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Abstract: Whole transcriptome omics experiments allow for the study of gene 
regulation at the cellular level. During analysis and interpretation of omics data, 
false discovery can occur. To minimize false discovery and identify true significant 
cases, multi-test correction has been introduced to bioinformatics algorithms. The 
scientific literature offers a huge collection of information that can be parsed using 
a web Application Programming Interface. Gene selection by text mining can rank 
information according to its importance while taking into account the most recent 
updates in scientific literature. The integration of text mining selection in biologi-
cal big data, such as transcriptome experiments including single cell transcrip-
tome, can achieve an important dimensional reduction of the data without any 
statistical hypothesis. This avoids false discoveries regarding the molecules of 
interest. Hydatidiform moles and focal segmental glomerulosclerosis (FSGS) 
nephropathy are the two examples presented in this chapter, which demonstrate 
the considerable value of these analytical methods to prove the concept. The best 
FSGS markers expressed can be displayed by building an interactive online 
web  interface as a web resource based on the glomerular cell transcriptome. 
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This chapter shows the value of integrating text mining with omics data analysis 
to discover specific molecules and determine their locations and functions associ-
ated with complex diseases. 

Keywords: focal segmental glomerulosclerosis; hydatidiform mole; text mining; 
transcriptome; web interface 

INTRODUCTION 

The use of automated literature search tools is often referred to as text or data 
mining. Text mining was initially defined by Martin Hearst in 1999 as “the discov-
ery by computer of new previously unknown information, by automatically 
extracting and relating information from different written resources, to reveal oth-
erwise ‘hidden’ meanings”. The automated processing and analysis of text can 
help researchers evaluate findings in scientific literature. Text mining can be used 
to answer many research questions, ranging from the discovery of drug targets (1) 
and biomarkers (2) to drug repositioning (3). Text mining has evolved into a 
sophisticated and specialized field in the biomedical sciences, where text process-
ing and machine learning techniques are combined with the mining of biological 
pathways and gene expression databases. 

In general, text mining processes are comprised of several steps, such as infor-
mation retrieval (usually performed by querying databases) followed by named 
entity recognition and finally information extraction. Text mining algorithms can 
operate using two distinct methods: co-occurrence-based methods or natural lan-
guage processing. Co-occurrence based algorithms search for associations between 
information present in the text. Natural language processing algorithms take 
account of links between words in a text, for example, by finding a v-structure 
using the ABC principle. In other words, it can identify a relationship between 
A and C in the text which in turn will indirectly identify a potential link with B 
that is not explicitly mentioned in the text (4). The “pubmed.mineR” R library has 
been developed along these lines, as it analyzes linguistic structure at different 
levels: sentence tokenization and word tokenization (5).

In R language, some efforts have been made to process text mining transfor-
mation of the corpus into a matrix of word citations including tokenization, 
stemization and atomization processes of linguistic structure. This was previ-
ously applied to the “tm” R library, and more recently the “tidytext” R library was 
developed with text mining functions to enable the structuring of words found 
in the corpus (6). Focused more specifically on extracting textual information in 
the scientific literature using the PubMed resource, the “RISMed” R library was 
developed to extract all annotations of the abstracts loaded into the NIH 
 biomedical database. The “RISMed” R library was recently used to analyze 
COVID-19-related data to develop a world collaboration map by means of the 
Biblioshiny application (7).

One important aspect of text mining is the visualization of results after the 
information has been processed. Two principal result representations have 
been developed: network visualization of the relationships identified and word 
cloud representation with the weighted size of words associated in the text 
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during analysis. Text mining in biomedical context could be integrated trans-
versely with other quantitative methods in the recent field referred to as the 
“Science of Science”. Its goal is to provide a deep, quantified understanding of 
the relational structure between scientists, institutions, and ideas, because it 
facilitates identification of the fundamental mechanisms responsible for scien-
tific discovery. Scientific knowledge is made up of concepts and relationships 
embodied in research papers, books, patents, software, and other scholarly arti-
facts, organized into scientific disciplines and broader fields. The Science of 
Science utilizes all the multiple data sources available today such as PubMed, 
Google Scholar and the US Patent and Trademark Office, among others (8). Text 
mining processes are essential to enable access to these huge quantities of infor-
mation located on the web. 

BIOINFORMATICS TOOLS FOR THE TEXT MINING OF 
GENE RANKING

Many text mining applications have been built on the MEDLINE database because 
it is freely available, features a rich applied programming interface and supplies 
annotated abstracts containing Medical Subject Heading (MeSH) Terms (9). 
To improve the efficiency of querying, similar keywords such as synonyms could 
be used to define concepts with different reformulations such as in the case of the 
ConQuR-bio algorithm (10).

In the area of biomedical texts, mining is widely used in the context of gene 
expression annotation, such as understanding large lists of regulated genes during 
transcriptome experiments. Other biomedical applications for text mining could 
also be investigated, such as drug-target discovery, which enables the search for 
new drug targets or candidates; it would permit detailed and automated analysis 
of scientific literature to discover how genes are related to particular diseases and 
how they are involved in the effects of medicinal products. For example, text min-
ing analyses could be used to link genes to pathways involved in metabolic adverse 
events in the transcriptome of immune cells treated with an anti-inflammatory 
drug (11). Drug repositioning could be also investigated by applying text mining 
algorithms to discover the identification of hidden connections between drugs, 
genes, and diseases, such as determining the links between a drug and cell prolif-
eration using gene identifiers as the intermediary support for natural language 
processing (12).

Numerous methods to prioritize genes are based on the co-occurrence analysis 
of given keywords and gene names extracted automatically from scientific 
abstracts. The principal hypothesis underlying this type of analysis is that the 
more frequently two words co-occur in abstracts, the more likely they are to be 
functionally linked. However, automatic gene name extraction and normalization 
methods may wrongly identify a significant proportion of gene mentions in a text, 
therefore contributing noise and ambiguity to the text mining results (13,14).

In the context of transcriptome analysis, lists of regulated genes are sometimes 
composed of large numbers of molecules that are difficult to understand during 
functional annotation with respect to classic biological functions or cellular path-
way databases. The co-occurrence of keywords and gene names when searching 
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in biomedical abstracts could aid in the understanding and discovery of principal 
relationships between regulated molecules.

For transcriptome analysis, the concept of the “next generation” text mining 
has emerged by combining gene lists that result from text mining with gene set 
enrichment analysis (GSEA) (15). This has been applied to enable understand-
ing of the interactions between genes and chemical components. Using text 
 mining, lists of genes were built for each chemical component, and using this 
custom database the GSEA method was able to retrieve which molecular 
 component was  used during experimental stimulation of the transcriptome 
under  investigation (16).

Conventional text mining approaches tend to process PubMed abstracts 
rather than full text articles and fail to mine information not present in abstracts, 
but text mining of full text articles has recently gained interest (17,18). Thus, 
the PubTator central algorithm now enables exploration of the relationships 
between genes, diseases, chemical components, mutations, cell lines and species 
in more than six million full text articles uploaded on the PubMed Central 
 website (19). Some website resources have also been developed to extract 
 gene-gene co-occurrence citations based on detecting GeneRIF or AutoRIF 
 references characterizing molecular identities in the corpus; this is the case of 
the Geneshot application which enables the characterization of gene network 
relationships in text (20). 

To improve detection of biomarkers in pathologies like cancer, and to produce 
an adapted precision medicine therapy, applications based on deep learning have 
been developed, such as in the case of the Biomedical Entity Search Tool (BEST) 
web application (21), which is based on detection of mutation-gene-drug rela-
tions in PubMed biomedical corpus (22). 

The Genie algorithm originally ranked complete sets of genes in any given 
organism according to a particular gene function or took advantage of all available 
orthologous information to expand MEDLINE literature. A biological topic is 
taken as the input parameter to review the entire MEDLINE database for relevance 
to that subject, and then evaluated for all genes included in the user’s requested 
organism according to the relevance of their associated MEDLINE records. Genie 
associates machine learning and text mining processes by creating a train corpus 
based on 1,000 abstracts to build a naïve linear Bayesian classifier model. Secondly, 
using text mining, abstracts in which genes occur are compared to the train set by 
the machine learning model (23).

TEXT MINING GENE SELECTION FOR HYDATIDIFORM 
MOLES: A CASE STUDY

In some cases, transcriptome experiments corresponding to the biological hypoth-
esis do not exist. A good example of this is the pathophysiology of hydatidiform 
moles. Hydatidiform moles are a rare complication of pregnancy and are the most 
common gestational trophoblastic disease. It affects the two layers that make up 
the placental villi: the trophoblast layer called the cytotrophoblast, and the 
expanding peripheral syncytial layer, the syncytiotrophoblast, which invades the 
endometrium and uterine arteries. Hydatidiform moles are characterized by 
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abnormal trophoblast proliferation giving rise to hydropic villi. It can be either 
complete or partial. Complete hydatidiform moles are the result of excessive 
 trophoblast proliferation; there is no fetal circulation, and the embryo fails to 
develop. Partial hydatidiform moles are the result of mild trophoblast prolifera-
tion; there is fetal circulation and development of the embryo, but the fetus is 
abnormal and cannot survive. Hydatidiform moles are subject to severe hypoxia, 
and the  persistent vascular immaturity of the villous stroma can lead to hydropic 
villi, particularly in the case of complete hydatidiform mole. In about 7-17% of 
cases, trophoblastic hyperplasia extends to and exceeds the uterine cavity, and is 
referred to as an invasive mole. An invasive mole can either be premalignant or 
malignant; malignant mole can transform into a highly aggressive tumor called 
 choriocarcinoma (24). 

Because no transcriptome data are publicly available on hydatidiform moles, 
we performed text mining to search for all genes studied in this context and then 
looked at their expression in three different transcriptome datasets on normal 
human placenta, focused on the three biological mechanisms associated with 
the  disease: trophoblast differentiation, trophoblast invasion and hypoxic 
environment. 

The “tm” and “RISMed” R libraries that connect to PubMed were used to 
 perform text mining. “RISMed” library was also used to carry out a meta-analysis 
on the words used in the scientific literature. Natural Language Processing (NLP) 
allowed us to communicate information from a variety of biological resources 
(such as Gene Ontology Terms). We were able to discover semantic relationships 
with the scientific literature and link them to biological databases. In each case, 
gene expression matrices were used independently and normalized using our pre-
viously developed method (25). Mathematical matrix dimensional reduction was 
applied to a normalized transcriptome dataset by merging the genes obtained 
from text mining with identifiers present in gene expression datasets. These tran-
scriptome data were then re-analyzed with the genes retrieved from text mining, 
using terms such as HM-linked genes studied in cytotrophoblast differentiation, 
extravillous trophoblast invasion and hypoxia. The expression of genes during 
mildly or severely invasive trophoblast proliferation (respectively, cyto- and 
extravillous trophoblasts) was determined using the Significance Analysis for 
Microarray algorithm with a threshold of false discovery rate fixed under five 
 percent of error. For different oxygen concentrations, a supervised analysis of 
variance with two factors (culture conditions and oxygen concentration) was 
 performed using Fisher’s test (500 permutations) on hydatidiform mole-linked 
genes. To validate the text mining approach, we performed a manual search in the 
PubMed database for the genes identified by text mining. This analysis of the 
 literature enabled validation of the relationship between these genes and 
 hydatidiform mole (26). 

In conclusion, by using text mining and associated bioinformatics and math-
ematics methods we were able to identify 72 unique genes linked to hydatidiform 
mole (Figure 1). Moreover, our analysis integrated the different aspects of hyda-
tidiform mole pathophysiology and highlighted the importance of trophoblast 
differentiation in this pathology. We were thus able to demonstrate the impor-
tance of some of these genes in chorionic villous invasion and regulation of their 
expression by oxygen concentrations. Based on this work we were able to build a 
network of the different relationships between the placenta, placental molecules, 
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Figure 1. Integration of genes. Obtained from text mining research by MESH term “Hydatidiform 
Mole” with single cell transcriptome data of Human normal placenta from data set GSE 44368. 
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and their functions. Thus, even without the transcriptome data, it is possible to 
obtain relevant knowledge that can then be studied by means of appropriate 
manipulations.

UNDERSTANDING FOCAL SEGMENTAL 
GLOMERULOSCLEROSIS USING SINGLE CELL 
TRANSCRIPTOME OF A HEALTHY ADULT DONOR 
KIDNEY: PROOF OF CONCEPT 

Chronic kidney disease (CKD) is a major global public health problem because of 
its growing epidemic status and the devastating complications it causes at present, 
such as cardiovascular problems or end-stage renal failure (27). Focal Segmental 
Glomerulosclerosis (FSGS) is a leading cause of CKD. FSGS describes a histological 
pattern of kidney damage common in many nephropathies (28). It is characterized 
by the presence of segmental sclerotic lesions of the glomerulus and an accumula-
tion of focal hyaline deposits. The glomerular filtration structure collapses. As a 
result, serum proteins are not retained in the blood but lost in the urine (protein-
uria). Its progressive nature culminates in end-stage renal disease and loss of renal 
function. The causes of FSGS are multiple. FSGS may be found in patients with 
hypertension, diabetic glomerulopathy, reflux nephropathy, drug addiction or HIV 
infection, as well as in various glomerular protein mutations. There is also an idio-
pathic form of FSGS, the pathogenesis of which is poorly understood. FSGS is 
particularly harmful because of its poor response to treatment. Resistance to corti-
costeroids is common and a relapse of disease after kidney transplantation is fre-
quently observed and leads to graft loss (29). The search for new therapeutic targets 
has therefore become a major focus for nephrologists for more than 50 years.

The functional links that exist between risk factors (genetic or otherwise) and 
the phenotype of this disease are not clearly understood. Various strategies have 
been used to address this challenge, such as study of the genome and the expres-
sion profile of microarrays. More recently, single-cell sequencing made it possible 
to study the expression of the genetic content of an individual cell without the 
need for prior cell culture. Thanks to this innovative technology, gene expression 
in thousands of individual cells can be determined in a single experiment (30). 
These technologies have generated large quantities of bioinformatics data that are 
often stored non-systematically, thus hindering most researchers without exten-
sive expertise in advanced computing. In the field of nephrology, there are some 
ongoing initiatives such as Nephroseq (http: //www.nephroseq.org [accessed on 
14 January 2021]), the Renal Gene Expression Database (RGED; http://rged.wall-
eva.net/ [accessed on 14 January 2021]), KUPKB: from the Kidney and Urinary 
Pathways Knowledge Base (31), CKDdb (Chronic Kidney Disease database; www.
padb.org/ckdbd/index.html [accessed on 14 January 2021]) as well as others. 
These “omics” platforms enable the exploration of gene expression associated 
with kidney diseases. However, they lack multi-omic databases that could unify 
dispersed “omics” repositories. We performed an FSGS text mining study and 
integrated it into a gene expression database obtained by single cell RNA-
sequencing in glomerular cells from healthy donor kidneys. Based on the result, 

http�
www.nephroseq.org�
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we propose a bioinformatics tool that helps visualize the different types of cells 
associated with a specific gene expression linked to FSGS. Our principal goal was 
to simply determine which particular renal cells (in glomeruli: podocytes, endo-
thelial and mesangial cells) might be involved in a particular gene expression 
(and/or function) associated with the pathogenesis of FSGS.

FSGS was investigated by means of a PubMed query with three different 
 gene-disease text mining association algorithms, still operational as of 14 January 
2021: ConQuR-bio; http://conqur-bio.lri.fr/ [accessed on 14 January 2021] (10), 
 polysearch2 (32), and Genie; http://cbdm-01.zdv.uni-mainz.de/~jfontain/cms/ 
[accessed on 14 January 2021] (23). Two of these three algorithms (ConQuR-bio 
and Polysearch2) enabled human gene ranking by text mining for co-occurrences 
with the MesH term introduced during the PubMed query, and the last one (Genie) 
employed a mixed method combining machine learning steps with text mining 
process (Figure 2).

Preparations for the single cell analysis were made in the Ubuntu 18.04 LTS 
operating system with R environment version 3.53 and Seurat R-package version 
3.1.3 (33). The “CreateSeuratObject” Seurat function was implemented on the 
GSE140989 dataset (34) after fixing a threshold of 3 for the minimal number of 
cells and of 200 for the minimal number of features by cell. The resulting Seurat 
object with metadata on 24 different kidney samples included a total of 19,622 
features across 22,268 cells (Figure 3A). The “NormalizeData” Seurat function 
allowed us to log normalized input sequencing data, and 2,000 variable features 
were identified before data scaling and dimensional reduction by principal 
 component analysis was performed. The variance of principal component analysis 
was estimated by performing an Elbow plot on thirty principal components 
(Figure 3B). Twenty components were found to be important to explaining the 
heterogeneity of the cells in this dataset. Subsequently, UMAP dimensional 
 reduction was performed with twenty dimensions within the analyses. The  sample 
distribution in the first UMAP analysis revealed a satisfactory distribution between 
subjects on the totality of cell distribution (Figure 3C), suggesting good integra-
tion of the data in this multi-experiment analysis. Downstream clustering analysis 
with the construction of a KNN graph, based on the Euclidean distance in PCA 
space, refined the edge weights between any two cells based on the shared overlap 
in their neighborhoods (Jaccard similarity) in the same way as scRNA-seq data 
(35) and CyTOF data with the Phenograph algorithm (36). We then applied mod-
ularity optimization techniques such as the Louvain algorithm to cluster the cells. 
Twenty-one cell clusters were found to be representative of this Seurat object 
(Figure 3D).

ONLINE RESULT VISUALIZATION AND THE DEVELOPMENT 
OF AN INTERACTIVE WEB INTERFACE

Omics analyses are united by their common feature of describing large numbers 
of biomolecules relevant to the experimental system under investigation. Various 
frameworks have been developed to highlight biomolecules that are expected 
to  be the most appropriate for more intensive follow-up study. Transcript 

http�
http�
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Figure 2. Diagram of the bioinformatics process. This diagram explains the processes that we 
implemented during this integration of text mining tools to interpret single cell transcriptome 
data. On the left side of the diagram, we can see the text mining process used to find the 
genes associated with the term: Focal Segmental Glomerulosclerosis. To make this query, 
three different text mining algorithms were used: ConQuR-bio (CQRB), polysearch2 (PS2) and 
GENIE. On the right side of the diagram, we can see Seurat single cell transcriptome process 
employed to interpret human normal glomerular kidney cells from dataset GSE140989. Finally, 
at the bottom of the diagram, the intersection of these two analysis processes made it 
possible to develop a graphical interface with the internet address indicated.
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Figure 3. Single cell transcriptome analysis of human adult kidney. A. Violinplot of the numbers of 
features present in each cell and separated between the 24 merged kidney samples. B. Elbow 
plot presenting the standard deviation of the first 30 principal axes during dimensional 
reduction by principal component analysis performed on single cell transcriptome of human 
adult kidney. C. UMAP dimensional reduction performed on the single cell transcriptome of 
the human adult kidney: colors are attributed to the origin of the samples. D. UMAP 
dimensional reduction performed on the single cell transcriptome of the human adult kidney: 
colors are attributed to the 21 clusters identified during the analyses.
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quantifications with omics experiments have been revolutionized during the past 
15 years by different technological approaches, such as microarrays, followed by 
RNA-sequencing and more recently, single cell RNA-sequencing (37). The single 
cell approach enables us to understand the heterogeneity of cellular expression at 
the whole transcriptome level thus allowing detailed characterization of the cell 
subtypes that make up a tissue. Several studies have tried to gain a clearer under-
standing of tissue cell composition to develop different methods for data visual-
ization. For example, using python language, the Scanpy library (38) was 
developed to merge processes for single cell visualization already known in differ-
ent R packages, such as Seurat for clustering (33), monocle for cell trajectories 
(39) and pagoda for splicing (40).

To facilitate the exploration of FSGS-related biomarkers found by text mining, 
an interactive web interface was developed and uploaded at the following address: 
https://fsgstx.shinyapps.io/textmining/ (last accessed on 14 January 2021). Prior 
to unsupervised analysis, 1,468 glomerular cells were isolated from the GSE140989 
normal human kidney dataset (Figure 4). The pre-processed and scaled digital 
matrix of single cell analysis was restricted to the set of genes identified as being 
related to FSGS (Table 1). Unsupervised analysis using t-SNE (t-distributed sto-
chastic neighbor embedding) was processed to be displayed in the interface. The 
website was built with a flexdashboard and shiny application inclusion and with 
graphical interactivity displayed by R plotly. This data dashboard enabled explora-
tion of the expression of FSGS biomarkers in the three glomerular cell subpopula-
tions: podocytes (POD, n=182), vascular smooth muscle cells and mesangial cells 
(SMCMG, n=713), and glomerular capillary endothelial cells (GCEC, n=753) 
(Figure 5). This interactive application enables users to understand the cellular 
origin of expression for FSGS biomarkers characterized by text mining. Users will 
need to select a gene ID on the left sidebar and the application will display the 
expression of this selected marker with interactivity on the t-SNE graph. The 
number of positive cells for this marker will be displayed in the value box at top 
right-hand side of the dashboard, and expression by group will be displayed on a 
violinplot; finally, a statistical summary (mean and standard deviation) will be 
displayed by group of samples (Figure 5). 

Using the NPHS1 and NPHS2 genes (congenital nephrotic syndrome of the 
Finnish types 1 and 2) respectively, nephrin and podocin were confirmed as 
FSGS-related markers expressed strictly by podocytes associated with glomerular 
cells. The MAFB transcription factor was confirmed as being expressed in podo-
cytes and it was shown that this podocyte transcription factor protected the kid-
ney from developing FSGS (41). The application also confirmed that Wilms’ 
tumor protein (WT1) is strictly expressed by podocytes. WT1 is known to be a 
transcription factor and master regulator of podocyte differentiation and homeo-
stasis. It may also be a target repressed by microRNA-193a to induce focal seg-
mental glomerulosclerosis (42). The application further showed that the angiogenic 
factor VEGFA was strictly expressed in podocytes, and indeed this factor is known 
as a marker of glomerular endothelial cell injury and FSGS lesions in the context 
of idiopathic membranous nephropathy (43). The application also confirmed a 
high level of expression of PLCE1 Phospholipase C Epsilon 1 in podocytes; this 
gene is known to be mutated and to affect podocytes in familial and genetic forms 
of FSGS (44). Using the application, COL4A3 and COL4A4 were found to be 
strictly expressed in podocytes at the glomerular level. Mutations in COL4A3 and 

http�
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Figure 4. Kidney single cell transcriptome subsetting to select glomerular cells of interest. 
A. UMAP dimensional reduction showing the respective expression of TAGLN in cluster 12, 
NPHS2 in cluster 19 and EHD3 in cluster 11. B. Principal component analysis after subsetting 
clusters 11, 12 and 19. C. Respective levels of expression of TAGLN, NPHS2 and EHD3 in 
principal component analysis after subsetting on clusters 11, 12 and 19.
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COL4A4 are known to cause Alport syndrome (AS), a thin basement membrane 
nephropathy resulting in pathognomonic glomerular basement membrane, and 
secondary FSGS is known to develop in classic AS at later stages of the disease 
(45). For COL4A5, which may be affected by mutations causing AS with FSGS 
lesions (46), its expression was found to be shared between different cell sub-
populations: podocytes, vascular smooth muscle cells, and mesangial cells. At the 
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podocyte level, the application highlighted the specific expression of CRB2 (alias 
Crumbs Cell Polarity Complex Component 2), a family component of the Crumbs 
cell polarity complex known to be affected by mutations in FSGS (47).

As for markers that were mainly found to be expressed by the vascular smooth 
muscle cells and mesangial cell subpopulation, the application focused on the 
expression of PDGFRB, which is known to have an interstitial PDGFR-beta expres-
sion that is significantly correlated to monocyte/macrophage infiltration in FSGS. 
PDGF receptors are prominent in areas of mesangial expansion and intertubular 
fibrosis (48). In normal kidney cells, CST3 (or cystatin C) was mainly found to be 
expressed in vascular smooth muscle cells and mesangial cells. It mapped in the 
genome near polymorphisms associated with an increased risk of developing 
 end-stage renal disease, possibly followed by FSGS complications (49). The link 
between the expression of fibronectin 1, the TGF-beta signaling pathway, and 
chronic progressive kidney disease (50) was confirmed as being restricted to the 
vascular smooth muscle cells and mesangial cell subpopulation.

Concerning markers which were found to be mainly expressed in the glo-
merular capillary endothelial cell compartment, HLA-DRB1 was highly expressed 
and the rs28366266 polymorphism upstream of the HLA-DRB1 gene has been 
characterized as an independent risk allele in steroid-sensitive nephrotic syn-
drome (51). The application also revealed the marked expression of NOTCH1 in 
the glomerular capillary endothelial cell compartment. NOTCH1 is increased in 
glomerular epithelial cells in the context of diabetic nephropathy and FSGS (52) 
and connected to WT1 deregulation in podocyte (53).

TABLE 1 List of 96 genes selected using three text-mining 
algorithms based on a PubMed query for “focal 
segmental glomerulosclerosis” (2020, July)

Detection Number of genes Genes

Three algorithms 12 TRPC6, ACTN4, APOL1, INF2, CD2AP, NPHS2, CRB2, 
NPHS1, COL4A3, PODXL, COL4A4, LMX1B

Genie and ConQ-R-Bio 80 MYH9, PAX2, VEGFA, TGFB1, PLAUR, TNF, ACE, 
CTNNB1, IL6, MYO1E, APOE, ITGB1, ITGB3, IL10, 
TLR4, WT1, CCL2, MET, PLAU, SMAD3, AGT, 
YAP1, AGTR1, LCN2, ILK, B2M, FBN1, CD40LG, 
CYP11B2, SMAD2, COL4A5, PLCE1, CD80, 
LAMB2, SYNPO, HLA-DRB1, MMP9, ICAM1, 
ITGA3, SRC, FN1, GREM1, TP53, TNFRSF6B, 
STAT3, MTOR, NFKB1, MAPK1, CXCR4, RHOA, 
CAV1, RAC1, VCAM1, NOS3, IGF1, IL17A, ABCB1, 
ITGAM, SPP1, CST3, FOXP3, KDR, NOTCH1, 
HMGB1, MAPK3, PDGFRB, LGALS3, PIK3CA, 
FGF2, FLT1, CASP3, CXCL10, C3, IQGAP1, CFH, 
EGF, NOX4, ANGPT2, HP, HNF1A

ConQ-R-Bio and 
Polysearch2

4 WWC1, MAFB, CAMK4, CLCF1



Desterke C et al.14

Figure 5. Screenshot of the web interface for users with a description of the interactive 
visualization process. After gene ID selection (process 1), the single cell expression of 
text-mining FSGS markers is displayed using in interactive t-SNE analysis in the central panel 
with the number of positive cells, the violinplot of expression and a statistical summary by 
group of cells.

Comments & references: 
layer with explanationsApplication layer

Display the number of
positive cells for the
selected marker

Display statistical summary
(mean and sd) by group for
the selected marker

1

1 Select the marker 
of interest

Interactive tSNE analysis
with plotly properties

Boxplot

https://fsgstx.shinyapps.io/textmining/
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CONCLUSION 

The public PubMed database is a collection of all scientific publications updated 
periodically and whose web API can be targeted by crossing information with 
respect to molecular identifiers. Many bioinformatics tools based on text mining 
algorithms have been developed to target this type of query. During our work we 
observed that it was interesting to use these tools in order to interpret omics data 
by reducing their dimensions to those elicited by these text mining algorithms. 
This methodology reduces the error of false discovery in these high dimensional 
biological experiments.

The development of the WEB new generation currently makes it possible to 
develop online graphical interfaces that can interact with the user. In our case, we 
were able to develop a web interface allowing the visualization of single cell tran-
scriptome data which were initially selected by text mining tools. By this way the 
integration of text mining scientific literature in omics experiments, followed by 
the development of an interactive web visualization application has enabled the 
rapid establishment of connections between cell deregulations in a pathophysio-
logical context. 
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