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Abstract: Biomarkers are of great importance in many fields, such as cancer 
research, toxicology, diagnosis and treatment of diseases, and to better under-
stand biological response mechanisms to internal or external intervention. High-
throughput gene expression profiling technologies, such as DNA microarrays and 
RNA sequencing, provide large gene expression data sets which enable data-
driven biomarker discovery. Traditional statistical tests have been the mainstream 
for identifying differentially expressed genes as biomarkers. In recent years, 
machine learning techniques such as feature selection have gained more 
popularity. Given many options, picking the most appropriate method for a par-
ticular data becomes essential. Different evaluation metrics have therefore been 
proposed. Being evaluated on different aspects, a method’s varied performance 
across different datasets leads to the idea of integrating multiple methods. Many 
integration strategies are proposed and have shown great potential. This chapter 
gives an overview of the current research advances and existing issues in bio-
marker discovery using machine learning approaches on gene expression data.
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INTRODUCTION

A biomarker is an indicator of a biological state, often in response to an interven-
tion or the stage of a disease. Although biomarkers mostly refer to physiological 
or physical phenotypes, at the molecular level, a biomarker can indicate disease-
associated molecular changes and may be useful in disease diagnosis (1, 2), 
various infections (3), neurological diseases (4), and for defining therapeutic 
targets (3). In toxicological studies, biomarkers are often used to define a set of 
differentially expressed genes or proteins in a toxic exposure or chemical risk 
assessment study (5–11). Data from various omics techniques, including tran-
scriptomics, proteomics, and metabolomics, as well as epigenomics, are useful 
starting points for a biomarker discovery study (10, 12–15). In this chapter, we 
focus on the informative genes that can generally be used to distinguish samples 
from different groups, which can be normal or tumor tissues from human patients 
or tissues of animals that are exposed to toxic chemicals and their solvent controls, 
using gene expression data. Among the technologies for whole transcriptome 
gene expression profiling, DNA microarray and RNA sequencing (RNA-Seq) are 
the most popular (16).

On the methodology aspect, differential gene expression analysis has been 
the mainstream for its simplicity and interpretability. By comparing the mean 
expression values of different groups, we can measure the magnitude of differ-
ence between the groups, expressed as a fold change (FC), but it is important 
not to ignore the variance within each group. The genes of highly reproducible 
but comparably low difference in expression values are missed by looking solely 
at the FC (17). A statistical hypothesis test is usually applied, such as Student’s 
t-test, which considers both the difference between two groups’ mean values 
and the variability within each group. A p-value, which is the probability of 
obtaining an experimental result at least as extreme as the one observed under 
the null hypothesis, can be obtained from this kind of statistical tests. But such 
statistical tests usually require specific distributional assumptions; for example, 
the Student’s t-test is applicable if the values are normally distributed, which is 
rarely the case for gene expression data (17). In recent years, more and more 
concerns and debates about misuse of p-value have arisen (18–23). The choice 
of thresholds for FC and p-value can also significantly alter the interpretation of 
results (24).

In recent years, machine learning has been widely applied in biomarker dis-
covery (3, 25–28). Machine learning applies mathematical approaches to train a 
model to learn from data for a particular task (29). The relevant machine learning 
techniques for biomarker discovery are classification and feature selection. 
Classification is a form of supervised learning where the algorithm is fed with 
labeled samples each represented by a set of features. The task is to learn a func-
tion that can predict the label of a sample from its features. In our case, the labels 
correspond to the different groups, and the features are the gene expression pro-
files. As in the case of gene expression data, the number of genes can be tens of 
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thousands (5). Feature selection is usually applied prior to classification or during 
classification, to remove noise or non-informative features to train a more precise 
and robust classifier (30, 31). Feature selection methods can generally be divided 
into three groups: (i) filter methods that select the features based on their correla-
tion with the sample labels and are therefore independent of the classification 
procedure; (ii) wrapper methods which use an objective function (usually classi-
fication accuracy) to assess the importance of features, and (iii) embedded meth-
ods which are incorporated in the classifiers (32, 33). Since the selected features 
are informative in distinguishing samples from different groups, they can there-
fore also be regarded as biomarkers.

EVALUATION OF A BIOMARKER DISCOVERY METHOD

Several biomarker discovery methods have been proposed in the fast-developing 
machine learning field. A reasonable evaluation metric is necessary to choose the 
most appropriate biomarker discovery method. Two aspects have been addressed 
when talking about the performance of a biomarker discovery method: its stabil-
ity and its ability to improve a classifier’s prediction accuracy (33–35). Another 
more direct way to assess performance is to look at the selected gene list given 
a priori knowledge of well-known biomarker sets which can be regarded as “gold 
standard” (36).

“Gold standard” gene sets

If a priori knowledge is available, such as the common gene mutations for breast 
cancer (37) or the common gene fusions for prostate cancer (38), at least con-
ceptually, the relevant genes can be regarded as the true biomarker genes. In this 
case, evaluation of a biomarker discovery method becomes quite straightforward 
by simply comparing the selected gene set to the established “gold standard”. But 
establishing a high-quality “gold standard” becomes crucial to obtain both high 
precision (as many genes as possible are true biomarkers in the selected gene 
list) and sensitivity (as many true biomarkers as possible are selected from the 
whole gene list). To evaluate multiple RNA-Seq analysis workflows (including 
differential expression analysis), Williams et  al. prepared a reference gene set 
based on results from four previous independent microarray and BeadChip stud-
ies (39). To reduce bias from one single statistical method, they employed both 
significance analysis of microarrays (SAM) (40) and limma (41, 42) and used the 
genes at the intersection of the two methods as the final reference. The resulting 
reference set was later used as “gold standard” in other studies to assess the per-
formance of RNA-Seq analysis workflows or differential expression analysis 
methods (43, 44).

Stability

Ideally, the biomarkers should reflect the characteristics of the disease or exposure 
and be applicable to any sample in the data set. Thus, the biomarker discovery 
method should select a consistent set of genes disregarding minor changes in 
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the samples. However, in reality, due to differences between the samples, a biomarker 
discovery method will select different genes. The robustness of selecting similar 
gene sets even when the input data varies is called the stability of a method. The 
similarity of the selected gene lists can be used to define an evaluation metric 
reflecting the stability of the method.

Starting with two gene sets, Kalousis et  al. (45) proposed to use the ratio 
between the number of genes contained in both sets (intersection) and the number 
of the set of genes contained in either (union) as the similarity index. Kuncheva 
et al. (46) pointed out that this index has a tendency to increase when there are 
more genes included in the list, which can encourage false positive results. They 
proposed to take into account the expected number of genes to be shared between 
the two sets as a modified index to solve that problem.

When it comes to a collection of gene sets, the similarity between them can be 
calculated by averaging all pairwise similarity indices (46). However, those simi-
larity indices require that gene numbers in all gene sets are the same. Davis et al. 
(47) proposed a more flexible way to calculate similarity which allows various 
gene set sizes and can also directly calculate the similarity among more than two 
sets instead of in a pairwise fashion.

Prediction accuracy

A biomarker is an indicator of a biological state in response to an intervention, 
meaning that it can represent the characteristics of the samples in the intervened 
group compared with the control group. Compared with using the whole gene list 
to train a classifier that can distinguish the samples from different groups, training 
a classifier using biomarkers that already include the most distinctive information 
should give a comparative prediction performance or even a better one, since 
non-related and noisy genes can reduce the predictive ability of a classifier. Using 
several selected gene sets (potential biomarkers) to train classifiers, the prediction 
accuracy can reflect the quality of the corresponding gene set. A confusion matrix 
(48) is often used to evaluate the prediction performance of a classifier. Based on 
that, some evaluation measures such as Recall, Precision, area under a receiver 
operating characteristics curve, and so on, have been proposed to measure differ-
ent performance aspects of a classifier (49).

COMPARISON OF BIOMARKER DISCOVERY METHODS

In the case where a well-established “gold standard” gene set is available, a simple 
comparison of the selected gene list to the reference list can assess the biomarker 
discovery method in question. But in most cases, such a true biomarker list is not 
available.

Before looking at the stability and prediction accuracy, which requires greater 
effort, a simple look at the gene list can still give some hints on the performance 
of the methods. Comparing the selected gene sets from multiple methods can 
shed some light on the exploration of the candidate methods, when the absolute 
performance is not of the highest concern. Blanco et al. (50) compared the genes 
identified as most relevant for discriminating sick and healthy patients as 
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produced by two different machine learning methods, random forest (51) and 
generalized linear models (52), and one classical gene expression analysis 
approach, edgeR (53). They found that random forest and edgeR tend to select 
similar gene sets compared with generalized linear models.

When the “gold standard” biomarker list is not available, and one still wants to 
assess the performance of a biomarker discovery method or compare multiple to 
select the best one for their study, stability and prediction accuracy can be used as 
evaluation metrics.

For a long time, improving prediction accuracy has been the focus of bio-
marker discovery methods. Lyons-Weiler et al. combined statistical tests with clas-
sification (17). They chose the threshold for FC and p-value which could help to 
achieve the highest classification accuracy. Comparing the F-score algorithm 
(from Support Vector Machines (SVM) (54)) with three popular differential 
expression analysis methods (limma, edgeR, DESeq (55)), Liang et al. (56) found 
that F-score algorithm obtained the best predictive performance when training an 
SVM classifier to predict stages of human embryonic development using single-
cell RNA-Seq data. Schirra et al. evaluated the feature selection/classifier combina-
tions that lead to an improved classification performance, and preferred filter 
methods when comparable prediction accuracy can be obtained for their higher 
interpretability (57).

Stability of biomarker discovery has gained more and more attention in recent 
years (32, 58, 59). A more complete evaluation of a biomarker discovery method 
should address both prediction accuracy and stability (33–35). In a previous 
study (33), on those two aspects, we compared the performance of both tradi-
tional statistical tests and machine learning methods: SAM, minimum redundancy 
maximum relevance (mRMR) (60), and characteristic direction (GeoDE) (36) on 
multiple datasets. We found that no single method outperforms the others on 
these two aspects across all tested datasets.

ENSEMBLE OF MULTIPLE METHODS

Since it is hard to tell which is the best one, another solution is to combine the 
potential methods. There are already studies showing that an ensemble of multi-
ple feature selection methods can obtain a very satisfactory performance regarding 
both stability and prediction accuracy. The ensemble gene set can therefore be 
regarded as the final biomarker gene set (Figure 1).

Van IJzendoorn et al. combined statistical tests with machine learning tech-
niques (61). On top of the significantly differentially expressed genes (adjusted 
p-value < 0.05), they applied random forest to select the most informative genes. 
By employing the ensemble feature selection concept, multiple biomarker discov-
ery methods can be combined to take advantage of the strengths and overcome 
the weaknesses of the individual methods (62, 63). This approach is called func-
tion perturbation (32, 62). Similar to this logic, data perturbation refers to 
approaches applying one method on several data subsets generated from the origi-
nal data set (for example using bootstrap (64)), and combining the results (58, 63, 
65), an approach that has been shown to be able to improve the stability of the 
biomarker discovery method.
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To take advantage of both data perturbation and function perturbation, we 
proposed to combine both of them (66) (Figure 2). In the phase of data perturba-
tion, the stability of each method is calculated, and in the phase of function 
perturbation, when combining the results from multiple methods, their stabilities 
are used as their weights, so as to achieve the most robust final result. Testing on 
six microarray data sets from cancer studies, we found that the proposed frame-
work achieved both high stability and prediction accuracy compared with the 
individual methods and the pure function perturbation. 

CONCLUSION

In this chapter, we discussed biomarker discovery using gene expression data of 
the samples from different groups, usually a control group under normal biologi-
cal status and a treated group with intervention or disease. The biomarker genes 
are therefore the responders to the intervention. Traditional statistical tests have 
been widely used to identify the differentially expressed genes as biomarkers for 
their simplicity and high interpretability. Such statistical tests are based on a 
hypothesis that the genes are independent of each other. This is not the case in a 
normal biological setting, since genes usually work together composing pathways 

Figure 1.  An illustration of using ensemble gene sets from multiple methods as the biomarker 
gene set. Omics data collected from biological samples are fed into multiple biomarker 
discovery methods which results in several gene sets (for example, A and B). Based on 
stability and prediction accuracy, the results from satisfactory methods are integrated into 
the final biomarker gene set.
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and networks (3), resulting in a highly correlated data set. Most of the statistical 
tests also require some specific distributional assumptions which cannot always 
be satisfied, especially when the biological replicates are quite limited. The misuse 
of FC and p-value and the choice of their threshold have also been debated in 
recent years.

Machine learning techniques, such as feature selection, have been applied with 
increasing frequency in biomarker discovery. Feature selection usually has fewer 
required assumptions compared with statistical tests. Many of them can take the 
interaction between genes and their joint power into consideration. The genes 
that are weak biomarkers by themselves but have a strong joint power can there-
fore be identified. 

Another machine learning technique, classification, is also useful in biomarker 
discovery. Classification is not directly used to identify biomarkers but can be 
used to assess potential biomarkers selected by feature selection methods or sta-
tistical tests, since true biomarkers carry the characteristics of samples from the 
treated group compared with control group or vice versa and should therefore be 
informative in classifying the samples from different groups. The ability to improve 
a classifier’s prediction accuracy of a biomarker discovery method is widely used 
as an evaluation metric of candidate methods. We have seen that the choice of 
classification algorithm can highly affect the evaluation conclusion of the bio-
marker discovery methods (33), and using SVM to assess the performance of a 
feature selection method implemented in its own package together with other 
methods is unfair (56).

Figure 2.  Combination of both data perturbation and function perturbation. The original dataset 
is subsampled into several sub-datasets. The genes are ranked based on each of them using 
different methods. In the data perturbation phase, the ranked gene lists are integrated into 
one ranked list and meanwhile, the stability of each method is calculated. In the phase of 
function perturbation, the results from different methods are combined using methods’ 
stabilities as weights.
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Besides prediction accuracy, a biomarker discovery method’s stability has 
gained more attention in recent years. A good biomarker discovery method 
should provide a consistent biomarker list with some variance in the training 
samples, since the true biomarkers are intervention dependent (such as a disease 
or a toxicant exposure) and should be independent of the samples. There are 
many ways to calculate stability, but some of them tend to give a higher stability 
when more genes are included in the lists (46) and that is unfair for the methods 
that are stricter with redundant genes. Instead of looking only at the original gene 
list, Dessì et al. proposed to compare the lists in functional terms based on the 
molecular function Gene Ontology annotations, which has greater biological 
significance (35).

Many alternative approaches for improving a method’s performance based on 
the aforementioned aspects have been proposed. One of them is feature selection 
ensemble, which combines the results of multiple biomarker discovery methods 
to take advantage of their strengths. It also solves the problem of having to choose 
the most appropriate method for a particular dataset since the performance of a 
method usually varies a lot across different datasets.

Besides assessing a biomarker discovery method on prediction accuracy and 
stability, one can also simply compare the candidate marker genes to a refer-
ence biomarker list, if such a “gold standard” exists. It is however difficult to be 
sure that the a priori knowledge is adequate, and that the list is complete and 
clear of false positives. Establishing such a reference list becomes extremely 
critical. Williams et al. applied two well-recognized methods (SAM and limma) 
on four independent datasets and used the intersected genes as reference (39). 
Biological a priori knowledge can also help in constructing such a reference list. 
Clark et al. made use of the relationship between differential STAT3 binding 
and differential gene expression in two subtypes of diffuse large B-cell lym-
phoma (DLBCL): germinal center B-cell-like (GCB) and activated B-cell-like 
(ABC) (36).

Biomarker discovery is a fast-growing field with many new ideas continuously 
being proposed. So far none are perfect, considering that the method is data 
dependent and no universal agreement on the evaluation of a method’s perfor-
mance has been established. However, devoted efforts are obviously enhancing 
progress in this field, which has a huge potential for providing a better under-
standing of disease diagnosis, prevention, and therapy, and for risk assessment of 
chemical toxicity.
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