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Abstract: Glioblastoma remains among the most lethal of human malignancies. 
The current standard of care prolongs life expectancy about 2 months on average 
compared to from radiation therapy alone, leading to a median patient survival 
of 14.6 months. Glioblastoma is heterogenous tumor at various levels, and 
intrinsically resistance to radiation and chemotherapy. These limits therapeutic 
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options for both primary and recurrent tumors. Importantly, glioblastoma 
progression is often accompanied by cerebral edema, a significant cause of 
morbidity that influences the clinical course and prognosis of the disease. 
Immunosuppressive corticosteroids have been the primary treatment for 
glioblastoma-associated edema. However, the effect is temporary and accompa-
nied by adverse effects due to the action of corticosteroids outside of the targeted 
area. Research over the past two decades has unveiled a significant role for meta-
bolic reprogramming that confers a survival advantage during gliomagenesis and 
therapeutic resistance. This chapter introduces the recent discoveries of two 
energy metabolism pathways: AMP-activated kinase-mediated stress-resilient 
glioblastoma growth, and Guanosine-5’-triphosphate (GTP)- metabolic repro-
gramming that renders anabolic growth and radioresistance. We discuss the 
potential clinical utility of currently available medicine that could target these 
metabolic pathways to suppress malignant growth of glioblastoma and increase 
the efficacy of the current glioblastoma therapy. 

Keywords: energy metabolism; edema; purine nucleotide metabolism; radioresis-
tance; radiosensitivity

INTRODUCTION

Gliomas are the most common malignant primary tumors of the central nervous 
system (1). Glioblastoma (GBM) is the grade IV glioma based on the WHO clas-
sification (2), and constitute about 54% of all gliomas (1). For high-grade gliomas 
(i.e., WHO grade III and IV), the 5-year survival rate is below 10%, even with 
aggressive treatment of surgical resection with adjuvant radiation and chemo-
therapy. Even low-grade glioma (WHO grade II) are ultimately lethal, with a 
median survival term of 6–8 years (3, 4). Currently, curative treatments are 
unavailable for glioma.

Radiotherapy is one of the primary treatment modalities (5), constituting a 
part of the current standard of care (6). However, glioblastomas are intrinsically 
resistant to radiotherapy (7–15) due to increased ROS resistance mediated by 
mechanisms not currently understood (13, 14, 16–18). Radiation therapy yields 
only marginal improvements in patient survival (19, 20), with a recurrence rate of 
nearly 80% despite use of high dose radiation (21, 22). The current standard of 
care treatment for glioblastoma includes maximal safe surgical resection followed 
by adjuvant radiotherapy plus DNA alkylating reagent temozolomide chemother-
apy, which prolonged a median patient survival of 14.6 months, from that of 
10. 6 months of radiotherapy alone (19, 20). 

Most glioblastoma patients (>60%) suffer from glioblastoma-associated cere-
bral edema that represents a major cause of morbidity in glioblastoma. Patients 
with cerebral edema experience headaches, seizures, dysphagia, and cognitive 
and personality changes. The accumulation of fluids increases intracranial pres-
sure, leading to ischemia, herniation, and ultimately death (23). Furthermore, 
glioblastoma-associated edema influences the clinical course and the prognosis of 
the disease (24, 25). Inflammation and neoangiogenesis, which destroy the integ-
rity of the blood-brain barrier (BBB) causing fluid leakage, are two major causes 
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of glioblastoma-associated edema. Immunosuppressive corticosteroids have been 
the primary treatment for glioblastoma-associated edema since the 1960s. 
However, the effect is temporary and accompanied by adverse effects due to the 
systemic effects of corticosteroids (26–28). Importantly, recent studies show that 
corticosteroids may reduce survival in human glioblastoma patients (26–28) and 
murine glioblastoma model (29). Vascular endothelial growth factor (VEGF)-
signaling inhibitor bevacizumab (Avastin) has an anti-edema effect; however, it 
does not extend patient survival (30–32) and causes adverse events, including 
hypertension, arterial and venous thrombosis, intracerebral hemorrhage, and 
slow wound healing (30, 33–35). Our recent studies about energy metabolism in 
GBM implicate the potential of repurposing existing drugs that could lead to the 
resensitization of glioblastoma patients to radiation therapy or/and suppress glio-
blastoma-associated edema while inhibiting tumor growth. 

In the past decades, extensive research has uncovered genetic mutations 
(36–43), transcriptional changes (44–51), and reconfiguration of signaling path-
ways (49, 52–55) in glioblastoma pathogenesis. These studies reveal that glioma 
is highly heterogeneous, enabling multiple robust transcriptional, signaling, and 
metabolic programs that mediate apoptosis resistance of glioblastoma during 
tumorigenesis and confer therapeutic resistance. Importantly, even before the era 
of molecular biology, metabolic changes in glioma have been noted (55, 56). In 
the 1940s, a series of biochemical analyses conducted on human brain tumors, 
including glioma, revealed significant elevations of lipids in these tumors, particu-
larly glioma (56, 57). More recent studies with advanced molecular methods and 
high-sensitivity mass spectrometry-based analytical methods have clarified a 
mechanistic basis of the metabolic changes to increase lipid synthesis and accu-
mulation of lipid droplets in glioma and glioma stem cells, contributing to the 
malignant growth of gliomas (58–61). The changes in nucleotide metabolism in 
glioma was denoted in the early 1950s (62), which is in part confirmed by enzy-
matic analysis that shows dramatic suppression of salvage GTP biosynthetic 
enzymes in glioma in 1994 (63), further followed by recent molecular studies 
(64, 65). These metabolic changes provide the building blocks for major cellular 
constituents—proteins, lipids, and nucleotides—to match the high metabolic 
demand of rapidly growing glioma cells (66). Notably, more recent studies, includ-
ing ours, have shown critical metabolic pathways that induce coordinated ana-
bolic growth through multiple mechanisms (67–70). 

This chapter introduces two energy metabolism-related signaling pathways—
AMP-activated kinase (AMPK) and guanosine-5’-triphosphate (GTP) metabolism—
that are activated in glioma. Then, we discuss the possible therapeutic benefits of 
targeting these energy metabolisms to suppress glioma progression and sensitize 
glioma for the current therapeutics in particular radiotherapy. 

EMERGING ROLES OF ENERGY METABOLISM IN 
GLIOBLASTOMA AND THERAPEUTIC TARGETING

In part, glioblastoma malignancy stems from its increased resistance to stress con-
ditions during gliomagenesis, which is positively associated with therapeutic 
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resistance, including radiation therapy (7–15). Until recently, whether and how 
cellular metabolism is integrated into the process of glioma formation, progres-
sion and stress resilient growth is understudied. This section introduces emerging 
roles of energy metabolism in gliomagenesis and its potential clinical utility as a 
new therapeutic target for glioblastoma. 

ATP energy sensor, AMPK, is critical to overcoming stresses 
during gliomagenesis

Stress is central to tumor evolution (71). The success of tumor cells in the 
hostile tumor milieu depends on how well tumor cells activate stress manage-
ment pathways. Metabolic stress in solid tumors like glioblastoma poses a 
formidable challenge for tumor cell survival. These stresses include nutrient, 
hypoxic, pH, and oxidative stress in addition to therapy-induced xenobiotic 
stress (71–73). Metabolic stress is often caused by energy stress, which reduces 
the cellular ATP to AMP ratio and activates the energy sensor AMPK (74, 75) 
(Figure 1). Once activated, AMPK augments energy-generating reactions such 
as glycolysis and mitochondrial oxidative phosphorylation of glucose and fatty 
acids (74, 75).

Because AMPK is part of the liver kinase B1 (LKB1) tumor suppressor path-
way and turns off major biosynthetic reactions such as lipid and protein synthe-
sis—processes that are key to tumor cell growth and proliferation—it was long 

Figure 1.  Activation of AMPK pathway has glioblastoma cells to be high stress resistant. 
AMPK receives many intra- and extra-cellular signals as a part of LKB1, CAMKKb, and other 
pathways. Activated AMPK leads to high stress resistance of GBM cells and supports their 
growth and survival.
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believed that AMPK had a net suppressive role in tumorigenesis, including glio-
blastoma (76). However, AMPK-deficient transformed cells under tumor-like 
hypoxic conditions have a growth disadvantage in vivo (77). Taking an orthogo-
nal approach, we determined that AMPK activity is abundant in all high-grade 
gliomas regardless of the genetic background of the tumors (78, 79). We showed 
that through transcriptional control of glioblastoma bioenergetics AMPK is 
required for optimal growth and survival of glioblastoma (79). Studies from 
other laboratories also concluded a role for AMPK in glioma pathogenesis. In an 
N-ethyl-N-nitrosourea-induced rat model of brain tumors, high AMPK activity 
was reported from the early hyperplastic lesions to the fully formed tumors (80). 
In a mouse model of astrocytoma driven by mutant HRas and Pten deletion, 
AMPK was necessary to maintain astrocytoma proliferation and survival (81) 
and lipoprotein internalization (82). The inhibitory role of AMPK on major bio-
synthetic processes that are required for cell growth and division appears para-
doxical to the presence of high levels of active AMPK in glioblastoma and other 
solid tumors. However, as the tumor grows in volume, a plethora of tumor-
specific stress builds up. This includes oncogenic stress, nutrient and oxygen 
stress due to fluctuating nutrients and oxygen levels and malformed neovascu-
lature, and pH stress caused by the harsh acidic environment. These stresses 
reprogram tumor metabolism that allows tumor cells to survive and thrive in 
this stressful tumor microenvironment. Although the mechanisms are not fully 
clear, active AMPK may support this altered tumor metabolism and tumor cell 
survival (74). 

A potential of AMPK targeting to enhance the efficacy of 
radiation therapy

One of the important consequences of AMPK activation is the upregulation of 
autophagy. Importantly, the enhanced autophagy contributes to radioresistance in 
glioblastoma and many other tumors (83–86). A priori, AMPK activation consti-
tutes a key element of glioblastoma radioresistance (87, 88). Up to now, agents 
that indirectly activate AMPK were used to suppress tumor cell growth, including 
glioma growth (89–91). Notable agents include the antidiabetic biguanide drugs 
(metformin and phenformin) and the de novo purine synthesis pathway metabo-
lite AICAR. Biguanides inhibit mitochondrial complex I and cause energy stress, 
while AICAR metabolizes to ZMP, which mimics AMP—each process activating 
AMPK (92, 93). Importantly, metformin has been shown to increase radiosensitiv-
ity (94–96). Although this may appear paradoxical, studies from our laboratory 
have shown that the anti-glioma effects of AICAR and biguanides are not only 
AMPK-independent but, in fact, AMPK-silenced glioma cells lose metabolic plas-
ticity and become more vulnerable to the cytotoxic effects of AICAR and bigua-
nides (78). This loss of metabolic plasticity of AMPK pathway deficient cells is 
likely conserved across other tumor types since LKB1 null lung cancer cells are 
also hypersensitive to biguanides (97). Together, results from preclinical and clini-
cal studies illuminate a unique opportunity to use biguanides in clinical trials in 
combination with AMPK inhibitors, which are currently under development in 
our laboratory. The expectation is that this combination will likely synergize to 
overcome the radioresistance of glioblastoma. 
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GTP METABOLIC REPROGRAMMING PROMOTES 
GLIOBLASTOMA MALIGNANCY 

ATP and GTP are involved in many cellular functions, including DNA and RNA 
building blocks, energy sources, enzymatic cofactors in metabolic pathways, and 
components of signal transduction. There are two pathways to produce GTP. 
De novo GTP synthesis involves a multi-step, high nutrient and energy-consuming 
pathway. Glucose is converted to GTP through 19 enzymatic steps that use a gly-
cine molecule, an aspartate molecule, 3 glutamines, 2 N10-formyl-THF, and 
10 ATP. In contrast, the salvage pathway is an energy-efficient process in which a 
nucleoside (inosine, guanosine) and a nucleobase (hypoxanthine, guanine) are 
recycled to produce a GTP (98, 99) (Figure 2). As a result, the use of the salvage 
pathway is heavily favored in adult tissues, particularly in the adult brain 
(100–102). Importantly, many tumors increase GTP levels more than the other 
ribonucleotides, including glioblastoma (65, 103). However, how and why tumors 
alter GTP metabolism for their malignant growth has not previously been explored. 

To that end, we have discovered a lipid kinase PI5P4Kβ as an intracellular GTP 
sensor regulating the metabolism and the tumorigenic process in accordance with 
cellular GTP energy levels (104, 105). Also, a recent publication of ours showed 
that GTP biosynthesis is significantly upregulated in glioblastoma by IMP dehy-
drogenase isozyme-2 (IMPDH2), which promotes enhanced ribosome biogenesis 
and tRNA synthesis, cooperating malignant glioblastoma growth in vitro and 
in  vivo while normal brain cells operate without this GTP biosynthetic path-
way (65). IMPDH2 mRNA expression is not significantly correlated with IMPDH2 
protein levels, suggesting posttranscriptional regulation and therefore the impor-
tance of immunohistochemical analysis to evaluate the IMPDH2 levels. 
Importantly, increased IMPHD2 is correlated with poor survival of glioma patients 
regardless of IDH mutational status (65). Mechanistically, IMPDH2 upregulation 
promotes de novo GTP biosynthesis for ribosome biogenesis and tRNA synthesis, 
leading to nucleolar enlargement and malignant growth of glioblastoma (Figure 3). 
Inhibition of IMPDH2 decreases nucleolar size and significantly suppresses 
glioblastoma growth in vitro and vivo (65). The significance of IMPDH2 in glio-
blastoma and multiple cancers is also supported by other studies (68, 99, 106). 
Together, these studies illuminate the potential of targeting IMPDH-dependent 
GTP synthesis as a treatment for glioma. Importantly, there are FDA-approved 
inhibitors for IMPDH, including MPA and MMF (Figure 3) (106).

Targeting the GTP metabolic reprogramming to increase the 
efficacy of radiation therapy

Nucleotides are essential factors for genome stability and DNA repair (107–110). 
Importantly, studies of radioresistant bacteria, Micrococcus luteus, suggest that the 
GTP-metabolism is associated with radioresistance (111, 112). In cancer cells, 
IMPDH inhibition causes DNA lesions (113) and suppresses DNA damage-repair 
induced by radiation (114, 115). Radioresistant glioblastoma cell lines and glio-
blastoma-stem-like cells are capable of increasing guanylate levels in response to 
radiation (116). MPA/MMF treatment prevents this, leading to decreased DNA 
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repair and clonogenic glioblastoma growth, thereby extending survival in an 
orthotopic PDX-glioblastoma model (116). In osteosarcoma U2OS cells, IMPDH2 
overexpression increases radioresistance, while IMPDH2 knock-down increases 
radiosensitivity (117). These results suggest the previously unrecognized role of 
IMPDH2 in radioresistance (Figure 3). Importantly, Phase 0/1 Trial (NCT04477200) 
looking at the effects of MMF with radiation has been initiated to define the maxi-
mum tolerated dose of MMF when administered with radiation, in patients with 
recurrent glioblastoma or recurrent gliosarcoma. As of December 2020, our mul-
tidisciplinary group at the University of Cincinnati is in the preparation of a new 
MMF trial for glioblastoma treatment from a different angle, which is to treat 
GBM-associated edema by MMF. Collectively, repurposing IMPDH inhibitors has 
an important potential for new glioblastoma therapeutics and should be further 
studied to develop more effective, optimally designed therapeutics for clinical 
utilization to overcome radiation resistance and complications associated with 
glioblastoma.

Figure 2. Two types of GTP synthesis pathways. GTP synthesis is controlled by two pathways. 
A sugar, phosphoribosyl diphosphate (PRPP), is made by ribose-5-phosphate (R5P) involved in 
pentose phosphate pathway. In de novo pathway, IMP is generated from PRPP through high 
nutrient and energy consuming reactions. On the other hand, salvage pathway produces a 
new IMP or GMP by directly connecting a sugar (PRPP) and a nucleobase (hypoxanthine or 
guanine). These nucleobases come from recycled IMP or GMP metabolites (inosine or 
guanosine). This economical pathway is favored in adult tissues. IMP dehydrogenase (IMPDH) 
oxidizes IMP to XMP. IMPDH is involved in the first step of guanine nucleotide synthesis and 
plays important roles in proliferation, cellular homeostasis, and also tumors facilitation 
including GBM. IMPDH activity is strongly inhibited by mycophenolate mofetil (MMF), which 
is a precursor of mycophenolic acid (MPA) and uses as prodrug of immunosuppressant. ATP, 
adenosine triphosphate; GDP, guanosine diphosphate; GMP, guanosine monophosphate; 
GTP, guanosine triphosphate; IMP, inosine monophosphate; IMPDH, IMP dehydrogenase; 
MMF, mycophenolate mofetil; MPA, mycophenolic acid; PRPP, phosphoribosyl diphosphate; 
R5P, ribose-5-phosphate; XMP, xanthine monophosphate.
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A possible utility of the immunosuppressive effect of MMF to 
ameliorate glioblastoma-associated edema

Since MMF has been used as a potent immunosuppressor for tissue transplanted 
patients and autoimmune disease, a potential caveat of MMF or any IMPDH 
inhibitor is that it may limit the use of an upfront glioblastoma setting. However, 
we propose that MMF’s use may be beneficial in some situations, particularly 
glioblastoma-associated edema treatment, based on the following evidence: 

(i)	 MMF suppresses inflammation and stroke-associated edema: MMF is used glob-
ally for organ transplanted patients and possesses greater potency for the 
IMPDH2 isozyme (118). Importantly, MMF inhibits activation of microglia 
and astrocytes (119) and monocyte recruitment to endothelial cells (120, 121). 
In the LPS-stimulated BALB/c mouse neuroinflammation model, MMF 
treatment suppressed the expression of pro-inflammatory proteins (for 
example, iNOS, COX-2, TNFα, IL-1β, IL-6) (122). Furthermore, MMF 
treatment suppressed cerebral edema in stroke-prone spontaneous hyperten-
sive rats (SHR-A3) (123). 

Figure 3.  Upregulation of de novo GTP biosynthesis by IMPDH2 generates aberrant phenotype 
of Glioblastoma. In Glioblastoma (GBM), de novo GTP biosynthesis is upregulated by 
IMPDH2. Increasing GTP levels promotes rRNA and tRNA synthesis through transcription by 
RNA polymerase Ι (Pol Ι) and RNA polymerase Ш (Pol Ш) respectively. Upregulation of r/tRNA 
synthesis cause nuclear enlargement, increased anabolism, and malignant growth. Moreover, 
elevated GTP promotes DNA damage repair for radioresistance in GBM. MPA and MMF, the 
inhibitor for IMPDH, block both r/tRNA synthesis. Moreover, decrease in GTP levels by MPA 
and MMF indirectly inhibits GTP-associated DNA damage repair. Solid line indicates the 
metabolic step and dotted line indicates the cellular reactions associated to GTP.
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(ii)	 MMF suppresses neoangiogenesis: Several reports indicate a critical link between 
IMPDH2 and neoangiogenesis. Two studies using zebrafish embryos show that 
IMPDH2, but not IMPDH1, is highly expressed at the sites of new blood vessels, 
and MPA treatment suppresses angiogenesis (124, 125). MPA treatment sup-
pressed angiogenesis of human endothelial cells (126, 127). Oral administration 
of MMF significantly suppressed in vivo angiogenesis induced by melanoma 
(128), pancreatic cancer (129, 130) and U87MG glioma (127). Importantly, our 
preliminary studies using hCMEC/D3 cells, widely used as BBB models (131–
137), show that MPA treatment does not disrupt the integrity of BBB. 

Thus, MMF treatment has a high potential to suppress neoangiogenesis while 
maintaining BBB integrity. Currently, our multidisciplinary group at the University 
of Cincinnati is actively pursuing research to clarify the utility of MMF for glio-
blastoma edema treatment.

CONCLUSION

Despite the advances in general cancer treatment, glioblastoma remains among 
the most lethal of human malignancies. Even with aggressive multimodal radia-
tion and chemotherapy after surgery, radiation therapy yielded marginal improve-
ments in patient survival (19, 20) due to the radioresistant nature of glioblastoma. 
It is crucial to develop more effective therapeutics to improve the prognosis of the 
average patient with a glioblastoma and identify glioblastoma vulnerabilities for 
new potential targets and test the setting in clinically relevant glioblastoma animal 
models. In this chapter, we have introduced new potential targets for glioblastoma 
therapy, which are expected to suppress glioblastoma regardless of mutational 
status and increase the efficacy of the current therapeutic regimen when com-
bined. For the next stage, it is crucial to further investigate the drugs targeting 
AMPK and IMPDH on the survival, therapeutic resistance, and edema formation 
of immunocompetent glioblastoma mouse models, and assess pharmacodynamics 
and identify PD markers. It is also imperative to study the combinations of these 
drugs with radiation therapy, including upfront proton beam therapy as intro-
duced in the following chapter. 
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