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Abstract: Despite recent advances in general cancer treatment, glioblastoma 
remains among the most lethal of human malignancies. Even with aggressive 
multimodal radiation and chemotherapy after surgery, glioblastoma recurs with 
a bleak prognosis. Decades of research focused on strategies such as increasing 
radiation sensitivity and interference with oncogenic signal transduction have 
yielded only incremental improvements at best. This is due in part to the 
 radioresistance of glioblastoma and molecular heterogeneity of tumor cells. We 
hypothesize is that the development of more effective glioblastoma therapies 
will require: (i) a more accurate molecular analysis of glioblastoma so as to pre-
dict response to therapy; (ii) better genetically engineered mouse models, which 
can faithfully recapitulate human glioblastoma and the tumor microenviron-
ment to test new approaches and (iii) development and application of more 
accurate and focused methods to deliver sustained high energy particles to glio-
blastoma tumor sites. This chapter describes the current state-of-the-art molec-
ular analysis approaches, latest in glioma mouse modelling, and advances in the 
application of proton  therapy treatment and research. By integrating basic and 
clinical research with cutting-edge technologies, a mechanistic understanding of 
glioblastoma therapy resistance and pathogenesis and the development of new 
therapeutics to overcome the therapeutic resistance of glioblastoma will be 
advanced.

Keywords: brain tumor-associated edema; in utero electroporation-based glioma 
mouse models; mycophenolic acid; proton beam therapy; single-cell RNA 
sequence

INTRODUCTION

Glioblastoma is a WHO Grade IV primary brain cancer with an abysmal prognosis 
(1). The current gold standard initial treatment approach is a gross resection of the 
tumor guided by the use of 5-Aminolevulinic Acid (5-ALA), a porphyrin precur-
sor, to identify the infiltrative margins (2). Such emerging imaging approaches 
combined with advances in surgical techniques have improved surgical outcomes, 
but the undetected residual microscopic disease remains a significant problem. 
Gross surgical resection, when anatomically possible, is followed by a one month 
break and then chemoradiation and ionizing radiation (IR) induces DNA double-
strand breaks through direct high-energy damage to the sugar backbone of DNA, 
but also through free radicals generated in cells, which accounts for 60–70% of 
DNA lesions, exerting its genotoxic and ultimately cytotoxic effect (3, 4). However, 
glioblastoma is intrinsically resistant to IR (5–13), and therefore ionizing radiation 
therapy yields only marginal improvements in patient survival (14, 15), with a 
nearly 80% rate of recurrence within the high dose radiation field (16, 17). The 
nature of the resistance is unclear, but the general consensus is that it is related at 
least in part to increased glioblastoma tolerance to reactive oxygen species 
(11, 12, 18–20) and enhanced GTP metabolism (21–23).

Stupp and colleagues described a therapeutic approach that remains the stan-
dard of care therapy for glioblastoma. The “Stupp protocol,” as it is commonly 
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called, uses IR plus concomitant and adjuvant temozolomide (TMZ, Temodar) (15). 
The addition of temozolomide, DNA-damage based treatment through alkylating 
guanine and adenine bases of DNA, to radiation, improves median  survival by 
approximately an additional 6 months (15). It was noted that MGMT methylated 
glioblastomas fared better in terms of survival than MGMT unmethylated glioblas-
tomas. These studies indicate that the efficacy of IR can be significantly improved 
by combination therapy. These results also point to the importance of mechanistic 
understanding of radioresistance and the identification of a new pathway that 
more effectively increases the efficacy of radiation on the tumor but not normal 
tissue.

Recently, Stupp and colleagues described the use of tumor treating fields 
(TTFs) with the standard of care therapy in glioblastoma (IR plus TMZ) in a 
randomized open-label trial of 695 glioblastoma patients, reporting that median 
progression-free survival was 6.7 months in the TTF plus standard of care group 
versus 4 months in the standard of care group alone (21). Phase 3 clinical trials 
of bevacizumab (Avastin) in glioblastoma showed no survival advantage; how-
ever, in glioblastoma patients with steroid dependence, bevacizumab can be 
used as a steroid-sparing agent (22). After the significant investment of resources 
into the upfront clinical trial setting of glioblastoma with immunotherapies, 
neoadjuvant anti-PD-1 therapy provided a promising survival benefit in recur-
rent glioblastoma (23), however, the Phase III study was negative in terms of 
survival benefit. Many vaccine trials are on the horizon for glioblastomas, and 
these are promising for patients who fulfill the selection criteria for these  studies. 
However, many glioblastoma patients do not qualify for vaccine studies due to 
the location of the tumor, the immunogenicity of their tumor, and their 
 performance status (24, 25). A critical challenge has been to develop new 
ways for accurate and rapid prediction of an individual patient’s susceptibility 
to treatment.

Identifying a number of molecular genetic (for example, p53, NF1, PTEN, 
PDGFR) and signaling pathways (for example, RAS/ERK, PI3K/AKT pathways) 
involved in cancer development has led to several targeted agents being investi-
gated in clinical evaluation for glioblastoma (26–28). To test the effects of the 
identified pathway and drug, preclinical mouse models have proven to be an 
invaluable tool, but unfortunately, none of these targets have been translatable in 
the clinical arena. Glioblastoma mouse models allow one to investigate basic 
mechanisms—enabling precise examination of numerous aspects, including cel-
lular origins, regional differences in microenvironments, and the function of spe-
cific genetic events. However, a major challenge has been to develop preclinical 
mouse models that recapitulate the human glioblastoma nature in a time and 
cost-effective fashion. Furthermore, gliomas encompass a diverse set of tumors 
that can differ in location, age of onset, mutation status, and histopathological 
features making this an extraordinary challenge.

So, how can we change the prognosis of a patient with a glioblastoma? What 
target(s) should we be investigating as possible therapeutic vulnerabilities? How 
can we overcome the various barriers to generate and use glioblastoma mouse 
models? This chapter will review new advances in radiation therapeutics, molecu-
lar analysis of glioblastomas, and new animal models that will address these 
questions. 
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THE CURRENT STATE OF MOLECULAR ANALYSIS AND 
RELEVANCE IN GLIOBLASTOMA TREATMENT OPTIONS

When a glioblastoma tumor is resected surgically, the tumor cells can be an invalu-
able source of information that can (and should) be utilized to guide patient treat-
ment (personalized medicine). The tumor cells could potentially be used in a 
number of platforms, including RNA expression analysis (29–36), protein charac-
terization (37–41), and metabolic profiling (37–39) (Figure 1). Once targets are 
identified, appropriate models can be generated to test treatment strategies, 
including 3D platforms such as ex vivo Organ-on-Chip (40, 41), in vitro cell cul-
ture methods including spheroids and organoids, and of course mouse models, 
transgenic and/or intracranial xenograft (37, 42–44) as well as large animals 
(for example, canine) (45, 46). Below we detail a newer emerging mouse model 
approach. Here we detail analysis of RNA sequencing to identify therapeutic 
targets and RNA-based therapeutics to target the mRNA or non-coding RNA.

Analysis of mRNA in glioblastoma

The genomic analyses of the tumor tissue or whole cells significantly increased 
our understanding of GBM in patients. For example, several whole-genome 
DNA sequencing studies reported (47) resulted in subtyping of glioblastomas 
based on their molecular phenotype. The IDH1/2-mutant GBMs are distinct 
categories, for example, mutations in the EGFR, PDGFRA, NF1 genes; mutations 
in hTERT  promoter; epigenetic changes such as altered methylation of the 
MGMT gene promoter (48, 49). While advanced genetic analysis has improved 
the prediction of glioma outcomes and treatment approaches (50–52), unpre-
dictable significant inter-individual variation in therapeutic efficacy is often seen 
in the treatment of glioblastoma patients. Apart from the tumor itself, glioblas-
tomas are heterogeneous, composed of diverse cells, such as immune cells and 
stromal cells (53, 54).

Two of the significant challenges are understanding the pathogenesis of glio-
blastoma and predicting more accurately patient sensitivity to a selected 
treatment(s). The analysis of individual parts of the genome and the transcribed 
RNA provides the potential for a more comprehensive understanding of the 
pathogenesis of glioma and possible treatments tailored to individual patients. 
The recent development of single-cell RNA-sequencing (scRNA-seq) has enabled 
functional analysis of individual glioblastoma cells. The differential transcriptional 
landscape between individual cells can have profound functional consequences, 
for example, cellular, molecular, genetic, epigenetic, and metabolic heterogeneity. 
These heterogeneities affect the course of glioblastoma development and thera-
peutic responses, challenging personalized medicine. Historically, single-cell tran-
scriptional analysis is started by single-cell quantitative PCR (qPCR). Rapid 
progress in the development of sequencing and single-cell isolation technologies 
in recent years has enabled RNA sequencing at single-cell levels (55). The scRNA-
seq technology can uncover highly complex as well as rare cell populations. Also, 
the time-resolved scRNA-seq analysis can clarify the regulatory relationship 
between gene expression in responses to stimuli (for example, therapeutic 
 treatment) and track the trajectories of cell lineages.
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Suva and colleagues (56) utilized scRNA-seq analysis of 28 glioblastomas and 
bulk expression analysis of 401 specimens from the TCGA, combined with func-
tional approaches and single-cell lineage tracing to create a cohesive model for the 
genetic heterogeneity and cellular states in glioblastomas. They found that malig-
nant cell niches in glioblastomas are influenced by copy number amplifications of 
CDK4, EGFR, and PDGFR loci and mutations in NF1. Couturier et al. (57), utiliz-
ing scRNA-seq analysis of 53,586 adult glioblastoma cells and 22,637 normal 

Figure 1. A flow diagram of a personalized medicine approach of a patient’s glioblastoma tumor. 
This diagram shows how a patient with a glioblastoma experiencing headaches, has imaging 
that localizes a tumor. When the tumor is resected surgically, it could potentially be used in a 
number of platforms, including, RNA sequencing, protein characterization and metabolic 
profiling. Once targets are identified the appropriate models can be generated as shown in 
the flow diagram, including, 3D platforms, in vitro cell culture methods, transgenic mice, 
intracranial xenografts and large animal studies.
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human fetal brain cells, reported a conserved neural tri-lineage hierarchy centered 
around glial progenitor-like cells. They reported that within this progenitor popu-
lation, most cancer cells are centered around said glial progenitor-like cells and 
that the course of glioblastoma development is along with the conserved neurode-
velopmental gene programs, which possesses a rapidly dividing progenitor popu-
lation. Their scRNA-seq analysis revealed new insight on primary glioblastomas 
and created a hierarchical map to identify therapeutic targets specific to progeni-
tor cancer stem cells.

Analysis of non-coding RNA in glioblastoma

While there is an emphasis placed on the study of the expression of protein- 
coding genes (mRNA transcripts), it is essential not to overlook the potential con-
tribution of non-coding genes as well as promoter and enhancer elements. 
Functional studies in disparate systemic cancers have shown that long non-coding 
RNAs and miRNAs can promote pathogenesis. Integration analyses of long non-
coding RNAs and competing endogenous RNA networks in glioblastomas are 
much rarer. These networks may be the key to understanding the pathogenesis of 
glioblastomas, as well as predicting the therapeutic efficacy of the selected treat-
ment, thus representing an untapped therapeutic potential (58).

RNA-based therapies and their delivery to a glioblastoma

We suspect that many potential targets will not have targeted drugs available. 
Thus, we should keep open the possibility of targeting transcripts and/or non-
coding RNAs with RNA-based therapeutics (such as siRNAs, ADARs, gRNA for a 
CRISPR-Cas9 approach) and the development of technologies that can aid their 
delivery to a glioblastoma. On this front, an emerging clinical technology that may 
significantly impact glioblastoma treatment is the application of focused ultra-
sound combined with microbubbles to facilitate the delivery of RNA-based 
 therapeutics as well as large drugs and monoclonal antibodies into glioblastomas 
(59, 60). Importantly, this non-invasive technology can overcome the blood-
brain/blood-tumor barriers for delivery of RNA-based therapeutics and the 
nanoparticles used to aid their delivery, but many agents that might be effective 
in vitro but because of their size/mass cannot cross the blood-brain/blood-tumor 
barriers, for example, earlier generations of EGFR tyrosine kinase inhibitors and 
newer agents such as monoclonal antibodies and vaccines (61, 62).

EMERGING MOUSE MODELS OF PEDIATRIC AND ADULT 
HIGH-GRADE GLIOMA AND GLIOBLASTOMA

Developing animal models that faithfully recapitulate the features of human glio-
mas is essential for conducting accurate preclinical studies that facilitate the devel-
opment of novel drugs and therapeutic strategies that can be translated into the 
clinic. While the establishment of patient-derived cell lines and xenograft models 
has dramatically advanced our understanding of this deadly disease, limitations 
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for patient-derived models include the inability to establish consistent cultures 
from tumors, the presence of numerous and complex genetic events, and the use 
of immunodeficient hosts, which limits their use for immunotherapy studies (63). 
Traditionally, immunocompetent glioblastoma mouse models have been gener-
ated using the knock-out and transgenic mouse approach. However, the knock-
out and transgenic-mouse approach often require crossing with other mutant 
mice (for example, Trp53-KO, Pten-KO), which takes a number of years and costs 
to maintain the colonies (63). The replication-competent ALV splice acceptor 
(RCAS)/tv-a glioblastoma system developed by Holland’s group overcomes this 
issue (64, 65). The engineered RCAS virus carrying the gene of interest (for exam-
ple, EGFR, shRNA for PTEN, sgRNA for p53) can be delivered to the specific cells 
(for example, glia) that is engineered to express its receptor t-va (64, 65). While 
the RCAS/t-va system is a revolutionized technology, potential limitations are that 
the RCAS virus vector typically allows the small size of the insert (3 kb), and it 
requires t-va expressing transgenic mouse; thus, the system is basically incompat-
ible with the existing mutant mouse. In this section, we highlight in utero electro-
poration (IUE) based glioma mouse models, which have been developed for both 
adult and pediatric gliomas (Figure 2).

Figure 2. In utero electroporation-based models of DIPG. A. Schematic cartoon of the IUE 
procedure targeting the developing embryonic brainstem. B. Representative image of 
GFP-positive transfected brainstem neural stem and progenitor cells 48 hours post brainstem 
IUE in a sagittal brain section. C. Example of luciferase positive and negative IUE pups at two 
weeks postnatal. D. Survival curve for different oncogenic IUE combinations depicting 
different rates of tumorigenesis.
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In utero electroporation-based glioma mouse models 

To address some of the drawbacks of traditional genetic mouse models, including 
high cost and lengthy development times, a number of groups have utilized IUE 
as a flexible and rapid platform to develop glioma mouse models. IUE of the 
developing brain was first described by Tabata and Nakajima in 2001 (66) and 
has traditionally been used to label and track cellular migration or the impact of 
transient genetic manipulations on cellular proliferation and differentiation (67). 
More recently, a number of laboratories have paired this technique with advances 
in DNA editing technologies to develop new brain tumor mouse models (68–70). 
First, the application of CRISPR-Cas9 technology to directly edit the mouse 
genome has been successfully used to generate adult glioma mouse models (68). 
By transfecting guide RNAs (gRNA) targeting known glioma mutations, such as 
Nf1, Trp53, and Pten, along with the Cas9 protein, Zuckermann et al. first described 
this efficient method to create triple loss-of-function mutant adult glioma mouse 
models using IUE (68). They validated the effectiveness of CRISPR-Cas9 gRNAs 
at generating frameshift INDELs within targeted genes; successfully targeted IUE 
offspring developed fully penetrant gliomas. This triple-CRISPR model has been 
used by a number of other groups, providing a platform to screen genetic variants 
(71, 72) and study functional interactions between tumor cells and the microen-
vironment (73).

The ability to restrict transfection to specific brain areas with IUE also provides 
an opportunity to model regionally distinct glioma subtypes, such as diffuse 
intrinsic pontine glioma (DIPG), a highly lethal pediatric glioma that arises in the 
brainstem (74–76). Compared to adult gliomas, DIPGs harbor unique genetic 
alterations, including histone K27M mutations that are found in approximately 
80% of cases (77). The use of traditional genetic mouse models to model histone 
mutations did not result in glioma formation, yet the introduction of histone 
K27M mutations, paired with Tp53 loss-of-function and Pdgfra expression by cor-
tical or brainstem targeted IUE produced fully penetrant gliomas (78). Additional 
IUE based DIPG mouse models generated by Patel et al. revealed a range of laten-
cies, histopathologies, and gene expression changes induced by  specific combina-
tions of mutations used to model DIPG (70). In this study, they noted the 
importance of histone K27M mutations in accelerating glioma formation in the 
presence of PdgfraD842V + DN-p53 (dominant-negative p53) and its requirement 
for tumor formation in WT-Pdgfra + DN-p53 backgrounds. Besides hastening 
glioma development, H3 K27M mutations drove epigenetic and  transcriptional 
changes that mirror those identified in K27M mutant DIPG patient samples, 
including loss of H3K27me3 (79) and decreased CDKN2A (p16) expression, 
respectively (80, 81).

Developing animal models that recapitulate the features of human gliomas is 
essential for conducting accurate preclinical studies to improve the prediction of 
drug penetration and efficacy, as well as radiation efficacy. Utilizing the IUE plat-
form to generate regionally and genetically distinct glioma mouse model in a rapid 
and flexible manner provides exciting new research possibilities. This includes 
investigating recently identified mutations discovered by next-generation sequenc-
ing studies of patient samples or targeting DNA transfection to specific cell-types 
to test the impact of cellular origin on tumorigenesis. In addition, the immune 
competency status of these IUE glioma mouse models also provides an in vivo 
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system to examine immune-modulatory and immunotherapy strategies. Our 
recent studies have shown that an IUE-based high-grade glioma is a powerful 
approach, revealing that the efficacy of dasatinib treatment of PdgfraD842V + 
DN-p53 high-grade glioma is enhanced with everolimus (82). The results suggest 
a promising route for improving targeted therapy for high-grade glioma patient 
with the driver mutation of PDGFα and p53.

PROTON BEAM THERAPY

Theoretically, higher doses of radiation increase the anti-glioma effect. However, 
an increase in dose is generally associated with an increased risk of radiation 
necrosis and toxicity to normal surrounding tissue (83). Various technological 
advances have led to improved delivery systems in radiotherapy. Contact 
radiotherapy via radioactive sources and superficial energies was superseded by 
2-dimensional radiotherapy with the ability to generate increasing energies of 
electrons and generated photons. This advanced with the advent of computed 
tomography to 3-dimensional treatment. Intensity-modulated radiotherapy, 
improving conformality, and advanced planning techniques were made possible 
by computer technology improvements (84). In addition, significant advances 
in the treatment of malignancies were made in the ability to use various particles. 
In this section, we focus on proton beam therapy (PBT), one of the most precise 
and advanced forms of radiation therapy available in the world today.

Stereotactic radiosurgery

Stereotactic radiosurgery may also be considered in the upfront or the more 
commonly recurrent setting for glioma treatment. This is an ablative therapy of 
very high radiotherapy doses administered over traditionally one, but up to five 
fractions. In the upfront setting, consideration is primarily focused on decreas-
ing the number of fractions received, typically spanning six weeks for 30 total 
treatments (85). For treatment at the time of relapse, both fractionated and 
stereotactic radiotherapy may be considered. As at the time of presentation, 
fractionation allows for the treatment of larger volumes commonly associated 
with these infiltrative tumors. Yet, radiosurgery may be appealing for both con-
veniences as well as it is biologically appealing to overcome some of the radio-
resistant mechanism of gliomas (86). Future directions within radiotherapy in 
glioma treatment will continue to improve upon advanced planning and deliv-
ery systems. In addition, combinatorial therapies maximizing efficacy and mini-
mizing toxicity continue to be investigated.

Proton beam therapy leads to fewer side effects and complications

Following photon radiation (ionizing radiation), proton radiation has become the 
predominant modality used in the treatment of brain tumors. Due to the relatively 
low mass and lack of charge, photons slowly lose energy along a path length 
extending through the entirety of the patient. Conversely, due to high relative 
mass and associated charge, protons have a dose deposition concentrated near the 
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end of their range, allowing the bulk of radiation dose deposited in a highly con-
fined area, termed the “Bragg peak” (Figure 3). The Bragg peak is the characteris-
tic dose deposition profile of a proton with nearly all energy loss just prior to its 
end of the range (87). This allows for a decrease in radiation exposure down-
stream from the target tissue, decreasing the side effects and complications of 
radiotherapy. 

The superiority in the conformality and accuracy of proton beam therapy is a 
critical advantage for the treatment of brain tumors, circumventing the side effects 
and potentially allowing for an increase in the administered dose to the tumor. 
Proton beam radiotherapy has the capability to reduce the dose to non-tumor 
tissue in virtually all tumor locations within the brain (88, 89). The magnitude 
and clinical benefit of these reductions are variable and require clinical 
determination by the radiation oncologist. In the pediatric setting where radiation 
exposure to  developing tissue is of the highest concern, studies have shown 
detriment to cognition and neuroendocrine function from radiotherapy exposures 
(90). Dosimetric studies have confirmed a decrease in radiation exposure to 

Figure 3. Comparative dosimetry for left temporal glioma radiotherapy treatment with protons 
(upper) and photons (lower). Prescription is for 60 Cobalt Gray Equivalent in 30 fractions. 
Noted decrease in radiotherapy exposure to the eyes, optic apparatus, brainstem, and 
contralateral structures.
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structures associated with memory and cognition utilizing proton radiotherapy 
(91). Early studies reporting neurocognitive outcomes in pediatric patients 
undergoing proton beam therapy correlate these dosimetric changes to favorable 
outcomes compared to similar photon historical cohorts (92, 93).

The use of proton radiotherapy in adult brain tumors was constrained by the 
availability of these machines and was, therefore, initially reserved predominantly 
for tumors considered radioresistant, thus requiring higher doses. Representative 
tumors include skull base chordoma and chondrosarcoma, and uveal melanoma, 
as well as some benign processes (94). With the expanding number of facilities 
increasing access to proton radiotherapy, indications for proton radiotherapy have 
similarly increased. Brain tumors of favorable prognosis in the adult population 
are now considered for proton radiotherapy to minimize long-term toxicity. In 
addition, proton radiotherapy may be considered in cases of reirradiation where 
critical structures may have been previously exposed to doses at the threshold of 
significant risk for toxicity or to minimize the quality of life detriment from large 
cumulative exposures (95).

Proton beam therapy center with a capability for basic research

Proton beam therapy has been used clinically for over 50 years. However, proton 
beam therapy was only available for a few populations of patients due to its cost 
and limited availability. Thanks to significant advances in technology, there are 
now 31 proton therapy centers operative in the USA today. As the numbers of 
proton centers increase, there has been more consideration for the basic research 
requirements that would expand the potential application of proton therapy and 
improve its efficacy. Towards this end, Cincinnati Children’s Hospital invested 
$120 million and launched one of the most advanced proton research and cancer 
treatment centers in the world in 2016. The facility includes several tracks for 
basic biological research to investigate the cellular responses of tumors to proton 
radiation and for translational research to develop and refine other treatments that 
can augment proton therapy. While the majority of current research is undertaken 
by cooperation among the local entities (Cincinnati Children’s Hospital Medical 
Center and the University of Cincinnati), collaborations across countries and 
 continents are widely open in many directions and ongoing.

CONCLUSION

The current standard of care for glioblastoma is surgical resection followed by 
radiation combined with temozolomide. Adjuvant therapy is vital because 
 glioblastoma grows invasively in the surrounding brain tissue and, almost invari-
ably, is rarely completely resectable. Patient response to treatment is often unpre-
dictable and can differ significantly from experimental results in mice. A critical 
challenge is to develop new ways for accurate and rapid prediction of an indi-
vidual patient’s susceptibility to treatment. In this chapter, we have discussed 
three approaches to achieve this goal: (i) new genomic and RNA molecular 
 analysis, (ii) an enhanced glioblastoma mouse model using IUE technology, and 
(iii) improved radiotherapy using proton therapy. 
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Integrating sophisticated pathway analysis with mouse models that recapitulate 
the human disease coupled with the ability to perform basic studies on the 
mechanisms of photon therapy has a high potential to overcome the current 
challenges in GBM therapy. While this needs an establishment of a framework to 
proceed with a sample obtained from a patient and link the result of the approaches, 
once established, we expect that the combination of these three approached with 
the current standard of care will enable choosing the best treatment and markedly 
improve glioblastoma outcomes.
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