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Abstract: This chapter provides an overview of the theoretical concepts and 
practical applications of methods for the rational design and application of 
profile hidden Markov models (profile HMMs) in viral discovery and classifica-
tion. Profile HMMs are probabilistic models that represent sequence diversity 
and constitute a very sensitive approach for detecting remote homologs. One of 
the most relevant and challenging applications of profile HMMs is the discovery 
of viruses in metagenomic samples, a fundamental task for epidemiological 
surveillance. In this chapter, publicly available resources of viral profile HMMs 
are presented and the methods involved in their construction are discussed. 
Several aspects to be considered for the generation of profile HMMs are pre-
sented, including technical pitfalls that should be avoided, and the potential 
applications of such models for detecting specific viral sequences. This chapter 
also introduces a bioinformatics application that implements methods to select 
informative regions of a multiple sequence alignment and build profile HMMs 
with different taxonomic specificities. Additional programs using profile HMMs 
for targeted sequence assembly and detection of multigene entities are also pre-
sented. Such programs, integrated into a common framework for viral research, 
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are discussed in light of several biological issues that involve the classification 
and discovery of potentially emerging viral pathogens.

Keywords: profile hidden Markov models; viral bioinformatics; viral discovery; 
viral metagenomics; virus classification

INTRODUCTION

Profile hidden Markov models (profile HMMs) are probabilistic models that cap-
ture the diversity of biological sequences. A multiple sequence alignment (MSA) 
of protein sequences (nucleotide can also be used) is submitted to a position-
specific scoring system. The model has a state for every position of the alignment, 
with each state presenting twenty results, one for each possible amino acid, and 
two for insertion and deletion (called indels) occurrences (1–3). The Markov 
chain represents a probabilistic model for the set of states and the transition prob-
abilities between each state. Once a profile HMM is generated from an MSA of 
sequences belonging to an orthologous group, the patterns observed for this 
group can be found in other protein sequences of a database. Thus, any query 
sequence can be traced through the model across all states and then be scored 
according to the probabilities found for each transition (1).

Viruses constitute a group of highly divergent biological entities, characterized 
by evolutionary rates that are much higher than those observed in prokaryotes 
and eukaryotes (4–7). Due to this very high divergence, serological and molecular 
tests developed for known pathogens do not cross-react with emergent viruses, 
even when they belong to the same genus (3, 8, 9). More challenging still, viruses 
do not have universally conserved markers in their genomes that can be used as 
targets for PCR-based assays, such as 16S rRNA in prokaryotes and 28S rRNA in 
eukaryotes (3, 8, 10). 

Pairwise alignment methods, implemented in programs such as BLAST (11), 
became a standard for identifying new sequences from sequencing data. However, 
these methods are not sensitive enough at identifying remote homologs (12), a 
relatively common situation in viral data. In addition, the scarce amount of viral 
data in public databases compared to prokaryotes leads many metagenomic 
sequencing projects to fail in the proper identification of relationships between 
novel sequences and known viruses (13). Profile-based alignment methods can 
significantly increase the ability to detect remote homologs (14). In this context, 
profile HMMs represent an attractive alternative to improve the ability to detect 
and classify viral sequences and are increasingly being used in viral metagenomic 
studies. 

DATABASES OF VIRAL PROFILE HMMS

In the last decade, several different repositories of profile HMMs constructed 
from viral proteins became publicly available. Table 1 lists the most relevant and 
currently used resources. For additional information on older repositories, the 
reader is referred to a review article from Reyes et al. (3). One of the first resources 
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TABLE 1 Web resources of viral databases that include 
profile hidden Markov models

Database Description Last update Reference

ClassiPhage ClassiPhage is a program for phage taxonomic 
classification. A collection of profile HMMs for 
four phage families is provided.

Source: http://appmibio.uni-goettingen.de/index.
php [accessed on 12 Dec 2020]

Current (27,28)

IMG/VR v3 IMG/VR Viral Resources is a database of 
viral genome sequences of cultivated and 
uncultivated viruses

Source: https://img.jgi.doe.gov/vr; https://genome.
jgi.doe.gov/portal/IMG_VR [accessed on 12 Dec 
2020]

Current (29,30,33)

pVOGs Prokaryotic Virus Orthologous Groups is a 
database of orthologous groups built from 
genomes of viruses that infect bacteria and 
archaea. Provides accession IDs of viral 
proteins, lists of orthologous groups, alignments 
and profile HMMs.

Source: http://dmk-brain.ecn.uiowa.edu/pVOGs 
[accessed on 12 Dec 2020]

2016 (17,18)

RVDB-Prot/
RVDB-Prot-
HMM

Reference Viral Databases 
Source: https://rvdb-prot.pasteur.fr/ [accessed on 

12 Dec 2020]

Current (22,23)

vFam vFam is a database of profile HMMs built from 
all viral protein sequences available at RefSeq. 
Viral protein sequences, annotations and profile 
HMMs are provided.

Source: http://derisilab.ucsf.edu/software/vFam/ 
[accessed on 12 Dec 2020]

2014 (15)

Viral OGs/
eggNOG 
v5.0

The viral subset of eggNOG v5.0 is composed of 
viral sequences, annotations, alignments, trees, 
and profile HMMs.

Source: http://eggnog5.embl.de/#/app/home 
[accessed on 12 Dec 2020]

Current (20)

Viral 
MinionDB

MinionDB is a database of taxonomically defined 
profile HMMs built from viral protein markers

Source: http://www.bioinfovir.icb.usp.br/minion_
db/ [accessed on 12 Dec 2020]

Current Unpublished 
as of 
February 
2021

VOGDB VOGDB provides information, interactive access 
and download for all Viral Orthologous Groups

Source: (13) [accessed on 12 Dec 2020]

Current Unpublished 
as of 
February 
2021
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to provide virus-derived profile HMMs is vFam (15), a collection of 5,585  profile 
HMMs constructed from 29,655 viral proteins of eukaryotic viruses, last updated 
in 2014. The construction pipeline used protein sequences annotated as viral 
(non-phages) from the RefSeq database (16). After sequence collapsing for 80% 
or greater identity and polyprotein removal, the remaining sequences were sub-
mitted to all-versus-all BLASTP searches, Markov sequence clustering, MSAs and 
profile HMM construction. All profile HMMs are provided with annotation files 
containing information such as functional annotation of the sequences compos-
ing the original MSA and their corresponding viral family and genera. 

Another resource of profile HMMs is the Prokaryotic Virus Orthologous 
Group (pVOGs) (17), an update of the former Phage Orthologous Groups (POGs) 
database (17, 18). This repository is composed of profile HMMs constructed 
from orthologous groups of proteins from viruses that infect bacteria and archaea. 
The available version, last updated in 2016, comprises 9,518 orthologous groups 
from 296,595 proteins, totaling 18 viral families. Orthologous groups were 
obtained using RefSeq full-length protein sequences submitted to a clustering 
step through the identification of symmetric best matches shared between three 
genomes. Protein sequences used to construct the MSAs and the respective pro-
file HMMs are mapped to taxonomic and functional annotation, which are also 
provided for download.

ViralOGs (19) was originally a viral subsection of eggNOG, a database of 
protein orthologous groups from different taxonomic levels associated with 
functional annotations. The current version of eggNOG (v5.0) (20) was upgraded 
from 325 (v4.5) to 2,502 viral proteomes, obtained from the Uniprot (21). In 
total, 8,318 profile HMMs derived from viral protein are available, together with 
functional, phylogenetic and taxonomic data. 

As reported in a previous review on the use of profile HMMs for viral research (3), 
vFam, eggNOG and pVOGs present some limitations, such as the low representa-
tion of sequences used in the construction of each model, highly biased representa-
tion of viral families and the lack of a direct relationship of the models with specific 
taxonomic groups. For example, orthologous groups can be composed of protein 
sequences derived from multiple taxa, sometimes belonging to different viral fami-
lies. Therefore, assigning taxonomy classification of new sequences based on simi-
larity to profile HMMs of these databases is possible, but results should be taken 
with caution and ideally be complemented by additional evidence. 

RVDB-prot (22) is a protein version of Reference Viral DataBase (RVDB) (23) 
constructed with a pipeline similar to that used for the construction of vFAM 
 database (15). Viral proteins are submitted to a CD-HIT (24) step to remove 
duplicated sequences, followed by all-versus-all BLASTP (11) searches and, 
finally, to a clustering step using SiLiX (25), a similarity-based clustering tool. 
The current distributed version (v.20) comprises 13,621 profile HMMs. The data-
base is updated on a regular basis, following changes of the RVDB database.

VOGDB provides a web front end of the Viral Orthologous Groups (VOG) 
database. Version vog202 contains 26,224 VOGs derived from 8,745 genomes 
and the corresponding profile HMMs. Virus-specific VOGs are defined accord-
ing to different stringencies specified by the e-value, and correspond to 20,785, 
22,430 and 23,149 virus-specific VOGs for high, medium and low stringency, 
respectively. The pipeline for VOG construction uses RefSeq data, quality/com-
pleteness annotation, pairwise alignments and choice of bidirectional best hits, 
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multiple sequence alignments, all-versus-all HHalign (26) searches, remote 
homology clustering and functional annotation of the groups. The method is 
unpublished, but a description of the entire methodology is available on the 
web site. Users can perform searches and VOGs are provided with functional 
annotation (when available), together with last common ancestor information. 
A plethora of files are also offered for download, including profile HMMs cor-
responding to the respective MSA of each VOG.

Chibani et al. (27) recently described ClassiPhage, a method for phage tax-
onomic classification using profile HMMs. This methodology builds phage fam-
ily-specific profile HMMs using annotated phage genomes and employs refinement 
protocols to ensure model specificity. To validate the proposed methodology, the 
authors constructed profile HMMs for four phage families: Myoviridae, Podoviridae, 
Siphoviridae, and Inoviridae. The program and profile HMMs for the four phage 
families listed above is available for download (27). This work was extended to 
create ClassiPhage 2.0, an updated method that uses profile HMMs derived 
from phage sequences to train an Artificial Neural Network (ANN) to classify the 
phages into one of 12 different families (28). The generated models showed very 
high specificity for all families, but the observed sensitivity was very low, with 
only 3 out of the 12 families showing values above 50% and six families present-
ing sensitivity below 20%. 

IMG/VR v3, the Integrated Microbial Genomes/Viral Resources v3 (29, 30), is 
the newest and largest resource of viral sequences, gathered, reconstructed and 
integrated from a large variety of sources, including tens of thousands of metage-
nomic datasets. IMG/VR is now the main resource and analysis framework of 
uncultivated virus genomes (UViGs), a conceptual definition supported and 
described by a series of standardized metadata, and widely adopted by the scien-
tific community (31, 32). The whole IMG/VR v3 database, comprising 2,302,702 
distinct UViGs (as of December 2020), is available for download, together with a 
collection of 25,281 curated profile HMMs derived from viral protein families 
(VPFs) (33–35).

A ROADMAP FOR THE RATIONAL DESIGN OF 
PROFILE HMMS

As presented in the previous section, different resources containing viral family 
groups and associated profile HMMs are publicly available. All these databases 
use  a variety of methods to eliminate or reduce sequence redundancy and 
are  orthology-oriented in the sense that viral sequence groups are obtained by a 
step of all-versus-all pairwise comparisons, followed by a clustering method. 
Sequences of each cluster are then submitted to a multiple sequence alignment 
and profile HMM construction. In addition, viral clusters are mapped to func-
tional and taxonomic annotations. 

Although some of these repositories offer extremely rich and diverse sets of 
viral data, the accompanying profile HMMs should be used with caution for viral 
detection and discovery in metagenomic datasets. In fact, before universalizing 
the use of profile HMMs, it is fundamental to know the potential limitations and 
risks of using such models. First, profile HMMs are built on top of an MSA and 
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their ability to be used as representatives of a profile of sequences, rather than a 
single sequence, is directly dependent on the quality of the training set; that is, the 
set of sequences used in the MSA. An ideal set should (i) reflect the main polymor-
phisms of members of the viral taxon; (ii) avoid imbalanced representation, such 
as over- and under-sampling of some variant groups; and (iii) avoid very distant 
orthologs that may disturb the alignment by introducing a large number of indels. 

Another important issue to bear in mind is that profile HMMs are constructed 
by calculating position-specific amino acid occurrence probabilities and, in addi-
tion, indel probabilities are also computed (1–3). This feature resembles how 
most phylogenetic methods work, but without the use of evolutionary models. 
Thus, it is quite straightforward to build models specific to a group of sequence 
representing a monophyletic clade. Conversely, an MSA containing paraphyletic 
sequences could hardly yield a profile HMM that is specific to a particular mono-
phyletic clade. Therefore, in an ideal method, viral taxa should first be analyzed 
by phylogenetic methods and only monophyletic groups associated with taxo-
nomic taxa should be used to build taxon-specific profile HMMs. Orthologous 
clusters are often obtained from all-versus-all sequence comparisons and rational 
choices based on best reciprocal hits, resembling to some extent the groups 
deduced by true phylogenetic methods. However, without the use of appropriate 
evolutionary models, this assumption can be misleading. The relatively common 
finding of sequences belonging to different viral families being shared in the 
same orthologous groups corroborates this fear. 

Profile HMMs usually show higher sensitivity or recall rates in comparison to 
pairwise alignment methods. In fact, more than two decades ago Brenner et al. 
(12) showed that pairwise comparison methods fail to detect half of the relation-
ships between distantly related proteins, sharing 20-30% identity. Conversely, 
methods based on multiple-sequence profiles detect three times more remote 
homologs than pairwise alignment methods (14). Skewes-Cox et al. (15) showed 
for a set of best-performing profile HMMs of the vFam database that these models 
are more sensitive than BLAST for detecting sequences from distantly related 
viruses in real metagenomic datasets. However, BLAST showed better recall than 
profile HMMs for more similar viral sequences. This result prompted the authors 
to propose the combined use of profile HMMs and pairwise alignment methods to 
obtain more sensitive viral detection and discovery in metagenomic data. Also, 
the authors found that the main factors contributing to higher recall were the 
number of sequences used to build the model and the lack of non-viral homologs 
in the set of viral sequences used to build the models. 

The higher sensitivity of profile HMMs, compared to pairwise alignment meth-
ods such as BLAST, comes with a price. A typical profile HMM is constructed 
from sequences that are specific to a particular orthology cluster/taxonomic group. 
Nonetheless, the fact that it is built from an MSA that is representative of many 
different viral variants makes this model much more tolerant to sequence vari-
ability in a similarity search than any individual sequence in a pairwise alignment. 
The counterpart of such a wide detection range is the high probability of detecting 
sequences belonging to other taxa. Even though publicly available profile HMMs 
are commonly associated with annotation and taxonomic information, there is no 
common recipe on how to use them in viral metagenomic research. The most 
commonly used approach is to arbitrarily define an e-value cut-off and assume 
that alignments falling above this canonical value are false positives. 
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In a recent study, Bzhalava et al. (36) used a collection of models from the 
vFAM database to screen human metagenomic datasets from many different tis-
sues, assuming as viral those sequences presenting an arbitrary e-value of less 
than 1e-5. More than 500 viral sequences missed by conventional BLAST-based 
similarity searches were successfully detected, showing the potential impact of 
using profile HMMs in viral discovery studies. Nevertheless, the authors 
reported an overall rate of 96% of true positive sequences, but within the 
Mimiviridae family, the true positive rate dropped 3%. According to the authors, 
this result could be explained by the fact that these viruses encode genes whose 
orthologs can be found in cellular organisms. This finding exemplifies how 
risky the use of generalized arbitrary cut-offs can be when surveying wide and 
diverse groups of viruses. In fact, viral metagenomic datasets can contain 
variable amounts of nucleic acids from both prokaryotes and eukaryotes 
contaminants. Many viral genomes contain genes that have orthologous 
counterparts in cellular organisms. For instance, uracil-DNA glycosylase gene is 
ubiquitously found in herpesviruses, prokaryotes and eukaryotes. Hence, pro-
file HMMs constructed from viral sequences of this protein can potentially 
detect genes originating from cellular organisms, rather than from viruses. A 
large number of other proteins resembling their prokaryotic and/or eukaryotic 
orthologs can make viral surveys a complex challenge.

To avoid unspecific detection by profile HMMs, Pagnuco et al. (37) devel-
oped the HMMER Cut-off Threshold Tool (HMMERCTTER), an interesting 
approach in which a user-provided phylogeny is used as input for the construc-
tion of profile HMMs for each protein cluster, assigning specific cut-off 
thresholds. TABAJARA program (38) goes a step further, identifying informative 
sites that are conserved in all orthologous sequences belonging to a given clade 
(synapomorphies) or specific to orthologs of a particular taxon or subgroup of 
sequences (autapomorphies), thus resembling phylogenetic reconstruction 
methods. Next, the program determines the most informative regions of the 
MSA; that is, those stretches that are rich in informative sites. By using only pre-
selected regions of the MSA, TABAJARA avoids protein domains that could 
result in cross-specificity those regions. Finally, like HMMERCTTER, TABAJARA 
performs a series of validation tests to discard non-specific models and estab-
lishes cut-off scores that allow to obtain a good balance between specificity and 
recall rates. 

RATIONAL DESIGN OF PROFILE HMMS

As stated, profile HMMs should ideally find viral sequences without detecting 
non-viral orthologs and, additionally, should present viral-taxon specificities. To 
meet such requirements, a novel approach must be taken for the design and use 
of such models. As previously commented, the publicly available viral profile 
HMMs are built from full-length proteins. This strategy implies that very diver-
gent regions containing a large number of gaps are used together with highly 
conserved stretches of sequences. The former feature introduces noise into the 
models, while the latter makes the model suitable for detecting a wide range of 
taxa, but not for discriminating lower taxonomic levels of viral groups. A possible 
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way to overcome these pitfalls was developed in an integrated set of algorithms 
implemented on TABAJARA, a publicly available tool for the rational design of 
profile HMMs (38). 

Figure 1 depicts a summarized diagram of TABAJARA’s pipeline. Starting 
from a multiple sequence alignment (MSA), TABAJARA is able to find blocks that 
are either conserved across all sequences (Conservation execution mode) or dis-
criminative for two specific groups of sequences (Discrimination execution 
mode). For the identification of regions conserved in all protein sequences of an 
MSA, TABAJARA implements an information-theoretic algorithm (39) based on 
Jensen–Shannon divergence method (40) to estimate sequence conservation 
across all sequences and assign position-specific scores along the entire MSA. To 
find group-discriminative blocks, TABAJARA uses a combination of Mutual 
Information (41, 42) and Sequence Harmony (43, 44). Once position-specific 
scores are determined, the program uses a sliding window to screen the whole 
alignment and delimit top-scoring regions. This is a particularly interesting fea-
ture if regions highly specific to a particular subset of sequences are sought. The 
program automatically extracts the selected alignment blocks, discards identical 
sequences, eliminates gap-only columns, and builds the corresponding profile 
HMMs. 

After building the profile HMMs, TABAJARA executes a series of validation 
steps to discard models that do not meet a set of quality criteria. The models are 
submitted to similarity searches using hmmsearch program from HMMER package 
(45) against all sequences of the training set. TABAJARA then inspects the results 
and checks whether they fulfill the quality control criteria defined by the user. 
When executed in Conservation mode, TABAJARA determines for each profile 
HMM whether a minimum percentage of sequences are successfully detected. 
Finally, the program inserts a cut-off score tag in the profile HMM’s header, using 
a value corresponding to 80% of the score obtained for the last hit of the training 
set. When running in Discrimination mode, TABAJARA also validates the models 
following a set of criteria. Given an MSA containing two groups of sequences, 
TABAJARA implements a heuristic to create cut-off scores optimized for each pro-
file HMM to discriminate the group of interest with high specificity while main-
taining a good recall. Finally, using the assigned cut-off values of each model, 
TABAJARA verifies whether the percentage of detected sequences of the chosen 
group meet a minimum sensitivity value. 

Typical profile HMMs generated by TABAJARA are constructed from short, 
selected regions varying from 20 to 60 bp, and represent specific signatures of 
different protein families or viral groups. Such short models, named Minions, 
show a lower recall than profile HMMs built from full-length protein sequences, 
but with much higher specificity. To overcome this limitation, multiple Minions 
can be used in combination to increase recall without sacrificing specificity. 
Finally, TABAJARA also implements the construction of full-length models. In this 
case, models are built from the entire MSA and submitted to similar validation 
steps. Once appropriate cut-off scores are assigned, such models can present, at 
least for some viral taxa, specificity rates similar to those obtained for Minions. 
Nonetheless, the use of full-length models to screen sequencing databases can be 
tricky, since cut-off scores are calculated using full-length protein sequences from 
the training sets, which tend to yield long alignment blocks with relatively high 
alignment scores. When using such long models to screen short-read sequencing 
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Figure 1. Pipeline of TABAJARA program. TABAJARA uses a multiple sequence alignment as an 
input training set. In Conservation mode, alignment blocks are selected for regions conserved 
in all sequences, using Shannon entropy for nucleic acid and Jensen-Shannon divergence for 
protein sequences. In Discrimination mode, TABAJARA uses a combination of Mutual 
Information and Sequence Harmony to assign position-specific scores and select the most 
discriminative regions. Selected alignment blocks are extracted and used to build profile 
HMMs with hmmbuild program, which in turn are submitted to validation tests and stored.
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datasets, no matter how good the obtained alignments are, they will never present 
very high scores due to the limit imposed by the length of the sequencing reads.

TABAJARA is publicly available (https://github.com/gruberlab/tabajara 
[accessed on 12 Dec 2020]) and is fully documented. The program’s site provides 
an extensive tutorial and datasets that illustrate how to produce conserved and 
discriminative profile HMMs. Real-life metagenomic datasets, configuration files 
and a step-by-step tutorial are provided for two viral groups: phages of the 
Microviridae family and eukaryotic viruses of the Flavivirus genus. The tutorial 
covers the design of conserved models capable of detecting any member of these 
viral groups or, alternatively, discriminative models that specifically detect 
Alpavirinae and Gokushovirinae subfamilies (Microviridae) or different viral species 
belonging to the Flavivirus genus, such as Dengue virus, Zika virus and Yellow fever 
virus. 

SCREENING SEQUENCING DATASETS WITH 
PROFILE HMMS

Once profile HMMs with different specificities and detection ranges are available, 
it becomes feasible to interrogate genomic and metagenomic sequencing datasets 
for specific protein coding genes or to search for all known viruses. Small or very 
large collections of models can be used for this task. Some studies employing viral 
profile HMMs to screen metagenomic data have been reported in the literature 
(36). To discriminate viral from non-viral sequences, as well as to classify 
sequences into viral taxonomic groups, the most common solution is the use of 
arbitrary scores or e-value cut-offs in the hmmsearch execution. Such a common 
recipe is certainly capable of delivering reasonable results, but from a biological 
viewpoint is far from modeling the different evolutionary rates observed in dis-
tinct viral families. For example, cut-off scores effective for the discrimination of 
dsDNA viral families may be too restrictive for the differentiation of RNA viruses 
due to the much higher divergence rate observed in the latter group (4–7). Also, 
the use of common arbitrary cut-off e-values does not take into account the vari-
able size of the sequence datasets, a feature that directly impacts this measure. 
Finally, profile HMMs are constructed from protein sequences of different lengths, 
influencing the maximum size of alignment blocks that can theoretically be 
obtained. This is even more critical when using profile HMMs constructed on top 
of short protein sequences, as is the case with Minions. 

As discussed, TABAJARA allows the construction of profile HMMs from 
either short or full-length sequences, with recall and specificity governed by 
cut-off scores automatically customized for each model. Each discriminative 
profile HMM is validated using a training set composed of sequences of the viral 
taxonomic group of interest and its sister groups and, therefore, the assigned 
cut-off scores reflect the evolutionary rates of these specific taxa. A large-scale 
use of profile HMMs for similarity searches, with customized cut-off scores, can 
easily be performed with HMM-Prospector, a publicly available program 
(https://github.com/gruberlab/hmmprospector [accessed on 12 Dec 2020]). 
The workflow of the program (Figure 2) starts with the conversion of input 
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Figure 2. Workflow of HMM-Prospector program. The input consists of a profile HMM file 
and a dataset in either FASTQ or FASTA (DNA or protein sequences) formats. A pre-run 
hmmsearch’s tabular result file is also accepted (A). If necessary, HMM-Prospector invokes 
transeq to translate the nucleotide sequences into the six possible reading frames. Profile 
HMMs are then used as queries in similarity searches against the translated dataset using 
hmmsearch (B). In the next phase (C), HMM-Prospector lists all sequences containing 
positive results, according to user-defined cut-off values (score or e-value) and stores all 
results into CSV spreadsheet files.

data, when necessary, from FASTQ (a format produced by most sequencing 
platforms) into FASTA format, and then the 6-frame conceptual translation to 
protein sequences. If the profile HMMs contain cut-off scores inserted in their 
header (as produced by TABAJARA – see previous section), HMM-Prospector 
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invokes the hmmsearch program to perform each similarity search using these 
custom values. This produces searches optimized for every model, maximizing 
both sensitivity and specificity. As a final execution step, HMM-Prospector 
produces tabulated files that can be imported into any spreadsheet program. 
Among other results, these files list all tested profile HMMs with the respective 
number of positive reads. Thus, a single run with a batch of profile HMMs can 
unveil which protein sequences are encoded by dataset reads, as well as deter-
mine which viral groups are present in the metagenomic sample. HMM-
Prospector is provided with comprehensive documentation, including a 
tutorial with an accompanying dataset to perform a survey of Microviridae 
phages using profile HMMs against a metagenomic dataset derived from virus-
like particles isolated from human fecal samples (46). 

USING PROFILE HMMS FOR TARGETED SEQUENCE 
RECONSTRUCTION

Metagenomic assembly is a complex and challenging task due to the heteroge-
neity and abundance of viral communities that often result in many frag-
mented assemblies and the potential risk of creating chimeric sequences, 
among other pitfalls. Also, the choice of assembly software can drastically 
impact the final results (8, 47). If the purpose of the study is to pursue specific 
viral groups/targets, rather than conducting a comprehensive survey of the 
virome, then a more sensible approach is to perform a target-specific assembly 
(3). A seed-driven progressive assembly algorithm was developed and imple-
mented in the GenSeed program (48) and, some years later, in other pro-
grams applied to the assembly of specific viral genomes (49). In this method, 
a short nucleotide or protein sequence is used to recruit reads from a sequenc-
ing dataset and these reads are then assembled. Short end sequences of the 
resulting contigs are then extracted and used as extension seeds in an iterative 
process that generates progressively longer contigs with each cycle. More 
recently, GenSeed-HMM implemented the use of profile HMMs as seeds and a 
case study showed that this approach could be used successfully for sequence 
reconstruction and viral discovery from metagenomic data (3, 50). The main 
advantage of using profile HMMs to recruit reads is the possibility of specifi-
cally nucleating multiple growing contigs representing distinct viral genomes 
each. Like the HMM-Prospector program, GenSeed-HMM is also capable of 
using cut-off scores inserted into the headers of the profile HMMs, thus allow-
ing a high specificity in the process of read recruitment. Thus, viral sequences 
from a metagenomic dataset can be easily reconstructed in a specific way for 
any taxon, as long as effective profile HMMs are available. This method can 
also be extended to non-viral sequences such as plasmids, organellar genomes 
and gene families of cellular organisms, among other targets. GenSeed-HMM 
is publicly available (https://sourceforge.net/projects/genseedhmm/ [accessed 
on 12 Dec 2020]) and is provided with an instruction guide and tutorial using 
the dataset described for the progressive assembly of Alpavirinae phage 
genomes (50). 
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FINDING MULTIGENE ELEMENTS IN CELLULAR ORGANISMS 
WITH PROFILE HMMS

Many different multigene regions are potentially interesting targets for compara-
tive studies, including prophages, endogenous retroviruses, transposable elements, 
operons, etc. Nevertheless, some of these entities often present gene copies outside 
their specific chromosome location, hampering the distinction between element 
genes and sparse gene copies, especially in partially assembled genomes. Also, if 
divergence rate is high, as is usually the case with prophages, similarity searches 
may not detect evolutionarily distant sequences. Some solutions to characterize 
multigene elements were reported in the literature using BLAST similarity searches 
(51) and profile HMMs (52). As previously discussed, profile HMMs can detect 
remote homologs with higher sensitivity than conventional pairwise alignment 
methods. Detection of multigene elements would also benefit if the genome 
screening included several genes within a defined syntenic context. An approach 
integrating the use of profile HMMs to interrogate assembled sequencing datasets, 
allowing for the identification of multigene elements based on gene composition 
and order, was implemented in the software e-Finder. Figure 3 shows a diagram 
of the program’s processing steps. Single or multiple profile HMMs can be used for 
each protein encoded in the element. In the first step, transeq program is invoked 
to perform a 6-frame translation of all input sequences. Next, e-Finder executes 
hmmsearch to perform similarity searches of the models against the translated 
sequences, and then checks whether pre-defined synteny criteria have been met. 
Each sequence must contain a minimum number of genes within a proper range 
of intergenic distances. Element sequences are then extracted, their ORFs identi-
fied and conceptually translated into full-length protein sequences. In the final 
phase, e-Finder stores all sequences, together with a CSV file listing all elements 
and respective features. The program e-Finder is freely available and is fully 
documented (https://github.com/gruberlab/efinder [accessed on 12 Dec 2020]).

AN INTEGRATED APPROACH FOR VIRAL RESEARCH USING 
PROFILE HMMS

Several bioinformatics tools and databases of viral profile HMMs were presented 
and discussed in the previous sections. Recently, a new generation of software has 
become available, composed of tools conceived to be components of an integrated 
solution for the rational design and use of profile HMMs in viral research 
(Figure 4). The main aspects involved in the rational design of profile HMMs were 
implemented in the TABAJARA program, including a heuristic approach to calcu-
late cut-off scores customized for each model. Profile HMMs with a defined range 
of viral taxa detection can be used to interrogate genomic and metagenomic 
sequencing data. For this task, HMM-Prospector can use multiple models with 
the proper cut-off scores to specifically identify viral sequences of known and 
emerging viruses in assembled or unassembled metagenomic/genomic datasets. 
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Positive datasets for selected profile HMMs can be used for downstream analyses 
in two alternative analysis pipelines. For unassembled data, GenSeed-HMM can 
use single or multiple profile HMMs to perform seed-driven progressive assem-
blies and automatically reconstruct the genomes of specific viral taxa. In the case 
of assembled prokaryotic or eukaryotic genomic data, e-Finder can use profile 
HMMs derived from multiple proteins to identify multigene entities in a proper 
syntenic context, such as proviruses, transposable elements and operons. 

MINIONDB - A DATABASE OF VIRAL PROFILE HMMS

The available repositories of viral profile HMMs share a common characteristic; 
the sequences used to compose the MSA and build the models are selected from 
previously generated orthologous groups. While such approaches result in clus-
ters of sequences that usually share functions and a last common ancestor, these 
sequences do not necessarily belong to the same viral taxa; that is, they may be 
members of different genera or families. If specific markers for different viral taxa 

Figure 3. Diagram of the processing steps of e-Finder program to find multigene elements in a 
syntenic context. In this example, the program is used to search a multigene element 
composed of four genes. First, e-Finder performs similarity searches using profile HMMs 
of each protein against a dataset of translated sequences. The program checks if the 
sequence contains the minimum number of genes specified by the user. Next, the program 
identifies the coding sequences of each gene and determines whether the order and 
distance between the genes meet the set of criteria defined by the user. The element 
sequences are then extracted together with their respective flanking regions according to a 
specified length. 
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Figure 4. Workflow of the integrated approach for viral bioinformatics studies. Using a multiple 
sequence alignment as input, TABAJARA program can construct profile HMMs using a 
variety of execution modes. The generated models can be used to screen genomic or 
metagenomic sequencing data with HMM-Prospector program. Models displaying the most 
relevant results can be used as seeds by GenSeed-HMM program to perform a seed-driven 
progressive assembly using unassembled sequencing data. Alternatively, profile HMMs can 
be also be used by the program e-Finder to identify multigene elements in a syntenic 
context using assembled data.
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are targeted, then the sequences should be selected on a taxonomic basis, rather 
than orthology. 

Viral MinionDB is a new repository of profile HMMs covering both pro-
karyotic and eukaryotic viruses, including short (Minions) and full-length mod-
els. All models were created with TABAJARA following the guidelines discussed in 
the previous sections. Viral MinionDB was planned assuming some premises: 
(i) viral taxonomy is dynamic and is continuously and rapidly changing; (ii) offi-
cial viral taxonomy, as released by the International Committee on Taxonomy of 
Viruses (ICTV), is distinct from orthology-based clusters, available in the different 
repositories of viral orthologous groups; and (iii) NCBI Taxonomy is being regu-
larly updated in conformity with up-to-date classifications released by the ICTV. 

Thus, instead of running a pipeline for orthology-based clustering, followed 
by taxonomy mapping, Viral MinionDB uses a dump file from the NCBI 
Taxonomy database to construct a local relational database with all entries, follow-
ing the original database schema. The NCBI’s Taxonomy Browser is updated in 
real time and the corresponding database dump files are updated hourly. This 
means that, at any time, a local program can download an updated database dump 
file from the NCBI’s FTP site. With all taxonomic identifiers on hand, viral pro-
teins can be obtained from the NCBI’s Identical Protein Groups (IPG) database 
(https://www.ncbi.nlm.nih.gov/ipg/) using taxon-associated queries. These sets of 
sequences, selected according to their taxonomic classification, are then aligned 
and used to construct profile HMMs designed as specific markers for the different 
viral taxa. Viral MinionDB models constructed for a wide range of taxa (viral 
families) incorporate a higher diversity than models designed for a narrower 
group of viruses (viral genera). All profile HMMs are built and validated indepen-
dently using the sequences from the corresponding MSAs as training sets. Also, all 
profiles’ HMMs incorporate custom cut-off scores, a feature that allows to perform 
searches with optimized stringency. 

Viral MinionDB was recently released to the public (http://www.bioinfovir.
icb.usp.br/miniondb   [accessed on 12 Dec 2020]) and its version 1.0 (as for 
December 2020) contains a collection of 2,415 profile HMMs for prokaryotic 
viruses (312 full-length and 2,103 short [Minion] models) and 18,334 profile 
HMMs for eukaryotic viruses (1,173 full-length and 17,161 short [Minion] mod-
els). The complete repository covers 27 viral families of prokaryotic viruses and 
120 families of eukaryotic viruses. Instructions for using the web interface and 
downloading the models are available on the web site.

CONCLUSION

Unraveling the dark viral matter (34, 53) is one of the main challenges in biologi-
cal research. The deluge of data provided by metagenomics has revealed new 
challenges for viral sequence detection and classification. Traditional viral classifi-
cation based on morphological and compositional criteria is being rapidly 
expanded with the incorporation of molecular criteria. Viral taxonomic classifica-
tion will likely change, but new bioinformatic tools must be developed to easily 
reflect such changes and permit a fast and reliable classification of viruses. Profile 
HMMs are gradually gaining space to model sequence diversity within new taxa 
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and are becoming valuable tools to help researchers to determine the viral content 
and the diversity of different biomes, as well as for novel virus discovery. Many 
challenges persist - mainly the development of proper methods to select sequences 
for profile HMM construction, and, as discussed above, the incorporation of more 
refined criteria to discriminate positive from negative similarity search results.

The paradigm of diagnosis relies on the fact that detection is achieved by iden-
tifying previously known features. For example, the detection and quantification 
of antibody response depends on the use of specific antigens. Similarly, PCR-
based assays amplify a specific target whose flanking sequences are used to design 
the specific primers of the reaction. This paradigm represents a limitation for viral 
discovery using metagenomic datasets. In classical virology, novel viruses are 
identified by their association to clinical symptoms of a disease, characterized by 
cytopathic effects and particle morphology, and followed by multiplication in cell 
cultures, or inoculation in animal models to replicate these viruses and reproduce 
the disease. All these features are not attainable when using metagenomics for 
viral discovery (13). Since profile HMMs can be constructed with various levels of 
specificity, covering wide and narrow taxonomic ranges of detection, these models 
can be incorporated in metagenomic processing pipelines. Narrow-range models 
can be used to detect and reliably classify currently known viruses, whereas wide-
range models are capable of detecting evolutionary distant viruses. Although these 
tools do not completely break the paradigm of diagnosis, they certainly improve 
our ability to directly detect the unknown viruses in a “de novo” diagnosis. In the 
coming years, when viral taxonomic classification is likely to be based almost 
entirely on genomic data (31, 54) using frameworks such as the GRAViTy plat-
form (55, 56), programs like TABAJARA can become useful tools for large-scale 
automated production of profile HMMs that will cover all taxonomically defined 
viral groups. With such models, the entire process of analyzing metagenomic 
data, as well as detecting emerging viruses, will become much simpler than in the 
present.

The ability to detect known and unknown viruses more efficiently, using pro-
file HMMs, will impact epidemiological surveillance programs. Critical locations 
such as hospitals, sewage treatment stations, animal production farms, and envi-
ronments seasonally colonized by migratory birds are potential targets for such 
programs. Detection of emerging viruses on such sites may alert health authorities 
in time to prevent or mitigate the effects of potentially devastating diseases.
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