observed across numerous tissues in ALS subjects. 
Spinal cord mitochondrial DNA shows higher levels of mutation, and reduced 
citrate synthase, complex I+III, II+III and IV activities (96). Induced pluripotent 
stem cells (iPSCs) derived from ALS patient fibroblasts show reduced mitochon-
drial function when differentiated into motor neurons. iPSC-derived ALS motor 
neurons had reduced ATP production and mitochondrial respiration and increased 
glycolytic flux (97). Muscle samples from ALS patients show a large number of 
cytochrome oxidase-negative fibers, and some of these patients had reduced 
enzyme activity (98, 99). Two separate studies of ALS muscles showed reduced 
mitochondrial respiration and changes in mitochondrial DNA (99, 100). Tissues 
outside of the spinal cord and muscle also show changes in mitochondrial 
 function. Fibroblasts from ALS patients show reduced basal, uncoupled, and ATP-
linked respiration (101). Hepatic mitochondria from ALS subjects show ultra-
structural changes with enlarged mitochondria, inclusions, and disorganized 
structure (102). Lymphocytes from ALS subjects show increased calcium levels 
and reduced uncoupled respiration (103). These observations show that mito-
chondrial abnormalities are a systemic finding in ALS. While most mitochondrial 
respiration indices were reduced in ALS platelets, non-mitochondrial respiration 
and complex II activities were increased. Complex II activity reduction over three 
months correlated with decline in function on the ALSFRS-R scale (14). Two sepa-
rate clinical trials, testing Rasagiline as a therapeutic for ALS, used lymphocyte 
apoptosis, mitochondrial superoxide, and mitochondrial membrane potential as 
secondary outcomes (65, 104). Based on abnormal lymphocyte mitochondrial 
membrane potentials (101), it would seem reasonable to pursue these as potential 
biomarkers. Blood cell respiration or enzyme Vmax assays could be used to deter-
mine if a drug is engaging its target by altering mitochondrial function. 

CONCLUSION

ALS is a rare disease. We estimate the ALS population in the US to be about 17,000 
people (13,000–24,000) based on a US population of 329,450,000 (105). This is 
one of the main reasons affecting biomarker development for ALS. The exact 
mechanisms underlying motor neurodegeneration and muscle impairment in ALS 
are unknown. Current hypotheses include neuroinflammation, mitochondrial dys-
function, oxidative stress, excitotoxicity, and protein aggregation (1,  106–112). 
Lack of understanding of how these mechanisms interact at different stages of the 
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disease is another issue limiting the progress of biomarker development and sub-
sequent drug development for ALS. The lack of validated biomarkers for ALS has 
directly affected drug development. There are three FDA approved therapies for 
ALS: riluzole and edaravone for modulating the course of the disease, and dextro-
methorphan/quinidine for symptomatic treatment of sialorrhea. The effect of rilu-
zole is modest, extending the lifespan by 2–3 months (113–115). Edaravone 
appears to slow progression and preserve function in ALS patients (115–117). Like 
riluzole, edaravone (Radicava) can have some side effects but its intravenous route 
of administration can be an obstacle at times. Nuedexta targets pseudobulbar 
symptoms and has no known effect on life span (118, 119). Current clinical trials 
for ALS are listed on https://clinicaltrials.gov/ [accessed on 17 June 2021]. There 
are 448 ongoing studies in Unites States, and most of these would benefit from a 
host of exploratory and confirmatory biomarkers. 

Blood-based biomarkers are considered non-invasive and have the potential to 
be cost-effective. Disagreements exist regarding the utility of blood measures as 
surrogate for reflecting the status of motor neurons in the spinal cord or muscle. 
However, as shown in Figure 2, neurodegeneration and reactive gliosis contribute 
to blood brain barrier (BBB) breakdown. This BBB breakdown can lead to leakage 
of CNS exosomes/EVs and other molecules into the blood stream. Further studies 
are required to assess the correlation between blood measures and spinal cord/
muscle tissue disease status. Validated biomarker application in people with ALS 

Figure 2. Blood Brain Barrier Breakdown and Circulating Biomarkers. Neurodegeneration and 
reactive gliosis can lead to blood brain barrier (BBB) disruption (and vice versa). This BBB 
disruption could allow for CNS derived circulating biomarkers to be measured. Created 
with BioRender.com

https://clinicaltrials.gov/
http://BioRender.com


Wilkins HM et al.114

would derive numerous benefits. In addition to shortening the diagnostic journey, 
disease biomarkers may generate some cost-savings and enhance enrollment in 
clinical trials. Timely diagnosis will also reduce the time to starting currently 
available therapies. Biomarkers have the potential to provide valuable information 
about disease trajectory and critically important early insight into the effectiveness 
of experimental therapeutics. There is a great unmet need for cost-effective, 
reliable, accurate, non-invasive and reproducible biomarkers for ALS. 
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