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Abstract: Gliomas are neurologically devastating tumors with generally poor 
 outcomes. Traditionally, survival prediction in glioma is studied from clinical 
 features using statistical approaches. With the rapid development of artificial 
intelligence approaches encompassing machine learning and deep learning, there 
has been a keen interest among researchers to apply these methods to survival 
prediction in glioma allowing for integrated processes that encompass pathology, 
histology, molecular, imaging, and clinical features. This chapter provides an 
overview of the emerging computational approaches that have the potential to 
revolutionize survival prediction in glioma. Machine learning and deep learning 
techniques, including support vector machine, random forest, convolutional 
 neural network, and radiomics, are discussed. 
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INTRODUCTION

Outcome prediction in glioma is of tremendous importance as it has the potential 
to aid in optimal patient management and patient counselling. In the past, out-
come prediction has centered mainly on clinical features such as age and perfor-
mance status, surgical features such as resection status, and pathological features 
such as morphology and Word Health Organization (WHO) grade. Molecular 
classification and identification of predictive and prognostic factors are now also 
considered (1–4). Traditionally, outcome prediction is carried out through recur-
sive partitioning analysis (RPA) (3, 4). Glioblastoma patient survival by prognostic 
grouping was published initially in 1993 and employed RPA, a non-parametric 
statistical technique creating prognostic groups based on clinical features (3). 
It divided patients into six prognostic classes (I – VI) (3), later simplified to three 
classes (III, IV, and V/VI) and eventually revised to include only glioblastoma (4). 
Limitations included the lack of temozolomide-based stratification and molecular 
features (for example, O6-Methylguanine-DNA-methyl transferase [MGMT] 
methylation), both rectified recently (1, 2). 

In the clinic, the most debated scenarios regarding management and outcomes 
center on the elderly (5–10), patients with lower grade gliomas (11–14), and the 
administration of systemic therapy (for example, PCV [Procarbazine, CCNU and 
vincristine] vs. temozolomide, current vs. sequential, and number of cycles) 
(15–17). With respect to glioma in the elderly, a number of metrics including 
age (6), temporal muscle thickness (7) and geriatric assessment (8) have been 
employed to predict survival. Straube et al. created a scoring system incorporating 
age, performance status, MGMT status, the extent of resection, and aphasia and 
motor dysfunction after surgery, all of which were found to be associated with 
survival (10). In lower grade gliomas, current practice is based on old pathologi-
cal classification of glioma (12). This has resulted in the lack of a consensus 
regarding optimal use of radiotherapy in patients with low grade glioma 
(LGG) (13), timing and dose of radiation, and timing of chemotherapy (14). For 
survival prediction, consensus is generally achieved by multidisciplinary review 
of histology, molecular and imaging factors. Gittleman et al. employed TCGA (The 
Cancer Genome Atlas) data to develop and externally validate a survival nomo-
gram, which is available as a free online software, for lower-grade glioma patients. 
The final nomogram included factors that increased the probability of survival: 
grade II tumor, younger age at diagnosis, a higher KPS (Karnosfsky Performance 
Status) and IDH (isocitrate dehydrogenase) mutation (16). In high-grade glioma 
(HGG) including glioblastoma, there is ongoing controversy regarding the num-
ber of cycles of chemotherapy to be administered (15–17). Gittleman et al. devel-
oped a nomogram using the Cox proportional hazards (CPH) model, incorporating 
 factors that increased the probability of shorter survival: age at diagnosis, male 
gender, lower KPS, subtotal resection, and unmethylated MGMT status. The 
nomogram assesses survival probabilities (6-, 12-, and 24-mo) for patients with 
newly diagnosed glioblastoma and can be used to counsel patients regarding 
treatment decisions and optimizing duration of treatment and, like LGG counter-
part, is available as free online software (16). 
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NOVEL APPROACHES TO SURVIVAL PREDICTION IN GLIOMA

Novel approaches employ computational methods to generate survival prediction 
(Figure 1). The number of publications that analyze the relationship between 
clinical, pathological, histological and imaging factors, and survival in glioma 
have been increasing at a rapid pace (Figure 1). More than 50% of publications 
involving computational approaches to survival prediction in glioma were gener-
ated in the last two years with more than 46 manuscripts dedicated to this subject 
(Figure 1A). Most of the manuscripts have focused on correlating imaging find-
ings to survival prediction, followed closely by molecular characterization, genet-
ics, and digital pathology (Figure 1B). Most data employed in novel computational 
approaches originated from smaller single-institution data sets with the remainder 
employing TCGA, Chinese Glioma Genome Atlas (CGGA) and Multimodal Brain 
Tumor Image Segmentation (BraTS) (Figure 1C). Only a small percentage of 
reports employed Surveillance, Epidemiology, and End Results (SEER) data 
(Figure 1C) presumably secondary to limitations currently inherent in nonspatial 

Figure 1. The landscape of computational approaches in the literature as related to glioma 
survival prediction. A. The % of publications related to glioma survival prediction by year of 
publication. B. The % of publications related to glioma survival prediction grouped by the 
primary topic explored (as defined by the primary data type employed in the prediction 
analysis). C. The % of publications related to glioma survival prediction grouped by the 
origin of the data employed to develop the approach. 
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data sets including the lack of capture of molecular and pathological features, and 
management. Almost exclusively, the data currently employed in glioma survival 
prediction is retrospective in nature. Prospective data is being generated in a small 
cohort of ongoing clinical trials with robust histopathology, molecular, and 
 imaging endpoints but may yet take some time to be incorporated in ongoing 
computational approaches (Tables 1 and 2). Computational approaches generally 
involve subcategories under the umbrella of artificial intelligence namely machine 
learning (ML) and deep learning (DL) (Figure 2). 

Machine learning approaches

With increasing accessibility of electronic health records and large-scale registry 
data, ML has become an increasingly popular method to model survival. ML is a 
sub-field of AI where a computer algorithm automatically develops a model that 
transforms input data to output without using rules defined by humans. Classical 
ML methods require input data to have well defined sets of variables in the for-
mat of structured data (features). The process of extracting relevant structured 
variables from raw data to be used as ML input, known as feature engineering, 
often requires significant domain expertise and computational processing power, 
especially when it comes to input data such as images and natural language. DL 
is an emerging sub-field of ML where the DL algorithm can take raw data, such 
as images, as input and “learn” to define its own features needed for computing 

TABLE 1 Statistical analysis and machine learning terms 
employed in survival prediction

Term Description 

COX/CPH model Cox’s proportional hazards model: a regression model commonly investigating 
the association between the survival time of patients and one or more 
predictor variables (18).

RPA Recursive Partitioning Analysis: a non-parametric statistical technique used to 
create prognostic groups based on clinical features (1). 

C-index Concordance index: A performance metric for how well a model predicts the 
ordering the patients’ risk of death in comparison to ordering of patients’ 
recorded survival time (19).

ROC Receiver operating characteristics curve: A probability curve of sensitivity 
vs (1-specificity) when using different cutoff points in classifying binary 
outcomes (19).

AUC Area under the ROC curve: Area under the ROC that is used distinguishes the 
discriminative potential of the algorithm (19). 

Model validation A ML trained model is evaluated with a test data set that is not used in training. 
A popular validation method is K-fold validation where the algorithm is 
trained K times with (1/K) of all data left out of training each time to be used 
to evaluate model performance (20). 
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the outcome (27). ML and DL algorithms can be designed to capture the com-
plexity of the patient profile by producing prognostic models that consider a 
large number of predictors including spatial and non-spatial data. Data extracted 
from large-scale registry and institutional data have been used for training ML 
and DL algorithms to improve the performance of survival outcome predictions. 
The data that have been used as training data include, but are not limited to, 
clinical characteristics, radiomics, histology, and molecular characteristics. Many 
studies have also shown different combinations of the use of imaging data (such 
as, Magnetic Resonance Imaging [MRI]) and Positron Emission Tomography 
[PET]) combined with clinical, histological, or genomic features (28–36). Some 
of the most popular ML algorithms used in survival prediction include support 
vector machine (SVM), random forest (RF) and a convolutional neural network 
(CNN) (37,38). Their relationship with respect to AI, machine learning, and 
deep learning is illustrated in Figure 2. All three methods require a training step 
where example data, called training data, is used as an input into a learning 

Figure 2. The relationship between Artificial intelligence (AI), Machine learning (ML) and 
Deep learning (DL) and models currently employed in survival analysis (26).

Deep Learning:

A technique to perform
machine learning
inspired by our brain’s
own network of
neurons.

Machine Learning:
A technique by which a computer
can “learn” from data, without
using a complex set of different
rules. This approach is mainly
based on training a model from
datasets.

Random Forest

Support Vector Machine

Artificial Intelligence:
Mimicking the intelligence or behavioral
pattern of humans or any other living
entity.

Convolutional Neural Network
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algorithm which develops a model capable of mapping the input to an outcome 
as accurately as possible, and a prediction step where the trained model is used 
to predict outcomes given new data (37, 38). The individual approach inherent 
in each model is described below.

Support vector machine

SVM is a popular ML algorithm that has been used in classification and regres-
sion analysis in many fields of science. It can be successfully applied to analyze 
data with a large number of predictors and a limited sample size such as, thou-
sands of radiomic features derived from imaging data, to predict survival out-
come. The underlying principle of SVM is to optimize the separation of all 
observations into different classes (39). In the context of survival prediction, an 
SVM model can classify patients’ survival time as long or short defined by an 
arbitrary survival time threshold used in model training. For example, Panesar 
et al. used the SVM algorithm to train models containing features including clini-
cal and molecular characteristics, and WHO grade. A total of 76 patients were 
split into training and testing datasets in a 7:3 ratio randomly each time for 15 
training cycles. The average performance of the resulting 15 models achieved a 
better binary classification performance (accuracy = 73.33%) for 2-year survival 
than the benchmark statistical regression methods (accuracy = 69.27%) (34). 
Similarly, Sanghani et al. extracted 2200 radiomics features, including texture, 
volume and shape, from multi-channel MRI data of 163 patients and combined 
them with clinical features such as age and KPS. These features were used to train 
an SVM model which selected the top 150 most predictive features and used 
them to produce a model that classifies each patient’s overall survival (OS) time 
into 2 classes (greater or less than 400 days) and 3 classes (<10, 10–15, >15 
months). The prediction accuracy was 98.7% for 2-class, and 88.95% for 3-class 
in cross-validation using internal data (29). Efforts have been made to adapt the 
SVM model for time-to-event analysis to predict survival time and improve its 
performance on right censored data by Khan et al. (40) and Van Belle et al. (41) 
by integrating regression constraints. 

Random forest

Random forest (RF) is a non-parametric ML algorithm that constructs multiple 
decision trees based on training features and uses the consensus or average of 
their output to get a more accurate prediction. Similar to SVM, RF algorithm can 
be used to model a large number of predictors with a limited number of observa-
tions (18, 42). For survival analysis, RF has been adapted by Ishwaran et al. to 
create a Random Survival Forest (RSF) capable of time-to-event analysis, taking 
into account right censored data (42). Audureau et al. trained two random forest 
models with different approaches, using clinical features including demographics, 
tumor location, KPS and treatment from 407 patients as a training set. The RF 
models performed slightly better than the gold standard statistical regression 
model (CPH model) when validated using external validation data (370 
patients) with C-index of 70.14 and 70.37. Both RF models also identified KPS as 
the most important feature for predicting OS (43). Chang el al. trained a random 
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forest model using features including volumetric, shape, texture, parametric, and 
histogram extracted from pretherapy (2293 features) and post-therapy (9811 fea-
tures) multimodal MRI images of 84 patients to predict progression free survival 
(PFS) and OS. Long and short survival was defined as surviving more and less 
than the 50th percentile of PFS or OS in the training cohort respectively. An accu-
racy of 0.76 in classifying long and short survival was achieved in the validation 
cohort when using both pre- and post-therapy features, greatly exceeding the 
prediction accuracy of models trained only using pre-therapy features which was 
0.57 and 0.54, respectively (35). 

Convolutional neural network

Convolutional neural network (CNN) is a deep learning technique widely used in 
image analysis. A CNN can learn to classify or identify objects in images by auto-
matically learning to extract features from them instead of using human defined 
features to interpret the images. For example, Mobadersany et al. developed a 
survival convolutional neural network (GSCNN) that integrated raw histological 
images with genomic biomarkers (IDH mutation status and 1q/19q codeletion) 
from 769 patients to produce a survival prediction framework with prognostic 
accuracy (C-index = 0.801) surpassing the WHO paradigm based on genomic 
classification or histological grading (36) when tested using internal data. Nie 
et al. trained a CNN to classify segments of whole brain images from 68 patients 
into long and short survival time (threshold at 650 days) with over 80% accuracy. 
The “deep features” learned by CNN, along with clinical features of patients, were 
then used as input for an SVM model which achieved an accuracy of over 90.66% 
in classifying long and short survival when validated on independent dataset (32). 
These studies highlighted the ability of CNN to automatically extract features 
predictive of survival from raw images. The generalizability and transferability of 
these high-level image features still require testing using data from various exter-
nal institutions. 

Evaluating machine learning approaches

Concordance index (C-index) is the most commonly used metric for evaluating 
survival predictions. It measures the accuracy of the model’s predictions of the 
ordering of patients’ risk of death (equivalent to survival time ranking) in com-
parison to ordering of patients’ recorded survival time. It is a value ranging from 
0.5 (indicating random ordering by model) to 1 (indicating perfect concordant 
ordering by model) and can also be estimated for right censored data (19, 44) 
(Table 1). Most ML and DL studies have achieved a C-index above 0.7 (31, 36, 
45–47). For discrete survival classification using a survival time threshold, the 
overall classification accuracy is often calculated. 

Radiomics and other computational approaches

Radiomics-type approaches are becoming increasingly common. They share an 
approach to inferring tumor grading, molecular features and/or tumor behavior 
following treatment in conjunction with tumor imaging and linking this to 
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outcome prediction including survival (46–48). Broadly, radiomics is an emerging 
field that involves extraction and quantification of features from medical 
images  (48). The data can then be analyzed using computational analysis and 
models to identify predictive image biomarkers that characterize tumor behavior. 
Jan et al. carried out an extensive literature review of radiomics-based analyses, 
with a particular focus on computational modeling, machine learning, and fractal-
based analysis aimed at optimizing differential diagnosis and predicting clinical 
outcomes. Han et al. combined a deep learning and radiomics model to predict 
OS in a cohort of 50 patients from their institution and 128 patients from TCGA 
with high-grade glioma. They calculated 348 radiomics features and 8192 deep 
features generated by a pretrained convolutional neural network and then applied 
feature selection and Elastic Net-Cox modeling to differentiate patients into long- 
and short-term survivors (46). Similarly, Lao et al. employed deep features to 
generate radiomic signatures for prediction of OS in a data set of 75 patients and 
an independent validation data set of 37 patients with glioblastoma. They extracted 
a total of 1403 handcrafted features and 98304 deep features from MRI and gen-
erated a radiomics nomogram combining the signature and clinical risk factors 
such as age and KPS. The proposed signature achieved better performance for 
prediction of survival and significant stratification of patients into prognostically 
distinct groups with a C-index of 0.739, demonstrating that a prognostic imaging 
signature exists and patient stratification for glioblastoma was possible (47). 
While most studies employ MRI, functional imaging in the form of 
18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) has also 
been employed in radiomics analyses (30,49). Li et al. employed the images of 
127 patients to develop a model to analyze features reflecting glioma metabolism 
for predicting IDH genotype and prognosis and generated a radiomic signature 
significantly associated with IDH genotype (49). 

Imaging and tumor grading-based survival prediction

By far the most common theme in computational glioma survival prediction 
involving imaging relates to glioma tumor grading. Numerous publications have 
employed tumor grading from imaging features as a starting point to help develop 
prognostic biomarkers (21, 50–60). Some publications have focused strictly on 
glioma grading (31, 50, 58) while others explored more specific molecular sub-
types (54) and IDH mutation status (51–53, 57, 58). Juan-Albarracin et al. devel-
oped ONCOhabitats (https://www.oncohabitats.upv.es [accessed on 10 December 
2020]): an online open access system for glioblastoma analysis based on MRI 
data, including malignant tissue segmentation and vascular heterogeneity assess-
ment of the tumor while implementing a deep patch-wise 3D CNN with residual 
connections. This allows open-access services for glioblastoma heterogeneity 
assessment and medical image analysis with a computational capacity of 300 
cases per day (50). Tan et al. analyzed the clinical data, genetic features and MRI 
images of 147 high-grade glioma (112 patients as training cohort, 35 as indepen-
dent test cohort) to develop a radiomic signature to predict OS for HGG, and 
constructed a nomogram by combining selected radiomic, genetic and clinical 
risk factors. The radiomics features were extracted from the tumor area and the 
peritumoral edema area on CE-T1WI (contrast-enhanced T1-weighted imaging) 

https://www.oncohabitats.upv.es
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and T2FLAIR (T2 fluid-attenuated inversion recovery) images, and the risk fac-
tors and OS were explored by Kaplan-Meier survival analysis by stratifying 
patients into low- and high-risk groups (C-Index 0.707 and 0.711 in training and 
test cohorts respectively) (31). By contrast, using CNN Zhuge et al. created two 
fully automated glioma grading methods on conventional MRI images that were 
then evaluated on The Cancer Imaging Archive (TCIA) LGG data, and the BraTS 
Benchmark 2018 training datasets (55). In yet another approach, Liao et al. exam-
ined multi-dimensional MRI features extracted from segmented lesions of 
T2-FLAIR MRI data of 137 glioblastoma patients together with RNA sequencing 
in groups of glioblastoma patients identifying radiomic parameters including 
intensity, shape and textural features that were incorporated into seven classes to 
divide the patient cohort into two groups depending on their survival time, con-
cluding that MRI features are predictive of survival outcomes and image features 
are highly associated with selective metagenes (59). 

With respect to molecular classification in terms of IDH mutation status, 
Suchorska et al. stratified 301 patients with WHO grade II (n = 181) or grade III 
glioma (n = 120) according to their molecular profile and reviewed pre-operative 
MRI and volumetric analyses of contrast-enhanced and T2 volumes, showing that 
contrast enhancement on initial MRI is a prognostic factor for survival with depen-
dence on volume distinguishing IDH-mutated from IDH-wild type tumors (51). 
Similarly, with an eye towards predicting IDH mutation pre-operatively, several 
publications have employed MRI and ML (57, 58, 61). Zhang et al. employed pre-
operative MRIs of 120 HGG patients with confirmed IDH genotype, to extract 
2970 imaging features from pre- and post-contrast T1-weighted, T2-weighted, 
and apparent diffusion coefficient (ADC) maps. Using RF, the preoperative MRI 
features with the highest predictive value for IDH genotype were patient age, 
parametric intensity, texture, and shape (57). Similar analyses using preoperative 
prediction of IDH status were carried out by Tan et al. in 105 astrocytoma (Grades 
II-IV) (58).

Imaging and response to treatment

The use of imaging to assess response to treatment in glioma is of tremendous 
importance for both patient management and outcome assessment. With respect to 
computational approaches on analyzing survival outcomes, research to date has 
focused on two main aspects: (i) distinguishing progression from pseudo-progres-
sion (62, 63); and (ii) connecting systemic therapy or radiation therapy (RT) to 
imaging changes (64). Artzi et al. utilized data generated using conventional, 
dynamic contrast enhanced (DCE)-MRI and magnetic resonance spectroscopy 
from 20 patients to extract the enhanced lesion area using independent component 
analysis and choline/creatine values and compared treatment-related changes with 
normal-appearing white matter. They identified a progressive disease component 
within the lesion, concluding that the results may have clinical importance for pre-
operative planning, guidance for targeting biopsy and early prediction of radiologi-
cal outcomes in patients with HGG (62). Kebir et al. carried out a similar analysis 
using 14 patients with HGG suspected of progression but used FET-PET imaging 
to identify 3 clusters based on 10 predominantly textural FET-PET features. Similar 
studies were also carried out by Chan et al. and Petrova et al. (64, 65).
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Correlating response to RT with images using ML and DL is challenging. 
Mizutani et al. employed scans of 35 patients with malignant glioma, identifying 
12 clinical features and 192 dose–volume histogram (DVH) features and used 
SVM to predict OS times after RT. They found that prediction accuracy was sig-
nificantly improved with the combined use of clinical and DVH features com-
pared with the separate use of each feature (66). Qiu et al. compared RSF and 
traditional CPH to predict tumor progression after particle beam radiotherapy in 
82 HGG patients and found that CPH demonstrated a better performance in terms 
of integrated C-index as compared to the RSF model (18). 

The question as to the most optimal computational approach to be employed 
in glioma survival prediction pertaining to imaging data is as yet unresolved 
(32, 55, 67–69). Zacharaki et al. (28) suggested that prediction models based on 
data-mining algorithms can provide a more accurate information about prognosis 
of malignant gliomas than histopathologic classification alone. Since then, more 
studies have concluded that the combination of clinical and multi feature imaging 
is crucial to obtain accurate model prediction (39, 45, 70). Some studies also sug-
gest that DL approaches may be superior to ML (32, 67, 68). Mirroring traditional 
RPA approaches to survival prediction, some publications aim to classify gliomas 
by survival time using DL techniques (71) and more novel approaches. For exam-
ple, Smedley et al. describe a neural network-based approach that takes high-
dimensional gene expression data as input and performs non-linear mapping to 
an imaging trait, identifying imaging traits with specific transcription patterns, 
such as edema and genes related to cellular invasion (72). Mostly, small institu-
tional cohorts are being employed as opposed to large registries such as TCGA 
(73, 74). Studies suggests that imaging-based glioma survival prediction carries 
greater potential as compared to traditional approaches to what is currently radio-
graphically being identified as gross tumor on scans (67, 74). Brain tumor 
segmentation also remains an active area of research that has significant implica-
tions for computational approaches (75–77). Currently, most studies are based on 
very small institutional cohorts (Figure 1) and the validation of models is heterog-
enous in the literature, although with ongoing research this is likely to change 
rapidly in the coming years. 

Molecular and genetic characterization of glioma, digital pathology, 
and survival prediction

Several molecular markers such as IDH1/2, 1p19q co-deletion, TERT and MGMT 
promoter methylation, G-CIMP methylation, EGFR alternations, BRAF V600E 
mutations and histone mutations have been found to have prognostic significance 
in glioma (78). Statistical methods can be applied to stratify prognosis based on 
molecular characteristics. Bell et al. created a new RPA model (NRG-GBM-RPA) 
that creates distinct prognostic groups based on age, MGMT protein and c-Met 
protein levels. The new model resulted in improved survival stratification in 
patients with glioblastoma treated with RT and temozolomide in comparison with 
current RPA classifications based on age, KPS, resection status and neurofunction 
status (79). 

In the 2019 “Contributions from the 2018 Literature on Bioinformatics 
and Translational Informatics” (80), the two primary trends identified were: 
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(i) the adoption of artificial intelligence and DL methods in medical informatics; 
and (ii) the implementation of a pan-cancer approach and integration of multi-
omics data for more insightful analyses (80). In glioma, RNA based biomarkers are 
evolving and traditional statistical models have been employed to create prognostic 
groups (81, 82), while ongoing efforts using computational approaches that involve 
ML and DL are advancing for somatic copy number variations (83) and gene 
expression microarrays (84). To date, both 1p19q (85) and MGMT (86, 87) are 
important molecular features undergoing active inclusion into computational 
approaches to glioma survival prediction. Transcriptomic analyses using TCGA 
glioma expression datasets are being advanced to identify novel tumor subcatego-
ries using ML (88, 89). Panesar et al. applied 3 ML techniques (CNN, RF, SVM), 
and classical logistic regression to the molecular characteristics of a dataset consist-
ing of 76 patients with glioma of all grades achieving reasonable performance com-
pared with similar studies in the literature, but noted that, similar to other studies, 
 traditional statistical methods were of similar benefit (34). This illustrates that 
more research is needed particularly with larger data sets and validation.

Digital pathology is emerging as an increasingly important facet of the approach 
to glioma pathology and classification and has been employed in both ML and DL 
approaches to integrate information from both histology images and genomic 
 biomarkers to predict time-to-event outcomes (36). It has been utilized for whole-
slide imaging of histologic sections to extract quantitative features (90). Powell 
et al. used hematoxylin- and eosin-stained slides from TCGA to create a machine 
learned dictionary of “image-derived visual words” associated with survival out-
comes while connecting image-derived phenotypic characteristics with molecular 
signaling activity and the behavior of low-grade glioma (91).

CONCLUSION

Retrospective spatial and nonspatial data from patients with glioma is increas-
ingly available and prospective data is being generated to provide an avenue for 
novel approaches to survival prediction. While many computational approaches 
show promising performance in terms of survival prediction accuracy, most ML 
prognostic models are trained using data from single-institutions and have not 
been validated using external cohorts. To facilitate the implementation of ML 
prognostic models into clinical practice, prospective validation of these models 
on large scale heterogenous cohorts from multiple centers would be required (92). 
Digital pathology is an exciting avenue being advanced to explore survival 
 prediction in glioma. Most importantly, the neuro-oncology field needs to famil-
iarize itself with computational approaches and quality metrics for the assess-
ment of such approaches to ensure robust conclusions that drive improvement in 
patient outcomes in the clinic. There is a growing need to foster reliable clinician/
ML innovation to support the generation of robust data sets in large scale  registries 
such as TCGA, SEER and BraTS. Efforts towards developing consensus and 
 clinical oversight in the methods for data acquisition and coding across different 
institutions could facilitate external and prospective validation of survival predic-
tion models.
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