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Abstract: Despite extensive research efforts in prostate cancer for the last several 
decades, the disease remains a leading cause of cancer death in men in the devel-
oped world. A typical feature of prostate cancer initiation and progression is the 
landscape of genetic alterations, which changes the expression patterns of numer-
ous molecules in prostate epithelial cells, where the disease originates. These aber-
rantly expressed proteins are tumor-associated antigens. Their uniqueness in 
tumors offers an avenue not only in advancing our understanding of prostate 
cancer but also in the search for better diagnostic and therapeutic tools. Mucin 1 
is one of the most well-characterized tumor-associated antigens. The protein is 
overexpressed and aberrantly glycosylated following prostate cancer  development, 
and influences certain disease factors including disease initiation, metastasis, and 
resistance to therapy. Mucin 1 possesses value as a biomarker in predicting 
 prostate cancer prognosis and has been studied as a therapeutic target. This 
 chapter provides an overview of the impact of Mucin 1 on prostate cancer and its 
clinical values.
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INTRODUCTION

Prostate cancer remains the most prevalent malignancy and the second leading 
cause of cancer-related death in men in the developed world (1). The disease 
originates from the prostate epithelial cells as prostatic intra-epithelial neoplasia 
and progresses to invasive carcinoma and metastatic prostate cancer (2, 3). 
Metastases occur frequently in the bone (4). Primary prostate cancers are com-
monly managed by active surveillance, and curative treatments including radical 
prostatectomy and radiation. Approximately 30% of patients following radical 
prostatectomy will develop recurrent tumors or biochemical recurrence with rise 
in serum prostate-specific antigen (PSA) (5). Recurrent tumors are typically resis-
tant to therapy, and relapsed prostate cancers or prostate cancers with resurged 
PSA are associated with higher risk of metastasis (6). Metastatic prostate cancers 
are treated with androgen deprivation therapy (ADT), which commonly leads to 
resistance in the form of castration-resistant prostate cancer (CRPC) (7, 8). There 
are multiple therapeutic options available for CRPCs, including taxane-based che-
motherapy and those targeting androgen receptor signaling such as abiraterone or 
enzalutamide (8–10), and immunotherapy (11, 12). Despite this variety of treat-
ment options, CRPC remains lethal (8, 13).

Cancer initiation, progression, and development of therapy resistance are reg-
ulated by complex processes, owing to the genetic and epigenetic changes that 
occur during the course of oncogenesis. These alterations result in a large number 
of unique tumor-associated antigens (TAAs) (14, 15). PSA as a classic prostate 
cancer TAA has been shown to generate PSA-specific T cells (16, 17). The nature 
of cancer-specific alterations (overexpression and modification) makes TAAs 
attractive targets for diagnostic and therapeutic purposes. Mucin 1 (MUC1) is one 
of the most well-characterized TAAs. MUC1 promotes tumorigenesis by activating 
PI3K-AKT, MEK-ERK, and other molecular pathways (18). Overexpression, 
hypoglycosylation, and aberrant glycosylation of MUC1 occur during prostate 
cancer initiation and progression. These changes are also associated with relapse 
and CRPC development. Thus, changes in MUC1 can be used as a prognostic 
biomarker. As a TAA, MUC1 has been explored as a target candidate for prostate 
cancer vaccine. This chapter provides an overview of the role of MUC1 in prostate 
cancer. The biology of MUC1, its alterations during prostate cancer development 
and progression, and its potential as a therapeutic target along with its limitations 
and future research are discussed.

THE BIOLOGY OF MUC1

The MUC1 gene at 1q22 encodes mucin 1, a protein belonging to the 21-member 
mucin family in humans. Mucins are large proteins with extensive O-glycosylation 
and constitute the mucus barrier on epithelium to protect epithelial cells from 
external environment (19). MUC1 was first detected in human milk fat globule 
and a set of breast cancer cell lines using anti-human milk fat globule serum (anti-
HMFG) (20); its membrane expression was subsequently observed at the apical 
surface of many glandular epithelial cells including those of the mammary gland, 
salivary gland, pancreas, prostate, uterus, as well as gastrointestinal and 
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respiratory tracts (21, 22). MUC1 plays a critical role in forming the protective 
mucus barrier on epithelial surfaces, evident by the significant reduction of mucus 
obstruction in cystic fibrosis mice with MUC1 deficiency (23).

Cell surface MUC1 is a heterodimer consisting of a large N-terminal extracel-
lular subunit (MUC1-N or α-subunit) and a small C-terminal subunit (MUC1-C 
or β-subunit) containing a small extracellular domain, a transmembrane motif, 
and a C-terminal intracellular region; dimers are formed via non-covalent associa-
tion in extracellular regions adjacent to cell membrane (Figure 1) (24). The two 
subunits are produced from a single polypeptide chain by autocleavage following 
the GSVVV sequence, which is located within the SEA (Sea urchin sperm protein 
enterokinase and agrin) domain, during translation (25). The N-terminal frag-
ment contains variable number of tandem repeats (VNTR, n = 40–80) of 20 amino 
acid residues (26, 27); MUC-N is enriched with proline, threonine, and serine 
(PTS) motifs and is extensively O-glycosylated such that the peptide core is mostly 
covered (Figure 1) (28). The heavy glycosylation contributes to MUC1’s physio-
logical functions in normal cells (28).

In cancer cells, MUC1 is not only significantly upregulated but also undergoes 
aberrant glycosylation and hypoglycosylation in most cancers (29). 
Hypoglycosylation leads to exposure of VNTR peptides, which along with aber-
rant glycosylation change the biochemical properties and cell distributions of 
MUC1 (28). These abnormalities underline MUC1’s properties as a biomarker and 
therapeutic target as well as its functionality in promoting cancer progression.

UPREGULATION OF MUC1 IN PROSTATE CANCER

In a study of 2760 prostate cancer cases and 1722 controls, MUC1 gene variations 
in terms of single nucleotide polymorphisms and haplotype were not associated 

Figure 1. MUC1 heterodimer structure. MUC1 is cleaved at the indicated site, i.e., after 
GSVVV, during translation to generate the MUC1-N and MUC1-C subunits. Both subunits 
form a heterodimer in the extracellular space adjacent to cell membrane. MUC1-N is 
extensively O-glycosylated as indicated. SEA (Sea urchin sperm protein enterokinase and 
agrin) and TM (transmembrane) domains are indicated. VNTR, variable number of tandem 
repeats.



Kapoor A et al.128

with prostate cancer risk and disease progression (30). In an investigation of pri-
mary prostate cancers (n = 333), metastatic prostate cancers (n = 150), and CRPCs 
(n = 77), an increase in MUC1 gene copy number was observed in 35% of CRPCs 
compared to 6% and 1.8% in mPCs and primary PCs, respectively (31), indicat-
ing that MUC1 gene amplification contributes to MUC1 upregulation in CRPCs.

In a NanoString-based gene expression analysis using 7 pairs of primary pros-
tate cancers and matched non-tumor tissues, MUC1 mRNA was increased in four 
prostate cancer samples compared to their matched non-tumor controls; 5 of the 
PC tissues showed elevations of ERG expression (demonstrative of TMPRSS2-
ERG fusion) and downregulation of PTEN, both common molecular alterations in 
prostate cancer oncogenesis (31). However, in an analysis of multiple cohorts 
consisting of 221 prostate cancers and 92 normal prostate tissues, MUC1 mRNA 
expression was shown to be reduced (31). Nonetheless, high level of MUC1 
mRNA expression likely correlates with TMPRSS2-ERG fusion based on data from 
the Sueltman dataset (Figure 2A) (32). TMPRSS2-ERG fusion occurs commonly 
in prostate cancer and plays important roles in its initiation and progression 
(33, 34). Additionally, microarray-based gene expression profiling of 62 primary 
prostate cancers and 41 normal prostate tissues revealed increases in MUC1 
mRNA expression in high-grade and advanced prostate cancers (35). Collectively, 
while current evidence does not conclusively support upregulation of MUC1 gene 
expression during prostate cancer initiation, elevations in MUC1 mRNA largely 
correlate with prostate cancer progression.

The above concept is supported by increases in MUC1 mRNA expression in 
metastatic prostate cancers. In two independent cohorts containing 54 metastatic 
prostate cancers compared to 82 normal prostate tissues, higher levels of MUC1 
mRNA were observed in metastatic cases (31). Elevation of MUC1 mRNA in met-
astatic prostate cancer could also be demonstrated using the well-established 
Sawyers dataset (36) organized by the R2: Genomics Analysis and Visualization 
Platform (http://r2.amc.nl http://r2platform.com) (Figure 2B).

Figure 2. MUC1 expression is associated with adverse features of PC. A. Analyses were 
performed using the Sueltman dataset (45) in R2: Genomics Analysis and Visualization 
Platform. B. Analyses were performed using the Sawyers dataset (49) in R2: Genomics. 
Statistical analyses were performed by the R2 Platform using one-way ANOVA.

http://r2.amc.nl
http://r2platform.com
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MUC1 expression was observed in prostate epithelial cells and prostate adeno-
carcinoma more than two decades ago using two anti-MUC1 monoclonal anti-
bodies (mAb) DF3 and 139H2 (22). Immunohistochemistry staining with B27.29, 
which recognizes the peptide core (37), showed enhanced MUC1 protein 
 expression in prostate cancer compared to normal prostate glandular epithelial 
cells (38). Hypoglycosylation of prostate cancer-associated MUC1 was demon-
strated by its preferential recognition of prostate cancer cells compared to non-
tumor prostate epithelial cells using antibodies BrE-3, BC2, and EMA; these mAbs 
bind to the peptide core. The upregulation of hypoglycosylated MUC1 positively 
correlates with Gleason scores (39) and cancer progression (40, 41) (Table 1).

Reduction in O-glycosylation in tumor-associated MUC1 is also caused by 
premature termination of chain elongation, which is in part attributed to the addi-
tion of sialic acid, leading to MUC1 being highly sialylated in tumors (28). In line 
with this concept, mAb MY.1E12 which reacts with sialylated MUC1 (42, 43), 
detects MUC1 upregulation and is correlated with prostate cancer grade (44). 
Elevation of 2 O-linked glycan syalyl Lewis X (sLex) MUC1 occurs in prostate 
cancer (Table 1), which might be in part attributable to the upregulation of 
GCNT1 glycosyltransferase in prostate cancer (45).

While evidence collectively supports overexpression of aberrantly glycosylated 
MUC1 in prostate cancer, it remains unclear whether the “upregulation” detected 
by antibodies recognizing the altered forms truly reflects MUC1 upregulation, as 
aberrantly modified MUC1 is present in prostate epithelial cells. This limitation is 
reflected in immunohistochemistry analysis using mAb MBC-2, which revealed 
MUC1 positivity in 28% of primary prostate cancers (9/32), and 22% of non-
tumor prostate tissues (15/68) (46). Similarly, MUC1 protein was detected in 17% 

TABLE 1 MUC1 upregulation in prostate cancera

Population (n)b MAb
% of 

positive Associationc Reference

10 DF3
139H2

100%
100%

NA (22)

5 B27.29 NA NA (38)

24 BrE-3, BC2, EMA NA Upregulation in PC and higher 
Gleason grade PC

(39)

120 primary PC
10 LN mPC

C595 58%
90%

Upregulation in PC and higher 
Gleason grade PC

(40)

9 mPC HMFG-2 55.5%d Upregulation in mPC (41)

57 MY.1E12 NA Upregulation in PC and higher 
Gleason grade PC

(44)

10 CHO131 NA NA (45)
aIn comparison to normal prostate and/or BPH (benign prostate hyperplasia) tissues; bPrimary PCs unless otherwise 

indicated; cAssociation with PC severity; d Positivity was defined by MUC1-positive cells > 50% of total tumor cells. LN 
mPC, lymph node metastasis; mPC, distant metastasis; NA, not available.
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(30/175) of prostate cancer and 41% (42/103) of non-tumor tissues using the 
VNTR-specific, but glycosylation-insensitive, anti-MUC1 antibody 214D4 (47). It 
is thus important to further examine MUC1 upregulation using gene expression 
and genetic approaches.

While the mechanisms responsible for MUC1 upregulation in prostate can-
cer at either the protein or mRNA level are still largely unknown, prostate cancer 
stem cells (PCSC) may play a role in this process. Sphere cells derived from 
DU145 cells possess PCSC properties (48) and display significant upregulation 
of MUC1 at both the protein and mRNA level compared to their non-stem can-
cer counterparts (31). Higher levels of MUC1 were also detected in xenografts 
generated from DU145 PCSC-like sphere cells compared to tumors produced by 
non-stem cancer DU145 cells (31). Evidence indicates that mechanisms regulat-
ing PCSCs might be important in MUC1 upregulation in prostate cancer. This 
notion is in accordance with the expression of MUC1*, a MUC-1C fragment 
missing the N-terminal 13 residues from its 58 residues of the extracellular 
domain in human embryonic stem cells (hESCs) (49). PCSCs are a major driver 
of prostate cancer progression and development of therapy resistance, including 
CRPC (50). 

MUC1 AND PROSTATE CANCER PROGRESSION

Resistance to ADT or the generation of CRPC remains the inevitable, lethal pro-
gression of prostate cancer, to which PCSC is a major contributor (50). Of note, 
upregulation of MUC1 has been demonstrated in human CRPCs, LNCaP cell-
derived CRPC xenografts, and CRPC produced in castrated prostate-specific 
PTEN-/- mice (31, 51). MUC1 promotes CRPC in part via enhancement of PCSC. 
MUC1-C induces the expression of the pluripotent genes OCT4, SOX2, LKF4, 
and MYC in prostate cancer cells, facilitates PCSCs, and promotes CRPC develop-
ment (52). Intriguingly, MUC1* maintains the self-renewal of hESCs via binding 
to NM23-H1, a metastasis-associated protein (49). MUC1-C enhances prostate 
cancer plasticity partly through suppression of AR signaling (52). MUC1-C 
reduces AR signaling via association with ARs and activating miR-135 that down-
regulates ARs (53). ARs downregulate MUC1 expression in LNCaP cells via bind-
ing to the MUC1 promoter, and also through induction of miR-125b that inhibits 
MUC1 expression (54). The AR-derived suppression of MUC1 expression might 
be a contributor for LNCaP cells being MUC1-negative (55). While these observa-
tions support mutual inhibition between ARs and MUC1 expression in prostate 
cancer, their relationship is complex; ectopic expression of ARs in AR-negative 
PC3 cells upregulated MUC1 following stimulation with 5α-dihydrotestosterone 
(DHT) (56). Similar observations were also obtained in AR-negative DU145 cells 
with ectopic AR expression (57). 

Induction of MUC1 by androgens in DU145-AR and PC3-AR cells decreased 
cell adhesion (56, 57). Upregulation of MUC1 in PC3 cells by arctiin also reduced 
cell adhesion (58), supporting the idea that MUC1 plays an important role in 
decreasing cell adhesion, which may facilitate metastasis. This possibility is 
 reinforced by the production of sialyl Lewis a (sLea) modification on MUC1 upon 
its ectopic expression in low MUC1 expression LNCaP and PC3 cells (59). 
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MUC1 with the sLea and sLex antigen are selectin ligands (60–62); the interaction 
between cancer cells and selectin plays a critical role in the extravasation of cancer 
cells from blood vessel to tissues during metastasis (63). MUC1 may enhance 
metastasis via multiple mechanisms. For example, MUC1-C can induce the epi-
thelial-mesenchymal transition (EMT) (53), an essential process of metastasis. 
MUC1 also enhances prostate cancer progression through other mechanisms. The 
inhibition of AMPKα activity by MUC1 in vivo promotes CRPC development; 
 conversely, AMPKα suppresses CRPC in part by inhibition of MUC1 expres-
sion (64). While the detailed mechanisms are still unclear, MUC1 expression in 
prostate cancer is associated with angiogenesis (65) and evasion of natural killer 
cell-derived immunity (66). Downregulation of MUC1 expression by miR-326 
inhibited cell proliferation in vitro and xenograft formation in vivo; the inhibitions 
were neutralized upon MUC1 re-expression (67). Collectively, a large body of 
evidence reveals that MUC1 plays a role in promoting prostate cancer progression 
through modulating multiple oncogenic processes, including angiogenesis, metas-
tasis, and CRPC development. These properties might be attributed to MUC1-C’s 
action in promoting growth factor receptor signaling, PI3K-AKT-mTOR, MEK-
ERK, and cancer metabolism (18).

MUC1-MEDIATED PREDICTION OF PROSTATE CANCER 
PROGNOSIS

The upregulation of aberrant glycosylation along with its functional contributions 
to prostate cancer underlines MUC1’s potential as a prognostic biomarker. MUC1 
expression can be used for risk stratification (44), predicting tumor volume, 
stage, metastasis (68), recurrence-free survival (35, 69) and mortality risk (70). 
MUC1-mediated prediction of prostate cancer recurrence and fatality can be 
improved with multiple gene panels consisting of MUC1+AZGP1 (35) and 
MUC1+AZGP1+p53 (70), respectively. Furthermore, MUC1-associated genes or 
its network predicted prostate cancer relapse with high level of certainty (51, 71). 
Collectively, accumulative evidence supports an association of high MUC1 expres-
sion with poor prognosis of PC (Table 2).

Nonetheless, the prognostic role of MUC1 in prostate cancer might be much 
more complex. In a tissue microarray analysis of early-stage prostate cancer 
(T1a-b, Nx, M0; n = 195) under watchful waiting for 20 years, tumors with 
either high- or low-MUC1 expression were associated with a higher risk of fatal-
ity compared to those with moderate MUC1 expression comparable to normal 
prostate epithelium (72). MUC1’s prognostic potential was independent of 
Gleason score and tumor stage (72). The observed higher risk of death for early-
stage prostate cancers with reduced MUC1 expression needs further investiga-
tion. Nonetheless, this study indicates a complex relationship between MUC1 
expression and prostate cancer progression, a concept that is in line with the 
observations that overexpression of MUC1 in LNCaP C4–2B4 cells was neither 
stimulative nor inhibitive of xenograft formation (73). Collectively, more work 
is needed to translate the knowledge generated in laboratory into clinical 
applications.
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MUC1 AS A THERAPEUTIC TARGET FOR PROSTATE CANCER

As a TAA, MUC1 has been examined as a target for immunotherapy for prostate 
cancer. In an in vitro model, chimeric antigen receptor (CAR)-MUC1 T cells 
were produced and shown to be effective in killing PC3 and DU145 cells; they 
also increased the cytotoxicity of AR-positive LNCaP cells together with flu-
tamide, an anti-androgen (74). Tecemotide or L-BLP25 is a cancer vaccine tar-
geting the tandem repeats of MUC1 and has been under clinical trials for a 
variety of cancers, including a phase III trial for non-small cell lung carcinoma 
(NSCLC) (75, 76). A phase II clinical trial has been conducted on 16 patients 
who had biochemical recurrence following radical prostatectomy. Of these, six 
patients showed prolonged PSA doubling time (PSADT) (77). In a phase I/II 
clinical trial (NCT00852007) on 17 patients with non-metastatic CRPC, autolo-
gous dendritic cells were stimulated with a Tn-MUC1 peptide in vitro, and upon 
reintroduction to patients, it significantly improved PSADT in 11 patients and 
induced Tn-MUC1 specific CD4+ and CD8+ T cell response in five of the seven 
patients analyzed (78). In a randomized phase IIa clinical trial on 21 chemo-
naïve CRPC patients with dendritic cells loaded with NY-ESO-1, MAGE-C2, and 
MUC1 peptides, specific T cell responses were detected and in patients with 
IFN-γ+ T cells, extension of median radiological progression-free survival was 
observed (79).

MUC1 has also been targeted using a virus-based vaccine. TG4010 is a 
recombinant vaccinia virus Ankara expressing MUC1 and IL2. In a phase II 
clinical trial on 40 prostate cancer patients with PSA progression treated with 
TG4010, 13 patients had at least a 2-fold improvement in PSADT, and 10 
patients had stabilized PSA for more than 8 months (80). Although the primary 
objective of a 50% PSA reduction from base line was not achieved, inclusion of 

TABLE 2 MUC1-associated prognostic biomarker value

Population (n) Progression HR (95% CI)a p value Reference

57 PFS 5.23 (1.83-14.97 0.002** (44)

225 RFS 2.35 (1.30-4.24) 0.0005*** (35)

119b DSS 3.2 (1.5-7.0)c 0.0382* (68)

1326 RFS 1.24 (1.02-1.49) 0.02* (69)

315d OS 2.51 (1.14-5.54) 0.02* (70)

485e DFS 2.38 (1.55-3.58) 3.45E-05*** (51)
aUnivariate Cox analysis unless otherwise specified; bPatients with LN metastasis; cMultivariate Cox analysis 

including Gleason scores; dMortality cases n = 83; e A nine-gene panel derived from MUC1-associated genes. DFS, 
disease free survival; DSS, disease-specific survival; OS, overall survival; PFS, progression free survival; RFS, recurrence 
free survival; *p<0.05, **p<0.01, and ***: p < 0.001.
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MUC1 in the vaccine provided some therapeutic benefits. Collectively, the 
above observations support MUC1 being a useful TAA for developing prostate 
cancer vaccine.

CONCLUSION

Since its discovery as a component of human milk fat globule in 1977 (20), MUC1 
has been extensively studied in cancer, particularly in epithelium-originated 
malignancy; it is commonly overexpressed with aberrant glycosylation in numer-
ous cancer types (19), including prostate cancer. Despite some inconsistencies 
(46), cumulative evidence clearly reveals MUC1 upregulation in prostate  cancer, 
and its possible role in initiation, progression, and metastasis of prostate cancer. 
While MUC1 expression does show prognostic value, this prediction is not robust 
and should be strengthened by multigene panels for potential clinical application. 
In this regard, the multigene panels derived from MUC1’s network (51, 71) should 
be explored for clinical applications. While MUC1 as a TAA has clinical benefits 
as a vaccine, its therapeutic potential seems limited based on several clinical trials 
in which MUC1 tandem repeat peptide core and aberrant glycosylation have been 
used. Approaches to inhibition of MUC1-C warrant more attention. Of note, 
GO-201, a synthetic peptide that inhibits MUC1-C oligomerization displays anti-
prostate cancer activity in preclinical studies (81). Additionally, upon linkage to 
ZZ-PE38, the Fc-binding ZZ domain of protein A fused to Pseudomonas 
exotoxin (82), a humanized mAb DMB5F3 potently killed MUC1+ cancer 
cells  (83). DMB5F3 recognizes the SEA domain shared between MUC1-N and 
MUC1-C (83). The therapeutic utility of GO-201 and DMB5F3-ZZ-PE38 in treat-
ing prostate  cancer should be investigated either alone or together with the cur-
rent MUC1 vaccines. Further, the role of MUC1 on MUC1-/- mice and MUC1 
transgenic animals should be investigated. Both mouse lines are available (84, 85). 
Transgenic expression of human MUC1 in mice did not cause tumor formation (85). 
MUC1-/- mice were normal (84) but showed delay in mammary tumor  formation 
induced by polyoma middle T antigen (84). It will be interesting to see the impact 
of these mice on research into prostate cancer formation and progression induced 
by prostate-specific PTEN deficiency.
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