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Abstract: Malignant brain tumors are among the most devastating types of cancer. 
Glioblastoma is the most common and serious form of brain cancer. Most glio-
blastomas are surgically unresectable and are typically diagnosed at an advanced 
stage. The high level of resistance to chemotherapy, radiotherapy and immuno-
therapy makes glioblastoma one of the most difficult cancers to treat. In brain 
tumors, the challenges of targeted therapy also include the blood-brain barrier, 
which often contributes to treatment failure. Therefore, developments of new 
treatment strategies are required. Metabolic treatments could be an alternative to 
conventional therapies. Metabolic approaches aim at suppressing glioblastoma 
tumorigenicity leading to glioblastoma cell death. Since cholesterol metabolism is 
deregulated in these tumors, this is a promising potential target for therapy. As 
glioblastoma cells draw on cholesterol from the central nervous system to survive, 
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their growth is theoretically unlimited. Targeting the metabolism of cholesterol by 
different strategies using, among others, targets of LXRs (Liver X Receptors) or 
toxic cholesterol analogues could potentially oppose the growth of glial tumors. 
This chapter discusses the potential of targeting cholesterol metabolism using 
cholesterol derivatives as a pharmacological alternative to current therapeutic 
strategy.

Keywords: cancer metabolic therapy; cholesterol derivatives; cholesterol 
metabolism; glioblastoma; oxysterols

INTRODUCTION

Most of central nervous system (CNS) cancers are found in the brain while others 
develop in the meninges, spinal cord, and cranial nerves (1). The origin and loca-
tion of brain tumors determine their type. Primary brain cancers originate in the 
brain which is also a frequent site for secondary or metastatic tumors. Gliomas are 
the most common primary tumor of the CNS (2). According to the World Health 
Organization (WHO), gliomas are traditionally classified based on the cell type of 
origin: astrocytic, oligodendroglial, oligoastrocytic, or ependymal tumors (3, 4). 
The current classification system is a grading system that grades tumors from 
grade I (benign) to IV (highly malignant) based on increasing cellular density, 
nuclear atypias, mitosis, vascular proliferation and necrosis (5). Glioblastoma is 
the most aggressive diffuse glioma of astrocytic lineage and is considered a 
grade IV glioma (4), making up 54% of all gliomas and 16% of all primary brain 
tumors (5). Glioblastoma is characterized by an aberrant metabolism which has 
important roles in carcinogenesis, metastasis, drug resistance, and cancer stem 
cells. Cancer cells adapt their metabolism in response to signals from the micro-
environment and proliferation (6). Therefore, overcoming metabolic alterations is 
an important goal of modern cancer therapeutics.

CANCER METABOLISM

Aberrant metabolism is a major feature of cancer that directly affects tumor signal 
transduction pathways and cellular reactions. The metabolic heterogeneity and 
plasticity of cancers results from genetic heterogeneity and cancer microenviron-
ment. Oncogenic signal pathways including Hippo, PI3K-AKT/mTOR, Myc, p53 
and LKB1-AMPK play an important role in the regulation of cancer metabolism (7). 
Hence, overcoming metabolic plasticity constitutes a therapeutic challenge. 
Cancer cells modify their metabolic pathways, maximizing the expression and the 
efficiency of metabolic enzymes activities to meet their increased needs and to 
overcome cancer microenvironment which induces chronic nutrient deficiency 
and oxygen concentrations reduction (8,9). Respiratory mechanisms in cancer 
cells are still under investigation. Warburg effect states that respiratory mecha-
nisms are damaged especially in the mitochondria and that cancer cells obtain 
ATP through glycolysis instead of oxidative phosphorylation (10), while other 
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data argue that the cancer cells produce energy using oxidative phosphorylation 
and their mitochondria is intact (11, 12). As a result of glycolysis and oxidative 
phosphorylation, glutamine becomes the main source of NADH and FADH2 giv-
ing rise to upregulated glutaminolysis in cancer cells (13). Fatty acids do not 
merely have roles as structural components but are also vital for cell response and 
cancer cell proliferation. Fatty acid synthesis is upregulated in tumors (14). 
Cancer cells compensate for fatty acid synthesis by up-regulating external lipid 
absorption instead of using de novo fatty acid synthesis because fatty acid synthesis 
is an oxygen-consuming process (15, 16). This upregulation overcomes the 
metabolic barriers that restrict the synthesis of metabolites (7). Reactive oxygen 
species (ROS) have been spotted in practically all cancers, where they influence 
cancer microenvironment and also promote many aspects of cancer development. 
Their contribution to carcinogenesis is still debatable and is evidently highly com-
plex (17). Therefore, understanding the cellular metabolism that oversees ROS-
related signaling will offer appreciated visions to target cancer cells. Aberrant 
cancer metabolism including aerobic glycolysis, increased glutamine, and fatty 
acid anabolic metabolism, are not simply outcomes of aberrant signal pathways, 
but potentially contribute to cancer cell proliferation, metastasis and drug resis-
tance (7). The metabolic therapy involves the bypass of cancer metabolism. It may 
affect sensitivity of the cancer cells to anticancer drugs and may allow them to 
avoid the non-specific cytotoxicity of these drugs and overcome drug resistance. 
This treatment approach avoids metabolic plasticity, which is the capacity of cells 
to adapt their metabolic status to their specific needs (18). Therefore, understand-
ing cancer metabolism and identification of new drugs targeting it may yield new 
therapeutic opportunities. However, metabolic heterogeneity and plasticity make 
this approach difficult. One highly heterogeneous cancer for which current thera-
pies utterly fail is the deadly brain cancer glioblastoma. 

GLIOBLASTOMA FEATURES

Glioblastoma is the most common and lethal primary brain cancer that expose an 
implacable malignant progression characterized by expanded invasion through-
out the brain, resistance to therapeutic strategies, devastation of normal brain 
tissue, and death (7).

Epidemiology of glioblastoma

According to the Global Burden of Disease Study in 2016, at the global level, there 
were 330,000 cases of CNS cancer, with an age-standardized incidence rate 
of 4.63 per 100,000 person-years and with an age-standardized death rate of 
3.24 per 100,000 person-years (1). Glioblastoma, the most common primary 
brain  cancer of glial origin, is almost universally fatal with a median age of 
64 years (19). Incidence of CNS cancers peaks in early childhood (<5 years of age) 
and increases after 15 years of age, with no difference in incidence rates by sex 
during childhood, but a diverging incidence between sexes with increasing age, 
leading to 1.6 times higher incidence in men than women (20), though this 
difference was not considered significant (1). 
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Risk factors for glioblastoma 

Few known risk factors are associated with CNS cancers; the only positive asso-
ciation being with ionizing radiation (for example, previous therapeutic irradia-
tion) (21, 22). Various genetic syndromes and associated low frequency alleles are 
associated with increased risk of CNS cancer, but these account for only a minute 
fraction of total cases (23, 24). Glioblastoma has been associated with the viruses 
SV40 (25), HHV-6 (26, 27), and cytomegalovirus (28). Uncommon risk factors 
have been considered, including smoking and pesticide exposure (29). 

Antigenic and genetic characteristics of glioblastoma

The characterization of molecular alterations in glioblastoma could contribute to 
optimal therapeutic strategies. Various prognostic markers have been identified in 
glioblastoma, including methylation status of the gene promoter for 
O6-methylguanine-DNA methyltransferase (MGMT), isocitrate dehydrogenase 
enzyme 1/2 (IDH1/2) mutation, epidermal growth factor receptor (EGFR) overex-
pression and amplification, glioma-CpG island methylator phenotype (G-CIMP), 
tumor protein 53 (TP53) mutation and genetic losses of chromosomes (30). Two 
models of progression have been proposed based on the molecular alterations in 
glioblastoma: primary (or de novo) glioblastoma and secondary glioblastoma. 
Primary de novo glioblastomas come from astrocytes or precursor/stem cells that 
have baseline mutations (31). Primary glioblastomas are frequently found to over-
express EGFR, and less frequently show mouse double minute 2 (MDM2) ampli-
fication, high frequency of telomerase reverse transcriptase (hTERT) promoter 
and p16 deletions, loss of heterozygosity on10q, phosphatase and tensin homolog 
gene (PTEN) mutations while TP53 mutation is infrequent (5, 30, 31). Secondary 
glioblastoma develops from a pre-existing low-grade glioma. They are character-
ized by TP53 mutation and alpha thalassemia X-linked mental retardation syn-
drome (ATR-X) (3, 30). Moreover, in addition to these mutations, they may present 
with the same molecular alterations as de novo glioblastoma. Many other genetic 
alterations have been described in glioblastoma, and the majority are found in two 
pathways: the retinoblastoma protein (RB), and the phosphoinositide 3-kinase/
protein kinase B (PI3K/AKT) (32). Glioblastoma has alterations in 68–78% and 
88% of these pathways, respectively (33). Glioblastoma-O is a rare subtype of 
glioblastoma with an oligodendroglioma component. It has longer survival when 
compared to other glioblastomas (30, 34). According to the 2016 WHO classifica-
tion, glioblastoma is classified based on the status of IDH mutation into three 
groups: glioblastoma IDH-wild type, which represents about 90% of glioblasto-
mas (including giant cell glioblastoma, gliosarcoma, and epithelioid glioblas-
toma); glioblastoma IDH-mutant, which represents 10%; and glioblastoma NOS 
(glioblastoma IDH-Not Otherwise Specified), in cases where IDH status was not 
sought or is not possible to confirm) (4, 35, 36). The classification of gliomas 
(3, 4, 37) is summarized in Figure 1.

Glioblastoma pathogenesis 

Glioblastoma is generally located in the supratentorial region and rapidly infil-
trates the brain parenchyma, sometimes becoming very large before producing 
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symptoms (31). Metastases of glioblastoma beyond the CNS are extremely 
rare (35). Glioblastoma is characterized by the presence of hyperplastic blood ves-
sels that present with disrupted morphology and functionality (38), with small 
areas of necrotic tissue surrounded by anaplastic cells. The increased hypoxia 
within glioblastoma leads to cancer progression by promoting processes such as 
immunosuppression (38, 39). The invasive nature of glioblastoma may be 
explained by: (i) the upregulation of ion channels with gene alterations (40); (ii) 
the oncometabolite D2-hydroxyglutarate (D-2-HG) that accumulates in the tumor 
cell that modifies the tumor epigenome (hypermethylation of histones and DNA) 
and promotes tumor initiation and progression (41); and (iii) the behavior of 
IDH1-mutated glioblastoma cells that invade into healthy parts of the brain where 
glutamate concentrations excreted by healthy astrocytes are higher (42). The inva-
sive nature of glioblastoma, with its cellular properties similar to progenitor cells, 
make complete removal of glioblastoma by surgery difficult, and this could be the 
possible cause of resistance to conventional treatments (43).

METABOLISM IN GLIOBLASTOMA

Abnormal metabolism is an emerging feature of glioblastoma with alterations to 
glycolysis, oxidative phosphorylation, the pentose phosphate pathway, amino 
acid metabolism as well as lipid oxidation and synthesis (6). Lipid metabolism 
pertinent to cancer is an actionable anticancer target. De novo lipid synthesis 
can  feed proliferating tumor cells with phospholipid components (44, 45). 
Furthermore, the upregulation of mitochondrial β-oxidation can favor cancer cell 

Figure 1.  Classification of gliomas. Classification based on antigenic and genetic 
characteristics, and according to World Health Organization (3,4,37).
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energetics and redox homeostasis (46). Lipid-derived messengers have also an 
important role in the regulation of major signaling pathways and the coordination 
of immunosuppressive mechanisms (47, 48). Thus, lipid metabolism involves a 
variety of oncogenic processes including carcinogenesis, metastases, and drug 
resistance (49–51). 

Cholesterol metabolism in glioblastoma

Understanding the role of cholesterol metabolism and transport in glioblastoma 
cells and the underlying mechanisms of cholesterol-related drug resistance could 
lead to the development of more effective, targeted therapies for glioblastoma. The 
cholesterol pathway has emerged as a potential target for glioblastoma amenable 
to targeted pharmacologic treatment (52). Brain cholesterol represents 20–25% of 
total body cholesterol (53). However, peripheral and CNS cholesterol metabolism 
are regulated independently. The dynamics of the brain cholesterol pool and its 
metabolism is distinct from other organs due to the inability of peripheral choles-
terol to cross the blood-brain barrier (54). Peripheral cholesterol depends on the 
balance between dietary intake and hepatic synthesis and degradation, whereas in 
the CNS, cholesterol is synthetized de novo by astrocytes and delivered to neurons 
as well as to glioblastoma cells (55, 56). Cholesterol provided by the astrocytes is 
a crucial step for growth and survival for glioblastoma cells (54). The cholesterol 
produced and secreted by astrocytes is supplied to the glioblastoma cells by apo-
lipoprotein E (Apo-E). Oxysterols and other cholesterol derivatives produced in 
neurons following cholesterol uptake and metabolism can be physiological ago-
nists for liver X receptors α/β (LXR) (52). Oxysterols inhibit cholesterol synthesis 
and enhance its export by activating LXRs (57, 58). Activation of LXR results in 
its dimerization with retinoid X receptor (RXR), favoring cholesterol efflux through 
sterol transporters such as ATP-binding cassette A1 (ABCA1) which is the main 
exporter of cholesterol bound to Apo-E, and the suppression of cholesterol uptake 
through MYLIP also known as IDOL (inducible degrader of the LDL receptor) 
(54, 59, 60). The E3 ligase IDOL is transcriptionally up-regulated by LXR/RXR in 
response to an increase in intracellular cholesterol (61). IDOL targets the low-
density lipoprotein receptor (LDLR) for degradation (60). The LXR-IDOL-LDLR 
mechanism results in a decrease in cholesterol uptake, thereby regulating the level 
of intracellular cholesterol (54) (Figure 2). In glioblastoma cells, these cholesterol 
regulatory and surveillance mechanisms occurring in normal glial and nervous 
cells are disrupted (52, 54). 

CURRENT GLIOBLASTOMA THERAPIES

Patients with CNS cancer often present with a spectrum of non-specific symp-
toms. There is no screening test available for CNS cancer that allows early and 
consistent detection (62). Because of the invasive nature of glioblastoma, the 
entire tumor cannot be removed surgically (63). Optimal treatment combines 
biopsy or aggressive surgical resection with postoperative radiation and chemo-
therapy (64). Despite optimal treatment, glioblastoma usually recurs. Only coun-
tries with advanced health care systems can provide highly specialized radiotherapy 



Cholesterol Derivatives and Glioblastoma Metabolic Therapy 103

and neuro-oncology services (65). Glioblastoma is one of the hardest to treat can-
cer due to its high level of resistance to conventional therapies, without forgetting 
the contribution of the blood-brain barrier to treatment failure (66).

Glioblastoma is diagnosed at an advanced stage and has a low survival rate of 
12 to 15 months on average, with fewer than 3–7% of people surviving longer 
than five years (67) and without treatment, survival is typically around three 
months (68). Radiation and temozolomide (TMZ) chemotherapy are used after 
surgery to destroy what was unable to be removed surgically, and recurring 
tumors. TMZ is an alkylating agent; TMZ is a triazene derivative, which undergoes 
rapid chemical conversion at physiological pH to the active monomethyl triazeno-
imidazole carboxamide (MTIC). Glioblastomas are well known to contain areas of 
tissue with hypoxia, which are highly resistant to radiation. New research 
approaches are looking into the use of an oxygen diffusion-enhancing compound, 
trans sodium crocetinate (TSC), as radiosensitizer (69). Currently, chemoradio-
therapy gives the best overall survival, but is associated with a greater risk of 
adverse events than radiotherapy alone (70). TMZ seems to work by sensitizing 
tumor cells to radiation, and appears more effective for tumors with MGMT pro-
moter methylation (71). Glioblastoma therapeutic failure including immunother-
apy has been attributed, among others, to its intrinsic heterogeneity and to the 
immune microenvironment which is considered as a major obstacle to generating 

Figure 2.  Regulation of cholesterol metabolism in brain neurons. Peripheral and CNS 
cholesterol metabolism are regulated independently. In the brain, the cholesterol produced 
de novo and secreted by the astrocytes is provided by Apo-E to neurons. Endogenous LXR 
ligands are oxysterols and other cholesterol derivatives produced in neurons following 
cholesterol uptake and metabolism. The main sterol transporter ABCA1 and the E3 ligase 
IDOL are transcriptionally up-regulated by LXR/RXR in response to an increase in 
intracellular cholesterol, resulting in inhibition of the expression of LDLR and in a decrease 
in cholesterol uptake, thereby lowering the level of intracellular cholesterol. In GBM cells, 
these mechanisms are disturbed. The GBM cells are unable to produce sufficient 
endogenous LXR ligands, especially oxysterols, thus promoting exogenous cholesterol 
uptake and intracellular accumulation of cholesterol which contributes to cell proliferation 
(52,54). BBB, blood brain barrier; CNS, central nervous system.
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an effective antitumor immune response (72,73). Therefore, developments of new 
treatments are required. Metabolic treatment could be an alternative to conven-
tional therapies.

THERAPIES TARGETING CHOLESTEROL METABOLISM

Cancer arises by mutations within oncogenes and tumor suppressor genes. These 
genetic mutations regulate the expression and activity of several proteins involved 
in the control of cell growth including metabolic enzymes which are considered 
attractive drug targets (7). Antimetabolites which are small molecules that inhibit 
the activity of enzymes involved in nucleotide base synthesis, are among 
metabolism-targeting drugs that have had clinical success (74). Though, nucleo-
tide metabolism is only one of many metabolic dependencies altered to favor 
carcinogenesis (74). Because cholesterol metabolism involves in glioblastoma cells 
growth, the cholesterol pathway has emerged as a potential target for glioblastoma 
therapy. There are several approaches involving cholesterol metabolism known in 
the glioblastoma field, all of which have the same goal: the depletion of intracel-
lular cholesterol leading to cell death. 

Liver X Receptors (LXR)-E3 ligase IDOL-Low-density lipoprotein 
receptor (LDLR)

The LXR-IDOL-LDLR axis is a targetable pathway in glioblastoma (75). The LXR 
non-steroidal agonists GW3965 and LXR-623 up-regulate the expression of E3 
ubiquitin ligase IDOL, which results in reduced LDLR levels. They also up-
regulate the expression of the cholesterol transporter gene ABCA1, which then 
induces substantial apoptosis via activation of the LXRβ isoform (54, 75). With 
archazolid B, the expression of LDLR is upregulated, leading to an increase in 
extracellular cholesterol uptake. This drug hampers the action of V-ATPase due 
to a proton transport defect. This leads to associated increases in lysosomal pH, 
thereby preventing cholesterol recycling (76). The build-up of cholesterol 
within intracellular organelles makes it effectively unavailable for use by glio-
blastoma cells.

RNA-binding proteins (RBPs)

RNA-binding proteins (RBPs) have important roles in human biology. It has been 
reported that metabolic enzymes were identified as RBPs and participate in varied 
metabolic pathways including  lipid metabolism (77). RBPs of glioblastoma are 
therefore another potential target. The expression and function of RNA binding 
proteins Fragile X-Related (FXR1) could be of interest in glioblastoma therapy. 
Downregulation of FXR1 or MIR17HG, also known as miR-17-92 which is the 
host gene for the miR-17-92a-1 gene cluster at 13q31 (78), results in inhibition of 
glioblastoma cells progression. The smallest tumor volumes and the longest sur-
vivals of nude mice in vivo were obtained with FXR1 knockdown combined with 
inhibition of MIR17HG (79). 
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Statins

It is also suggested that statins could be effective in preventing drug resistance in 
glioblastoma. The role of intracellular cholesterol flux in TMZ-induced cell death 
is still under investigation. Data are contradictory, some showing that statins 
reduced TMZ-induced cell death and therefore proposed the use of TMZ with 
soluble cholesterol which could potentially serve as combination therapy to treat 
glioblastoma (80), while other data proved that simvastatin promotes TMZ-
induced apoptosis in glioblastoma cells (52). Statins may potentially serve as a 
new therapeutic approach for combination therapy in glioblastoma (81). The 
effect of statins may be due to autophagy modulated by the mevalonate pathway 
(82, 83), through geranylgeranylation of the small GTPase molecule Rab11 (82). 
Geranylgeranyl-pyrophosphate, which is produced by the mevalonate cascade, 
plays an important role in the prenylation of the superfamily of Ras-like GTPase 
proteins known as the Rab family (84). Rab GTPases are involved in vesicular traf-
ficking, where Rab11 and Rab7 are critical components for autophagosome for-
mation and autophagosome–lysosome fusion (85). Thus, autophagy flux is 
inhibited due to the decreased prenylation of Rab11 and Rab7, which is a result 
of the inhibition of mevalonate pathway by statins (84, 85). Therefore the inhibi-
tion of mevalonate pathway followed by autophagy inhibition leads to apoptotic 
cell death (83, 86). Long-term consumption of statins increased survival rate of 
various cancer patients (87). The same result was shown with glioblastoma 
patients (88). Cancers with overactive Myc, which is a transcription factor that 
regulates cholesterol synthesis, have been observed with amplified expression of 
HMGCR and sensitivity to statins (89, 90). Thus, inhibiting autophagy with 
statins or other molecules via the mevalonate pathway or other channels could 
also be a new approach to treat glioblastoma. 

Sterol regulatory element-binding protein (SREBP)

Sterol regulatory element-binding protein (SREBP) may also be a novel therapeu-
tic target. Intracellular levels of cholesterol and fatty acids are controlled through 
a feedback regulatory system mediated by SREBPs (91). SREBP-1a can activate all 
target genes. SREBP-1c primarily regulates fatty acid metabolism, such as by regu-
lating the fatty acid synthase (FASN) gene. SREBP-2 is mainly responsible for 
cholesterol-related genes, such as the HMG-CoA reductase (HMGCR) and low-
density lipoprotein receptor (LDLR) gene (92). Cholesterol and fatty acid synthe-
sis decreases following the inhibition of SREBPs expression. Therefore, SREBP 
and its pathways can be novel targets for the treatment of glioblastoma (93). The 
oncogenic signaling EGFR-PI3K-Akt pathway is involved in boosting lipid levels 
and their uptake into glioblastoma cells by the upregulation of the sterol regula-
tory element-binding protein (SREBP-1) (94). Thus, inhibition of EGFR-PI3K-Akt 
signaling by the EGFR inhibitor lapatinib suppresses SREBP-1 nuclear transloca-
tion sensitized glioblastoma xenografts in mice, resulting in cell death (95). Phytol 
and retinol, inhibitors of SREBP-1 synthesis, are able to induce glioblastoma cell 
death by interfering with fatty acid and cholesterol metabolism (94). Betulin spe-
cifically inhibits the maturation of SREBP by inducing the interaction of SREBP 
cleavage-activating protein (SCAP) and insulin-induced gene (Insig), which leads 
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to the endoplasmic reticulum-retention of SCAP–SREBP complex. Betulin 
decreases the biosynthesis of cholesterol and fatty acids (92) and could lead to 
glioblastoma cell death. The flavanol quercetin decreased the expression of 
SREBP-1 and SREBP-2, decreasing the viability of glioblastoma cells (96). 
Oxysterols such as 22 (R)-hydroxycholesterol and 24 (S), 25-epoxycholesterol 
appear to inhibit cholesterol biosynthesis, possibly via their accumulation, which 
inhibits the cleavage of SREBP-2 (97).

Cholesterol derivatives: oxysterols

Cholesterol and its metabolites (precursors and derivatives) play an important role 
in cancer (98). Certain cholesterol metabolites such as estrogens and androgens can 
promote cancer, while others such as glucocorticoids suppress cancer  (99). 
Oxysterols such as 7-ketocholesterol (7-KC) and 25-hydroxycholesterol (25-OHC) 
are products of cholesterol oxidation obtained mainly either by cholesterol auto-
oxidation or enzymatic oxidation of cholesterol, respectively, and are potent sup-
pressors of HMGCR activity (100, 101). Suppression of reductase prevents cells 
from synthesizing cholesterol which could inhibit cell growth (101). The chrono-
logical study of the cytotoxic activities of oxysterols has led to an interest in their 
activities on metabolism. Oxysterols and pro-drugs derived from oxysterols were 
initially studied for their cytotoxicity; mainly their ability to induce cell death. Then, 
due to their pro-inflammatory properties, their immunomodulatory-​anticancerous 
properties were also examined. As some oxysterols can inhibit the activity of 
HMGCR, their ability to act on cholesterol metabolism was investigated. Oxysterols 
quickly emerged as interesting molecules in cancer due to their greatly altered 
levels in some tumors and due to their ability to promote cellular oxidative stress 
and cytotoxicity (102, 103). Currently, oxysterols and their involvement in cho-
lesterol metabolism constitute a new field of research, and their implication in 
oncogenic pathways is also of interest, as some of them appear to have mutagenic 
properties (104).

Oxysterols can act on G protein-coupled receptors (GPCR) (e.g. Epstein-Barr 
virus-induced gene 2 [EBI2]), smoothened (SMO), chemokine (C-X-C motif) 
receptor 2 [CXCR2]), nuclear receptors (LXR, retinoic acid receptor-related 
orphan receptor (ROR), estrogen receptor [ERα]), anti-estrogen binding site 
(AEBS) (105) and through transporters or regulatory proteins (106). The mecha-
nisms by which oxysterols may influence proliferation are manifold: two types of 
effects related to AEBS are the inhibition of cholesterol epoxide hydrolase (ChEH) 
(107, 108) and the inhibition of cholesterol biosynthesis (109), leading to 
increases in levels of cholesterol intermediates (110). Resulting sterol accumula-
tion is associated with the development of autophagic features (111–114), and 
can lead to survival or lethal autophagy depending on concentrations and time of 
treatment (115). B-ring oxysterols, such as 7-KC, 7-ketocholestanol, and 6-keto-
cholestanol (116) bind to AEBS. Certain oxysterols can suppress the activation of 
SREBPs by binding to an oxysterol sensing protein in the endoplasmic reticulum, 
Insig (101–105). Some oxysterols can accelerate the degradation of the key cho-
lesterol biosynthetic enzyme, HMGCR, and/or serve as natural ligand activators of 
LXR (103, 105, 117–119). Oxysterols have been shown to induce apoptosis in a 
variety of cell lines: human monocyte blood cells (U937), murine lymphoma cells 
(RDM4), human vascular endothelial cells (HUVECs), human artery smooth 



Cholesterol Derivatives and Glioblastoma Metabolic Therapy 107

muscle cells (A7R5), human colon cancer cells (Caco-2), chinese hamster ovary 
cells (CHO), mastocytoma cells (P815) and T cell derived human leukemia lines 
(CEM-C1 and CEM-C7) as well as on numerous types of nerve cells (158N, BV-2 
and N2a) (104, 120–128). There are two major apoptotic pathways; the death 
receptor or extrinsic pathway (129, 130) and the mitochondrial or intrinsic path-
way (131, 132). 27-hydroxycholesterol (27-OHC) has recently been shown to act 
as an estrogen receptor agonist in breast cancer, contributing to tumor growth and 
metastasis (133). To date, several works have concentrated on oxysterols oxidized at 
C7, in particular, 7-KC and 7β-hydroxycholesterol (7β-OHC). 7β-OHC derivatives, 
some blocked at C-3-OH group and others phosphodiesters of 7β-OHC, were syn-
thesized and showed similar toxicity to their parent compound under in vitro condi-
tions (127, 134). 7-KC and 7β-OHC are potent inducers of cell death and trigger 
apoptosis through the mitochondrial pathway on several cell types (135–139). 
7-KC and 7β-OHC induce a mode of cell death defined as oxiapoptophagy 
(OXIdative stress + APOPTOsis + autoPHAGY) (140). Consequently, cholesterol 
derivatives and notably oxysterols, constitute an interesting class of molecules which 
are of huge interest in oncology, and may form a new class of antitumor agents. 

Natural and synthetic cholesterol derivatives

We have exploited the anti-proliferative and immunosuppressive properties of 
cholesterol derivatives to study their effect on C6 cells which are the most com-
mon experimental models used in neuro-oncology to study glioblastoma 
(141–145). We have compared the cytotoxic effects of the following natural 
and  synthetic cholesterol derivatives: natural compounds (7β-OHC, 22 
(R)-hydroxycholesterol (22R-OHC), 24 (S)-hydroxycholesterol (24 (S)-OHC)). 
Synthetic compounds (22(R)-hydroxy-Δ9-cholestanol (22R-ISO-OHC), 
23-(4-Methylfuran-2,5-dione)-3α-hydroxy-24-nor-5β-cholane (LITHO 1a), 
23-(4-Methylfuran-2,5-dione)-3α,7α-dihydroxy-24-nor-5(3-cholane) (CHENO 1b),  
23-(4-Methyl-1H-pyrrole-2,5-dione)-3α-hydroxy-24-nor-5β-cholane 
(LITOMAL 7a), 23-(4-Methyl-1H-pyrrole-2,5-dione)-3α,7α, 12α-trihydroxy-24-
nor-5β-cholane (COLMAL 7f) and ethanol maleimide derivatives of litocholic and 
chenodeoxycholic acid (LITOMET, CHENOMET)) (146,147). The sytematic 
name of LITOMET is (23-((2-hydroxyethyl)-4-methyl-1H-pyrrole-2,5-dione)-3α-
hydroxy-24-nor-5β-cholane) and the systematic name of CHENOMET is 
(23-((2-hydroxyethyl)-4-methyl-1H-pyrrole-2,5-dione)- 3α,7α-dihydroxy-24-
nor-5β-cholane). We evaluated the effects on cell morphology by phase contrast 
microscopy, on cell viability by the MTT test, on esterase activity by the FDA test, 
on cell survival by the clonogenicity test, on mitochondria by measuring the mito-
chondrial transmembrane potential (ΔΨm) by staining with 3,3’-dihexyloxacar-
bocyanine iodide (DiOC6(3)), on the plasma membrane also indicating cell 
mortality by propidium iodide (PI) staining, on lysosomes by acridine orange 
(AO) staining, on the cell cycle by detection of cells in phase (G2+M) after PI stain-
ing, on autophagy by quantification of LC3-II and LC3-I protein expression by 
Western blot (LC-3II/LC-3I ratio). PI, DiOC6(3) and AO staining were measured 
by flow cytometry. Based on these tests a multidimensional and multivariate heat-
map was made (Figure 3). The heatmap obtained allows for a comparative study 
of the cytotoxicity of the cholesterol derivatives studied, some of which trigger a 
non-apoptotic mode of cell death with characteristics of autophagy leading an 
increase of the ratio LC3-IILC3-I. Our results underline that cholesterol deriva-
tives, including oxysterols, are cytotoxic on tumor cells and can potentially consti-
tute a new group of molecules to treat glioblastoma.
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Mitochondria as therapeutic targets

Mitochondria and their increased cholesterol levels have been implicated in many 
pathological processes, including cancer (148, 149). Mitochondria are the organ-
elles responsible for primary cellular ATP and ROS production, ensuring the 

Figure 3.  Heatmap and Cholesterol derivatives classification. A. The heatmap is a color-grading 
system comparing the effects of cholesterol derivatives on rat C6 glioblastoma cells. It grades 
from green (little or no effect) to red (maximum effect) based on clonogenicity, mitochondrial 
membrane potential (ΔΨm), permeability of the plasma membrane, destabilization of 
lysosomes, effects on the cell cycle and activity on autophagy measured by the LC3II/LC3I 
ratio. B. Classification comparing natural and synthetic cholesterol derivatives.
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survival of cells by providing them with energy in the form of ATP and, under 
certain circumstances, to their destruction through their active participation in 
apoptosis. Mitochondria were shown to be crucial for the regulation of various 
physiological processes (150). Mitochondrial (mt) dysfunction is frequently 
observed in glioblastoma and has been linked to mt energy metabolism altera-
tions, mt structure abnormalities, disturbances in mt membrane potential regula-
tion, genomic mutations in mtDNA and apoptotic signaling, as well as to mutations 
involving the Krebs cycle enzyme isocitrate dehydrogenase (IDH) (148, 151). 
Mitochondria-targeted therapeutic strategies in glioblastoma include metabolic 
modulation with emphasis on dichloroacetate, a pyruvate dehydrogenase kinase 
(PDK) inhibitor (150, 152, 153) and mitochondrial-mediated apoptosis induced 
by tricyclic antidepressants (154), as well as mitochondrial aberrant signaling cas-
cades with natural compounds such as phytosterol (148, 155). Mitochondria is 
also involved in the synthesis of cholesterol and 27-OHC, making it an interesting 
target for metabolic therapy.

Use of antisense therapies directed against the IGF-IR

The modification of the expression of growth factors or their receptors is impli-
cated in tumor progression (156). The insulin-like growth factor type I receptor 
(IGF-IR) has been shown to contribute to the tumorigenesis process (157). IGF-I 
may also contribute to abnormalities of cholesterol metabolism (158, 159). IGF-I 
binding triggers the activation of several intracellular signaling cascades involving 
the mitogen-activated protein kinase (MAP-K) and the PI3K pathways (157). 
Inhibition of the expression or function of this receptor within tumor cells 
has  been successfully achieved by different approaches, including the use of 
ribonucleic acid (RNA) or oligonucleotides antisense. Antisense RNAs and oligo-
nucleotides inhibit the translation of messenger RNA (mRNA) (160, 161). These 
antisense approaches to control IGF-IR expression are indeed capable, in experi-
mental models, of blocking the expression of the receptor in glioblastoma cells 
and inhibiting their tumorigenesis in vivo by inducing cellular apoptosis and/or an 
immune response (162, 163).

Targeted nanotherapy

Glioblastoma therapies are not fully effective due to the existence of a series of 
barriers that prevent them from reaching these tumors. Great hopes are placed in 
nanotherapy, since nano-drugs could improve the delivery of glioblastoma drugs 
(164). Nanotherapy could be used to address drugs specifically acting on choles-
terol metabolism in glioblastoma cells. Moreover, if nanoparticles are magnetic or 
superparamagnetic, they may be guided in a magnetic field. Nanotherapy could 
increase the therapeutic effectiveness of chemotherapeutic agents while reducing 
their side effects and favoring their passage through the BBB (165). However, two 
drawbacks of nanotherapy should be stated: (i) the need to remove certain metals 
from the treatment area when using metal nanoparticles, such as iron oxide or 
gold nanoparticles, and (ii) the indefinite exclusion of magnetic resonance imag-
ing (MRI) for subsequent diagnosis of tumor progression (166). Nanoparticles can 
accumulate specifically in cancer cells through two targeting mechanisms: either 
they target passive cancer tissues by extravasation of nanoparticles through the 
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increased permeability of endothelial cell junctions in the tumor, or they target the 
tumor cell by functionalizing the surface of the nanoparticles with ligands which 
specifically bind to receptors that are overexpressed at the cancer cell surface 
(167). Another possible treatment for glioblastoma patients could be intra-tumoral 
thermotherapy using magnetic iron-oxide nanoparticles combined with radio-
therapy (168). Even a 7-KC-containing nano-emulsion could be of interest to 
treat glioblastoma since 7-KC has been successfully used to reduce melanoma 
growth (169).

CONCLUSION 

Cholesterol derivatives, including oxysterols, that have anti-proliferative and 
immunosuppressive properties, could have a great potential for the treatment of 
cancer (170, 171). Furthermore, oxysterols modulate the activity of several pro-
teins and consequently affect many cellular functions and influence various physi-
ological processes including cholesterol metabolism by maintaining cellular 
cholesterol level (105). Moreover, oxysterols have been revealed to modulate the 
function of immune cells and cancer growth. These effects can be dependent on 
the activation of the oxysterol-binding LXRs (170). At micromolar concentrations, 
some oxysterols are cytotoxic towards cancer cells in culture, and reduce the 
growth of murine transplanted tumors (172). Thus, due to the important role of 
oxysterols in cancer, possible applications of cholesterol derivatives as immuno-
suppressants or as active anticancer agents in metabolic therapy are promising. Tt 
has been shown that several cholesterol derivatives, which may or may not be 
LXR-agonists, induce numerous organelle dysfunctions including mitochondria, 
lysosome, peroxisome and endoplasmic reticulum, and are also autophagic induc-
ers, these molecules could thus be of interest in the treatment of glioblastoma by 
targeting their cancer cells’ metabolism.
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