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Abstract: Mutations in the tumor suppressor gene TP53 are among the most 
common genetic aberrations in cancer. In prostate cancer, the role of mutant TP53 
remains incompletely understood. Initially, mutations in TP53 were considered 
late events during malignant progression and associated with metastatic dissemi-
nation and castration resistance. However, recent studies report an inactivation of 
TP53 at an unexpectedly high frequency in primary as well as metastatic castra-
tion-naïve prostate cancer. In this chapter, we discuss the biology of p53, the 
relevance of TP53 mutations for prostate cancer progression and therapy 
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 resistance, and its potential role as a marker to identify patients who require more 
intensified treatment. 

Keywords: castration-naïve prostate cancer; castration-resistant prostate cancer; 
p53, therapy resistance; TP53

INTRODUCTION

Prostate cancer is the most common non-cutaneous cancer in men (1). Due to 
the introduction of broader screening and testing for prostate-specific antigen 
(PSA) blood levels, the majority of prostate cancers are now diagnosed at a local-
ized state (2). Prostate cancer is a heterogeneous disease, and the clinical out-
come of localized prostate cancer is highly variable. Approximately 30% of men 
suffer from relapse despite definitive local treatment by radical prostatectomy or 
percutaneous radiotherapy (3). Localized prostate carcinoma already shows a 
substantial molecular and genetic diversity (4). There is hence an urgent clinical 
need to identify molecular and genetic markers with predictive and prognostic 
relevance in addition to “classical” outcome parameters such as TNM stage, 
Gleason score and initial PSA level (5). A better characterization of genetic fac-
tors associated with more aggressive tumor growth kinetics could influence clini-
cal decision-making with respect to more personalized neoadjuvant and/or 
adjuvant strategies (6). 

The finding that a significant proportion of men with advanced prostate cancer 
harbor germline and/or somatic mutations in DNA damage repair genes has been 
a major advancement in the management of the disease (7). It has been known for 
a while that tumors with DNA damage repair gene defects are associated with 
earlier metastatic dissemination and poorer disease outcome (8–11). At the same 
time, mutations, in particular in BRCA1 and BRCA2, create a therapeutic vulner-
ability that has been exploited by the use of PARP inhibitors in patients with meta-
static, castration-resistant prostate cancer (mCRPC) (11, 12). Recent results from 
several phase II and III trials confirm a clinical advantage of PARP inhibition in 
terms of progression-free and overall survival (12–18). However, there is mount-
ing evidence that not all patients who are broadly categorized as carrying DNA 
damage repair gene defects (in fact many of these genes play only indirect roles in 
DNA damage repair) benefit from PARP inhibition (19). Therefore, additional 
molecular markers are needed to characterize therapeutic vulnerabilities, treat-
ment resistance and patient prognosis with an even higher resolution. 

A gene that is typically not included in targeted next-generation sequencing 
(NGS) panels used in key phase II and III trials to identify patients for PARP 
inhibitor treatment is TP53, one of the most frequently altered tumor suppressor 
genes in human cancer.

THE EVOLUTION AND FUNCTION OF p53

p53 was first discovered in 1979 and initially thought to be an oncogene (20–24). 
Subsequent work demonstrated that the transcription factor p53, together with 
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its E3 ubiquitin ligase MDM2, is at the center of a signaling node that plays a 
crucial role in stress response and tissue homeostasis (25). Over hundreds of mil-
lions of years, the p53 family has evolved from protecting the germline of inver-
tebrates from mutations to a more general signaling hub that preserves the tissue 
integrity of vertebrates (25). p53 responds to a diverse array of cellular stresses by 
activating the transcription of genes that either lead to a reconstitution of the 
damaged cell or its elimination by apoptosis or cellular senescence (26). 
p53-dependent transcription hence promotes cell cycle arrest, DNA repair, meta-
bolic adaptation, or the upregulation of pro-apoptotic genes such as BAX or 
PUMA or pro-senescence genes such as PML or CDKN1A. These properties as key 
regulator of cell fate decision make p53 the single most critical human tumor 
suppressor and contribute to the fact that TP53 is the most commonly altered 
gene in human cancer (27, 28).

Physiologically, p53 is expressed at a low level in most normal cells, which 
involves a number of cellular antagonists, most importantly its E3 ubiquitin ligase 
MDM2 and its heterodimerization partner, MDM4 (29). By ubiquitinating p53, 
MDM2 drives the proteasomal degradation of p53 (30). MDM2 itself is positively 
regulated by p53 thus creating a feedback loop to ensure low p53 protein levels 
in the absence of cellular stress. Over a dozen of extrinsic and intrinsic stress sig-
nals have been reported to feed into the MDM2-p53 signaling node to cause acti-
vation of p53-dependent gene transcription (25). The p53 response is activated 
by decreased degradation upon disruption of the p53/MDM2/MDM4 complex 
leading to p53 stabilization. The disruption of these interactions is regulated by 
posttranslational modifications of MDM2 and/or p53 such as phosphorylation by 
protein kinases activated by stress such as ATR, ATM, CHK1, CHK2 or DNA-PK, 
among others (25, 31). Additional mechanisms of p53 activation exist such as the 
nucleolar sequestration of MDM2 by ARF in response to oncogene stress (32). 
Another mechanism of activation of the MDM2-p53 node involves the deubiqui-
tinating enzyme HAUSP (33). Obviously, different sources of cellular stress can 
trigger distinct modes of p53 activation depending on the responding protein 
kinases. 

Upon its activation, p53 binds to the promoter of p53-responsive target 
genes to activate gene transcription. MDM2 and MDM4 are co-recruited to 
these promoters where they form a complex with p53 to modulate target gene 
activation (34). 

STRUCTURE OF p53 

The tumor suppressor gene TP53 encodes a protein with 393 amino acids and is 
located on chromosome 17p13.1 (35). The p53 protein comprises an N-terminal 
transactivation domain, a proline-rich domain, a central DNA-binding domain, 
followed by a tetramerization domain and an intrinsically disordered C-terminal 
regulatory domain (36). Inactivating mutations in TP53 occur in approximately 
50% of human cancers, and mutation rates range between more than 90% and 
below 5% depending on the tumor type (37). Most mutations are detected in 
the central DNA-binding domain, thereby incapacitating the function of p53 as 
a  transcription factor. Missense mutations, frameshift deletions and frameshift 
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insertions account for approximately 70% of pathogenic mutations (37). 
Inactivation of both TP53 alleles is found in over 90% of cancers with TP53 muta-
tions, most commonly through a single missense mutation and loss of the second 
allele through a deletion of chromosome 17p (37). Missense mutations frequently 
lead to an impaired degradation by MDM2 thus stabilizing the protein and ren-
dering it easily detectable as overexpressed by immunohistochemistry (38). 
Remarkably, the top hotspot missense mutations occur at methylated CpG sites, 
which encode evolutionary conserved arginine residues. The most common muta-
tion is R175H, followed by R248Q, R273H, R248W, R273C, and R282W, which 
account for approximately a quarter of all TP53 missense mutations (39). As a 
functional consequence of these mutations, the transcriptional activation of 
p53-specific target genes is disrupted (40, 41) although gain-of-function muta-
tions have also been described (42). 

In addition to acquired mutations, germline mutations of TP53 have been 
identified in patients with Li-Fraumeni syndrome. The Li-Fraumeni syndrome is 
characterized by sarcomas, breast and adrenal cortex carcinomas, cerebral 
tumors, and acute leukemias at a young age (43, 44). Germline mutations in 
TP53 are highly penetrant with an up to 100% cumulative lifetime risk to develop 
cancer (45).

TP53 MUTATIONS IN PROSTATE CANCER

Initially, inactivation of TP53 has been suggested to be a late event during prostate 
cancer progression (46–49). While it is now firmly established that mCRPC has 
the highest TP53 mutations rates (see below), there is emerging evidence that 
TP53 mutations can also be found at a relatively high frequency in primary, and, 
especially, in castration-naïve metastatic prostate cancer (50–56). 

In the TCGA cohort, whole genome sequencing of 333 samples from men with 
localized prostate cancer was performed and a mutation rate in TP53 of 8% was 
detected (51). In a different study, sequencing of 111 cases of primary prostate 
cancer revealed a TP53 mutation rate of 6% (57). 

Remarkably, the rate of TP53 mutations in castration-naïve metastatic prostate 
cancer was between 28% and 36% and hence significantly higher than in primary 
prostate cancer (50, 52, 58) and only exceeded by mutation rates found in 
mCRPC. Analysis of 150 mCRPC samples showed a TP53 mutation rate of 
53% (59). In additional studies, the TP53 mutation rate was between 31% and 
73% (53, 60–63). Whole-exome sequencing data from 410 mCRPCs identified 
33% of tumors with a biallelic loss of TP53 and 32% with single-copy loss or a 
pathogenic mutation (62). These findings confirm the marked differences in the 
TP53 mutation rate in primary, metastatic castration-naïve and castration-resistant 
prostate cancer. 

Important insights into the role of TP53 deficiency in disease progression stem 
from studies that incorporate patient outcome measurements and longitudinal 
studies. Hamid and colleagues showed that TP53 alterations increase from local-
ized castration-naïve prostate cancer (20%) to metastatic castration-naïve prostate 
cancer (37%) and mCRPC (73%) and are associated with an approximately 2-fold 
risk for disease recurrence in patients with primary prostate cancer (53). In a recent 
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study by Mateo and colleagues, primary prostate cancer specimens from 175 
patients who later developed mCRPC were analyzed. Mutations and homozygous 
loss of TP53 were the most frequently detected aberrations and found in 25% of 
the primary tumors (52). In addition, there appears to be an increase of TP53 
alterations, besides alterations of the androgen receptor (AR) pathway, when 
same-patient specimens obtained from the untreated primary tumor and mCRPC 
were compared (52). 

In conclusion, there is emerging evidence for a high rate of TP53 mutations in 
primary prostate cancer predisposed to a lethal disease outcome as well as pros-
tate cancer with metastatic dissemination at the time of diagnosis. 

p53 AND RESISTANCE OF PROSTATE CANCER TO 
SYSTEMIC THERAPY 

Prostate cancer growth and progression exquisitely depends on androgens, and 
androgen deprivation still remains the most important treatment modality for 
patients with recurrent or metastatic disease (64). However, all patients ulti-
mately develop tumor progression and castration resistance (65). The role of 
TP53 inactivation in response to androgen deprivation therapy has not been 
studied in detail. Thus far, there appears to be no negative impact of TP53 altera-
tions in the response to first-line antihormonal treatment (52). In the last decade, 
several novel therapeutic options for patients with mCRPC have been established 
including the CYP17 inhibitor abiraterone and the androgen receptor antagonist 
enzalutamide (66, 67). Since not all men benefit from these next-generation anti-
androgens, there is a clinical need for markers that indicate primary or acquired 
resistance to aid decision-making. Because mCRPC still critically depends on AR 
signaling (68), the constitutively active AR splice variant V7 (AR-V7) has been 
suggested as a crucial, albeit not exclusive, component of the resistance mecha-
nisms to next-generation antiandrogens (69, 70). De Laere and colleagues could 
demonstrate that inactivation of TP53 was associated with significantly shorter 
progression-free and overall survival of prostate cancer patients treated with abi-
raterone or enzalutamide (71). The poorest progression free survival was found 
in patients with a biallelic TP53 inactivation. Of note, TP53 mutations were the 
only marker independently associated with an unfavorable response to abi-
raterone and enzalutamide and, remarkably, outperformed genomic AR altera-
tions and expression of AR splice variants (71). How p53 influences resistance to 
next-generation antiandrogens remains to be clarified. Interestingly, there is evi-
dence to suggest that wild-type p53 may suppress AR activation (72–74). 

The microtubule-stabilizing agent docetaxel is the only chemotherapy that has 
been shown to extend survival in patients with mCRPC (75, 76). The response of 
prostate cancer cells to docetaxel has been found to be compromised by mutant 
p53 (77). The clinical utility of TP53 mutation status as a predictive marker for 
docetaxel treatment hence warrants further investigation. 

Whether and to what extend TP53 perturbations affect the response to the 
PARP inhibitor olaparib, which has recently been approved for patients with 
mCRPC and BRCA1/2 mutations (16, 18), is currently unclear.
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TP53 AND THE CLONAL EVOLUTION OF PROSTATE CANCER

Since a substantial proportion of primary prostate cancers harbor mutations in 
TP53, the question arises whether TP53 inactivation may be a driver event for 
malignant progression. There is mounting evidence that this could be the case. 
TP53 mutations have been reported as truncal aberrations in considerable 
 proportions of metastatic prostate cancers (58, 78). Interestingly, a case study 
could demonstrate that a mutant TP53 clone originating from a small, well-differ-
entiated focus of primary prostate cancer was apparently the origin of metastatic 
spread with a 17-year lag period (79). However, TP53 mutations have also been 
reported to be enriched in metastatic lesions and there are also examples of tumors 
in which TP53 aberrations can be found exclusively in metastases (52, 80).

In conclusion, TP53 mutations seem to be an early event in some prostate 
cancers while in others an enrichment in metastatic lesions can be found. In the 
future, increasingly sensitive detection methods such as single-cell sequencing 
hold the promise to even better define the molecular composition of primary and 
metastatic prostate cancer with respect to the TP53 mutation status.

DOES p53 HAVE POTENTIAL AS A THERAPEUTIC TARGET 
AFTER ALL?

Given the high frequency of TP53 inactivation in prostate cancer and in cancer in 
general, the question remains how this finding could be translated into a thera-
peutic vulnerability. p53 is notoriously difficult to target and numerous studies 
have used approaches such as gene therapy, inhibition of MDM2 or MDM4 inter-
actions, synthetic lethal approaches, and others (81–85). It should not be forgot-
ten that p53 has originally been discovered as a tumor antigen induced by 
chemical carcinogens (86). Hence, approaches to exploit mutant p53 as immuno-
logical target as well as the increased genomic instability of p53-defective cells 
through immune oncological interventions still appear promising. In this context, 
an exacerbation of the mutational burden may further enhance the therapeutic 
vulnerability of p53-deficient cells to promote responses to immune checkpoint 
inhibitors. 

CONCLUSION

Inactivation of TP53 has initially been described as a late event during malignant 
progression and associated mainly with mCRPC. There is now compelling 
 evidence that mutated TP53 can also be detected in primary prostate cancer, and, 
especially, in castration-naïve metastatic prostate cancer. Inactivation of TP53 
 predicts an unfavorable patient outcome, early metastatic dissemination, and 
resistance to next-generation antiandrogens. Therefore, TP53 perturbations have 
a strong potential as a marker to identify patients with a high risk for lethal disease 
outcome who could benefit from more intensified treatment. 
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