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Abstract: Next generation sequencing (NGS) technologies like Illumina and third 
generation sequencing (TGS) technologies like PacBio and Oxford Nanopore 
Technology use different techniques for sequencing and provide reads of different 
lengths and error profiles. Many tools exist for error correction of such sequencing 
data, improving the quality of downstream analyses. In this chapter, we evaluate 
the performance of 23 error-correction tools, providing insight into their strengths 
and weaknesses. This is accomplished through a set of algorithms we have devel-
oped and implemented as SPECTACLE, a Software Package for Error Correction 
Tool Assessment on nuCLEic acid sequences, and a dataset for NGS and TGS 
reads that we compiled emphasizing challenging scenarios for error correction 
tools. This chapter provides the reader an understanding of available tools, includ-
ing advice on selecting appropriate tools for different circumstances. It also pro-
vides insights regarding aspects of sequencing data to be addressed to improve 
tool accuracy.
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INTRODUCTION

Rapid improvements in recent years have given rise to next-generation sequenc-
ing (NGS) technologies that provide low-cost, high-throughput sequencing data. 
However, sequencing data is error-prone and errors in NGS reads degrade the 
quality of downstream analyses. Many methods for correcting errors in reads have 
been developed (1–16) which can improve downstream analyses (17–19). NGS is 
also applied to transcriptomic analysis (20). RNA sequencing data also has 
sequencing errors, and error-correction needs to account for different factors 
compared to DNA sequencing reads, such as non-uniform expression levels and 
alternative splicing. As a result, separate error-correction methods are developed 
(21) for RNA sequencing data. 

Several third-generation sequencing (TGS) technologies have been developed, 
providing reads tens of thousands of bases long. Pacific Biosciences’ Single-
molecule real-time (SMRT) sequencing and Oxford Nanopore (ONT) sequencing 
are popular TGS methods. TGS reads can have relatively high error rates. SMRT 
Continuous Long Read (CLR) technology, emphasizing the longest read lengths, 
has over 10% error rate (22). ONT’s MinION reads can have over 35% error rate 
(23). The dominant TGS errors are indels that are rare in Illumina reads. 
Consequently, error-correction methods for such PacBio (24–27) and ONT 
(28, 29) reads have been developed.

Despite many error-correction methods, only a few studies exist that are dedi-
cated to the evaluation of the accuracy of these methods. This is due to the diffi-
culty involved in discerning how many errors were corrected and how many were 
newly generated in the error-correction process. While checking if substitution 
errors have been corrected is straight-forward, it is not simple to evaluate how 
well indel-type errors are corrected. Tools may also trim reads which cannot be 
corrected, causing additional complications. Comparing corrected and uncor-
rected read alignments to the source genome is not the right solution as multiple 
best alignments can exist (6). Heterozygous sites are another difficulty.

There exist a few methods to compare error-correction methods for NGS reads. 
Error Correction Evaluation Toolkit (ECET) (30) consists of two software pack-
ages, one of which evaluates Illumina reads and the other, 454 or Ion Torrent 
reads. The packages are written for the dominant error types of the corresponding 
sequencing platform – substitutions for Illumina, and indels for 454 and 
IonTorrent (31, 32). Another evaluation work by Molnar et al. (33) calculates how 
many error-free reads or k-mers cover each base in a genome, and how many 
bases in a reference sequence are covered by error-free reads or k-mers, then 
checks how the two numbers are changed by error correction. Fiona (6) aligns 
both a read and its corrected version to a reference sequence to compare the two 
edit distances.

While these methods enable error-correction evaluation, they have limitations. 
ECET requires Illumina error-correction tools to explicitly annotate trimmed 
bases, and even then, additional processing is required. ECET’s evaluation of indel 
errors in 454 or Ion Torrent reads may be inaccurate for trimmed reads (34). 
Molnar et al’s methods (33) may not be applicable to TGS reads where error-free 
k-mers of sufficient length may be difficult to find due to high error-rate of TGS, 
and shorter k-mers can obfuscate the results due to repetitions. Fiona’s routines, 
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dependent on alignment, may make false evaluations where multiple best align-
ments exist, each implying a different error-correction result (34).

In addition to these methods, evaluations are presented when individual error-
correction tools are introduced. For Illumina tools, quality of error correction is 
evaluated using counts of uncorrected errors and corrected errors and expressed 
in the form of metrics such as sensitivity, precision, and gain. The error counts 
used for calculating these metrics are obtained by mapping the reads to the refer-
ence (30). Such mapping-based methods can give inaccurate evaluation results 
due to the existence of multiple best alignments. Literature reporting new TGS 
error-correction tools on the other hand, do not typically report error count met-
rics such as sensitivity or gain. Instead, performance is measured based on 
improvements in downstream assembly and alignment results. While such results 
give a good picture of how much improvement is made by error correction, there 
can be variations in such measurements based on the specific assembly or align-
ment tools used to obtain these metrics. 

This chapter addresses limitations of existing error-correction evaluation 
methods and introduces a new algorithm called SPECTACLE (Software Package 
for Error Correction Tool Assessment on nuCLEic acid sequences). SPECTACLE 
allows uniform and standardized error-correction evaluations across different 
sequencing technologies. We introduce new metrics for error-correction tool 
study that provide insights regarding design limitations of a tool, giving pointers 
on how the tool may be improved. Using these methods, we perform a compre-
hensive analysis of many error correction tools and report error count statistics, 
alignment and assembly statistics, as well as additional metrics for understanding 
tool behavior. Specifically, the following features and contributions are covered in 
this chapter:

(i) A new error-correction tool evaluation algorithm that works across sequenc-
ing technologies, error models and error rates. It works for both DNA and 
RNA sequencing data, and for NGS and TGS reads.

(ii) Methods to design input reads for error-correction evaluation that highlight 
the challenges in error correction such as heterozygosity, coverage variation, 
and repeats.

(iii) Evaluation of other error-correction tools for NGS and TGS reads using these 
methods. From SPECTACLE, we report error-correction statistics like sensi-
tivity, precision, percentage similarity, NG50 length, supporting read cover-
age, alignment quality of corrected reads, point-sensitivity etc. for both NGS 
and TGS reads. 

In the following sections, we discuss the error-correction algorithm, the data 
preparation methods, and the evaluation results.

EVALUATION STEPS

Figure 1 shows the SPECTACLE flows for evaluating error-correction tools with 
DNA simulated reads and DNA real reads. Each flow consists of two steps. In the 
first step, the locations of errors in input reads are determined, and in the next 
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step this information is used to evaluate the output of an error-correction tool. 
A similar flow for RNA error-correction tools is also available in SPECTACLE (34).

Preparing input data

SPECTACLE supports both simulated reads and real reads to utilize their unique 
strengths. With simulated reads, we can determine the exact locations of errors in 
the reads. Moreover, reads can be generated from two different reference sequences 
in order to simulate diploid genomes.

The biggest advantage of using real reads is that no assumptions or modeling 
artifacts affect the data. Therefore, real reads can have some interesting properties 
that may not be accurately modeled in simulated reads. On the other hand, there 
can be ambiguities in finding error locations in real reads. To find error locations 
in real reads, the reads need to be aligned to a reference sequence, and this can 
cause some problems. As explained before, a read can have multiple equivalent 
alignments to the reference, and determining the correct alignment is sometimes 
impossible. In the case of highly repetitive genomes, ambiguous alignments occur 
frequently. Second, reads and a reference sequence might come from different 
samples, and the differences between them (variants) may be recognized as errors 
in this step without careful analysis. Third, the evaluation results will depend on 
the accuracy of the alignment tool.

SPECTACLE can work with the output reads from any read simulator that 
gives error location information in a Sequence Alignment/Map (SAM) format. In 
our study we used pIRS (35) exclusively for generating simulated Illumina reads. 
Error correction becomes challenging when there are heterozygous sites and read 
coverage variations (19, 36), and pIRS can be used to simulate both. Figure 1A 
depicts the evaluation flow for simulated reads. First, two reference sequences 
Ref1 and Ref2 that represent a pair of chromosomes in a diploid genome are gen-
erated by adding different variant sets to the input reference sequence Ref0. Once 
the two sequences are created, reads are generated from Ref1 and Ref2. The maxi-
mum ploidy level that SPECTACLE supports is two. After the reads are generated, 
the locations of errors in the reads should be written in an error location file FL. FL 
contains: (i), the positions where reads originate in the genome; (ii), the locations 
of substitutions, insertions, and deletions in each read, and (iii), reference 
sequence from which each read was sampled (Ref1 or Ref2). When pIRS generates 
reads, it also produces a file containing the error locations (.info file) and the .info 
file is converted into FL.

 To simulate PacBio reads, we used PBSIM (37). PBSIM generates a Mutation 
Annotation Format (MAF) file for indicating error locations, and the file is con-
verted to FL. Since PacBio does not use amplification techniques, coverage varia-
tion due to different GC-content values was not considered in generating the 
simulated reads for PacBio. Also, PacBio reads need only be generated from a 
single reference sequence, unlike Illumina reads. This is because the error rate in 
the reads is much higher than the frequency of heterozygous sites, and we do not 
expect the evaluation results to be altered appreciably by simulating heterozygous 
sites.

Figure 1B shows the evaluation flow for real reads. As mentioned before, if 
input reads and a reference sequence Ref0 do not come from the same sample, 
there can be variants between them; the variants should not be recognized later in 
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the flow as sequencing errors. To overcome this problem, a new reference 
sequence, Ref1, is generated by calling the variants and applying them to Ref0. In 
our evaluation, BWA (38) and SAMtools (39) were used for variant calling. The 
variants are added to Ref0 using VCFtools (40), the input reads are aligned to 
Ref1, and the alignment results in the SAM file are converted to FL. Among the 
substitution errors in FL, the errors falsely created due to heterozygous variants are 
removed by comparing FL with the variant calling result.

Procedures for evaluating error-correction accuracy

Let RC be the corrected version of a read R. To evaluate the accuracy of RC, we 
should find corrected errors and newly added errors in RC. SPECTACLE first takes 
the segment GR from a reference sequence where read R was sampled. Then, RC is 
aligned to GR to find the errors in RC. For Illumina reads, we implemented a modi-
fied version of the Gotoh algorithm (41) for handling trimmed bases and for 
extracting all the alignments with the best alignment score (34).

There can be a set of alignments, ALNBEST, having the highest alignment score 
for a read RC, but each alignment could imply different numbers of corrected and 
newly introduced errors. SPECTACLE introduces criteria that rank each of the 
alignments in ALNBEST based on the error-correction accuracy in each case. 
Specifically, SPECTACLE calculates a penalty score based on newly introduced 
errors for each alignment in ALNBEST, utilizing the scores used in the alignment 
step. Then, the alignment, alnBEST, from ALNBEST that has the least penalty is cho-
sen. SPECTACLE makes the choice using the following equation, where ERR(aln) 
and ERR(R) are the sets of errors in an alignment aln and R and ERR(aln)\ ERR(R) 
is the set of errors in aln but not in R.

argmaxaln = penalty errBEST
aln ALN err ERR aln \ERR RBEST

∑ )(
)( )( )(∈ ∈

We can compute from alnBEST how many errors in ERR(R) are corrected and 
how many errors are newly added during correction. Since alnBEST is computed 
through enumeration, the routine runs fast enough for NGS reads but not for 
long, high error-rate TGS reads for which ALNBEST can be large. 

Hence for TGS reads, we implemented a simplified dynamic programming 
version of this algorithm combining the alignment step with the step enumerat-
ing alnBEST for faster execution. This allows us to compute the same error- 
correction metrics as for NGS reads, albeit with a more limited alignment scoring 
option. We also introduce later in the chapter metrics that are tailored for TGS 
reads.

In order to classify the bases in input reads, we introduce a notation consisting 
of a triplet, each character of which is either Y or N. The first character indicates 
whether the base in the original read is correct (Y) or not (N), the second character 
indicates whether the base has been modified by an error correction tool (Y) or 
not (N), and the third one indicates whether the base in the corrected read at that 
position is correct (Y) or not (N). For example, NYY describes a base that is erro-
neous in R, modified by an error correction tool, and error-free in RC. All the bases 
should fall into one of the five categories: NNN, NYN, NYY, YNY, and YYN (YYY, 
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YNN, and NNY are inconsistent). Let ηx be the number of bases in a corrected 
read set of type x, where x ∈ {NNN, NYN, NYY, YNY, YYN}. Then SPECTACLE 
 calculates the following error-correction metrics.

Sensitivity NYY

NYY NYN NNN )(
=

η
η + η + η

Gain NYY YYN NYN

NYY NYN NNN )(= η − η − η
η + η + η

Specificity YNY

YYN YNY )(= η
η + η

Precision NYY

NYY YYN NYN )(
=

η
η + η + η

F score = 2 /( 2 )NYY NYY YYN NYN NNN− η η + η + η + η

SPECTACLE can calculate and report the percentage similarity of reads for 
error-correction evaluation. This feature is mainly intended for long TGS reads. 
Percentage similarity of a read set, SR, is defined using the following equation, 
where NRM, NRMM, NRI, and NRD are the number of matched bases, the number of 
mismatched bases, the number of inserted bases, and the number of deleted bases 
in the alignment result of R, respectively:

∑=
+ + +∈

Percentage Similarity
N

N N N N
RM

RM RMM RI RDR SR

SPECTACLE calculates percentage similarity both for input reads and for their 
error-correction results and shows how this number is improved after error 
 correction. Most TGS error-correction methods trim uncorrected regions in reads. 
After this process, RC could be split into multiple pieces and become much 
shorter than R. To capture this effect, SPECTACLE also reports read coverage that 
 indicates how much data is retained after trimming and NG50 (17) that shows 
how long the average read length is.

SPECTACLE can report other detailed analyses such as supporting read cov-
erage which helps users understand the characteristics of an error-correction 
tool in depth. Figure 1C explains supporting read, supporting read coverage, 
and differential supporting read coverage. An error in a read becomes difficult 
to correct if the corresponding correct base has low supporting read coverage, 
since error-correction tools recognize bases with low supporting read coverage 
as errors. Low differential supporting read coverage, which implies that both 
correct and erroneous bases have similar support, also makes error 
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correction harder. SPECTACLE gives the percentage of corrected bases against 
supporting read coverage for correct bases, and differential supporting read 
 coverage. This helps in evaluating how sensitive an error correction tool is to 
variations in read coverage. 

SPECTACLE collects the percentage of corrected bases in each position of 
reads (point sensitivity). Based on this, users can judge whether an error- 
correction tool can correct errors in a specific region of reads or not. This report 
can allow SPECTACLE users to discern how the output of an error-correction tool 
can be polished further, how multiple error-correction algorithms can be 
 combined, and how an error-correction algorithm can be improved.

SPECTACLE also reports measurements that provide an idea about how good 
the corrected reads are in the context of downstream analyses. One potential 
method is to count the number of corrected reads that can be aligned to a refer-
ence sequence without mismatches or indels. However, this result can be mis-
leading when reads are aligned to wrong parts of a reference sequence. To avoid 
this, SPECTACLE has the capability to compare the aligned locations of reads 
with FL. If insertions or deletions in a read are corrected, the aligned position of 
the read can be shifted. SPECTACLE determines the largest possible amount of 
shift in the aligned positions for each read using the number of insertions and 
deletions, and then reports the number of reads aligned correctly within this 
predicted range.

The average number of times each base in the reference sequence is covered by 
error-free reads (i.e. error-free read coverage) and the fraction of a reference 
sequence that is covered by error-free reads (i.e. chromosome coverage) are 
important metrics that indicate the quality of a read set (33). SPECTACLE collects 
the two numbers using the exact alignment result described above.

EXPERIMENTS

We evaluated 17 Illumina read error-correction tools, four PacBio and two ONT 
read error-correction methods using SPECTACLE. All the experiments were done 
on a cluster, each computing node of which had two six-core Intel Xeon X5650 
processors and 24 GB of memory. In the following sections, we include only 
selected results that highlight the strengths and weaknesses of the tools. The 
remaining results, software versions, and software command line options are 
available in our extended manuscript (34).

Preparing Illumina read sets

I1, I2, and I3 are E. coli bacterium genomes that have different GC-content val-
ues. I4 is the mouse chromosome Y known as a highly repetitive genome (42). 
I5 is human chromosome 1, the largest genome sequence used in our experi-
ments. To evaluate the results for real reads, we downloaded I6 from the Illumina 
website (http://www.illumina.com/systems/miseq/scientific_data.ilmn [accessed 
on 27 March 2015]). The reads from this dataset have been sequenced from the 
exact same strain as I2 using the Illumina MiSeq sequencer and down-sampled 
to 40X.

http://www.illumina.com/systems/miseq/scientific_data.ilmn
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Preparing PacBio read sets

The PacBio error-correction tools evaluated in this study require, in addition to 
PacBio reads, Illumina reads as well, since the PacBio error-correction tools use 
Illumina short reads to detect and correct errors. To evaluate the effect of Illumina 
read coverage on the accuracy of error correction for PacBio reads, we prepared 
four different Illumina read sets with different read coverage values corresponding 
to each set of PacBio reads.

We prepared two PacBio read sets named P1, and P2. Accompanying each 
PacBio read set are Illumina read sets with coverages in the range 10X-40X in 
increments of 10X. In the sequel these are suffixed -10X, -20X, -30X, and -40X. 
40X-EF is an error-free version of the 40X Illumina read set and was used to 
evaluate the effects of sequencing errors in Illumina reads on error correction for 
PacBio reads.

P1 is E. coli K12 M1665 strain. Both the PacBio reads and the Illumina reads 
are real reads. The PacBio reads were downloaded from Pacific Biosciences DevNet 
(https://github.com/PacificBiosciences/DevNet/wiki/E%20coli%20K12%20
MG1655%20Hybrid%20Assembly [accessed on 29 March 2015]). Illumina read 
sets were generated from SRR922409. P2 is the first 10 Mbp region of human 
chromosome 19, which was used for evaluating the scalability of the PacBio error 
correction tools. The PacBio CLR reads and the Illumina reads for P2 were simu-
lated using PBSIM and pIRS, respectively. 

Preparing ONT read sets

ONT error-correction tools also use short Illumina reads for error correction, sim-
ilar to methods for PacBio error correction. We prepared two ONT read sets: O1 
and O2, with accompanying Illumina reads of coverages 10X, 20X, and 30X. Both 
ONT read sets are real reads. O1 is E. coli K12 M1665 strain. The raw reads were 
downloaded from GigaDB (http://gigadb.org/dataset/view/id/100102/token/
S30Hp9ZurcARyhov [accessed on 6 March 2017]). O2 is Saccharomyces cerevisiae 
W303 strain downloaded from the NCBI Sequence Read Archive (http://www.
ncbi.nlm.nih.gov/sra [accessed on 9 Nov 2016]). Illumina reads for both these 
datasets were downloaded from Illumina BaseSpace (SRR567755). In addition, 
we simulated error-free versions of the 30X Illumina reads using pIRS.

Additional details regarding our datasets are provided in our extended manu-
script (34).

Running Illumina read error-correction tools

The input read sets were corrected using the 17 error-correction tools. Among 
these, the stand-alone error correction tools are BFC (1), BLESS (2), Blue (3), 
Coral (4), HiTEC (7), Fiona (6), Lighter (8), Musket (9), Quake (10), QuorUM 
(11), RACER (12), Reptile (13), Trowel (14) and ECHO (5). The remaining three 
tools are parts of DNA assemblers, ALLPATHS-LG (43), SGA (44), and 
SOAPdenovo (45).

For each error-correction method, we applied successive numbers to the key 
parameters of the tools, and generated multiple corrected output read sets 

https://github.com/PacificBiosciences/DevNet/wiki/E%20coli%20K12%20MG1655%20Hybrid%20Assembly
https://github.com/PacificBiosciences/DevNet/wiki/E%20coli%20K12%20MG1655%20Hybrid%20Assembly
http://gigadb.org/dataset/view/id/100102/token/S30Hp9ZurcARyhov
http://gigadb.org/dataset/view/id/100102/token/S30Hp9ZurcARyhov
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
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corresponding to each parameter. The output read sets were assessed using 
SPECTACLE and the one that had the highest gain for substitutions, insertions, 
and deletions was chosen. The maximum k-mer length for Quake was limited to 
18 beyond which the memory capacity of our server was exhausted.

ALLPATHS-LG, BFC, BLESS, Blue, Musket, Quake, QuorUM, RACER, Reptile, 
SGA, and SOAPec succeeded in generating outputs for all the input read sets. 
Coral, HiTEC, Fiona, and Trowel failed to correct errors in large genomes because 
of insufficient memory. ECHO had not finished after 70 hours for the I4 and I5 
read sets. Lighter finished correcting all the read sets but it made no correction for 
the read sets with 10X coverage.

Running TGS read error-correction tools

PacBio read error-correction tools LoRDEC (24), LSC (46), PBcR (26), and 
Proovread (27) were evaluated using P1 and P2. No parameter tuning was needed 
for LSC, PBcR, and Proovread. For LoRDEC, we generated multiple output sets by 
applying successive values for k-mer length and solid k-mer occurrence threshold 
and chose the result that gave the highest percentage similarity. We could not 
assess LSC using P2 because it had not finished running after 70 hours. For ONT, 
we evaluated two error correction technologies NanoCorr (29) and NaS (28) 
using O1 and O2. Default parameters were used for these two error-correction 
methods.

Accuracy of Illumina error-correction tools

Sensitivity and gain for substitution type errors for Illumina experiments are sum-
marized in Table 1. For I1, I2, and I3, ALLPATHS-LG, BLESS, Lighter, Musket, 
Quake, QuorUM, and SGA generated outputs with gain above 0.95. For the 
highly repetitive genome I4, only BLESS and Quake obtained gain above 0.8. For 
I5-40X, the largest input genome, ALLPATHS-LG, BFC, BLESS, Lighter, Musket, 
Quake, QuorUM, and SGA showed gain above 0.9. Other than BFC, these are the 
same tools that worked well for I1-I3. For I6, most tools performed similarly to 
I2, both of which were generated from B. cereus. However, Coral, Quake, Reptile, 
SOAPec, and Trowel showed a degradation of above 0.1 for the gain value in I6 
when compared with I2.

Differences in sensitivity and gain are measures of the number of false correc-
tions made by each tool. In general, BFC, BLESS, Quake, SGA, and SOAPec gen-
erated fewer false corrections than the others.

Table 1 shows variation in accuracy with coverage for different versions of I5. 
Only BLESS, Musket, and Quake had gain over 0.85 for all the read sets. Lighter 
showed good results for 20-40 X reads, but it could not correct the errors in 
I5-10X. BFC, BLESS, Musket, Quake, SGA, and SOAPec made a small number of 
false corrections for low coverage read sets. Gain was saturated in most tools at 
30X coverage.

The percentage of corrected bases as a function of supporting read coverage for 
I5-40X is shown in Figure 2A. ALLPATHS-LG, Quake, and QuorUM corrected 
more errors than others when supporting read coverage of correct bases was close 
to 1. Even though ALLPATHS-LG and QuorUM are capable of correcting errors 
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with low supporting read coverage, gain for I5-10X (a low-coverage read set) of 
the tools in Table 1 was not as impressive, because they also generated false posi-
tives. The effect of differential supporting read coverage on error correction was 
significant only when read coverage was low (34).

Figure 2B shows percentage of errors corrected at different locations of reads. 
ALLPATHS-LG, BFC, BLESS, and Lighter correct errors relatively uniformly across 
read positions, while the plots for QuorUM and SGA have deep valley points. 
Also, Quake could only correct a relatively small number of errors at both ends of 
reads compared to the others. A similar analysis for insertions and deletions is 
presented in the extended manuscript (34).

Figure 2. Corrected errors. A. The percentage of corrected errors in I5-40x for various 
supporting read coverage of correct bases. B. Point sensitivity of I5-40X.
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Alignment results for Illumina error-correction tools

Reads were aligned using the paired-end alignment feature of Bowtie (47) without 
allowing any mismatches or indels (Table 2). I1-I5 have two reference sequences 
and corrected read sets were aligned to the reference sequence from which they 
originated. Tools that showed high sensitivity also had more reads aligned cor-
rectly to the reference sequences. In almost all the cases, the ratio of correctly 
aligned reads to the total number of aligned reads was over 99 percent except 
for I4. For I4, only the corrected reads from BLESS, Lighter, and Racer showed the 
accuracy of over 99 percent.

Accuracy of PacBio error-correction tools

Due to the higher error rates of TGS reads, error correction outputs can have 
many uncorrected bases. Therefore, most TGS error-correction tools generate two 
types of reads: (i), trimmed reads that only contain corrected regions in input 
reads; and (ii), untrimmed reads that include both corrected and uncorrected 
regions in input reads. 

For PacBio, PBcR only produced trimmed reads, LSC and Proovread generated 
both trimmed reads and untrimmed reads, and they were assessed separately. For 
LoRDEC, trimmed reads were generated from the untrimmed reads using lordec-
trim-split that is included in the LoRDEC package. For MinION reads, both 
NanoCorr and NaS produced trimmed reads. 

Percent similarity of the input reads was 76.6% before error correction, and all 
the output results were better than this number (Figure 3A). Tools (except LSC) 
showed percentage similarity of over 95% for the trimmed reads. For the 
untrimmed reads, LoRDEC and Proovread generated more accurate reads than 
LSC. Except for the case of untrimmed LoRDEC reads, read coverage of Illumina 
reads had almost no impact on percentage similarity.

Figure 3B and Figure 3C show read coverage and NG50 of the outputs of the 
compared tools. The two charts had similar shapes. Both values were high where 
percentage similarity in Figure 3A was low. The trimmed LoRDEC reads and the 
PBcR outputs were improved a lot by increasing Illumina read coverage. The 
trimmed reads from Proovread were also improved but the values were saturated 
at 30X coverage.

Percentage similarity, read coverage, and NG50 are compared for P2-40X and 
P2-40X-EF in Figure 3D-F. Percentage similarity, read coverage, and NG50 of the 
input PacBio reads were 79.4%, 20X, and 12,095 bp, respectively. Trimmed out-
puts of Proovread and LoRDEC showed high percentage similarity. Percentage 
similarity and read coverage were similar for trimmed and untrimmed outputs of 
Proovread, while trimming reduced NG50. For LoRDEC, trimming eliminated 
too many bases, consequently significantly degrading read coverage and NG50. 
Also, it can be seen that error-free Illumina reads did not have meaningful impacts.

PacBio error-correction tools seem to have lower sensitivity and gain (consid-
ering substitutions and indels) compared to tools for Illumina (Figures 3G-H). 
Gain and sensitivity generally improve upon trimming. For example, the sensitiv-
ity of trimmed reads of LORDEC, Proovread and LSC are significantly higher than 
that of untrimmed versions. For LORDEC trimmed reads, though sensitivity 
increases with higher Illumina coverage, gain remains largely unchanged 
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Figure 3. Evaluation results. A-C and G-H. Pacbio evaluation results for P1. D-F. Results for P2 
(lighter shade is 40X-EF).
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indicating that at higher Illumina coverage, more errors are corrected, but also 
there are more false corrections.

Accuracy of ONT read error-correction tools

Figure 4A shows percentage similarity for ONT error-correction tools. For O1, 
the  input read similarity was 57.3%. Both tools significantly improved this 
 number and the values did not significantly change with coverage of the Illumina 
datasets. Figure 4B shows NG50. Both tool outputs have a lower NG50 length 
than the input reads and NaS reads have a noticeably lower NG50 length 
 compared to NanoCorr for the O2 dataset. Using error-free Illumina reads did not 
bring in a noticeable improvement in error correction. Figures 4C and 4D sum-
marize the sensitivity and gain for the two ONT datasets. These results include 
both indel and substitution errors. It may be noted that NaS presents slightly 
higher  sensitivity and gain compared to NanoCorr.

Software availability

SPECTACLE software and supplementary information available at https://github.
com/gowthami19m/SPECTACLE. 

CONCLUSION

Among the Illumina error-correction methods that were evaluated, ALLPATHS-LG, 
BFC, BLESS, Lighter, Quake, QuorUM, and SGA generated accurate results for 
over 30X read coverage. BLESS and Quake outperformed the others for reads with 
10-20X read coverage, and it is expected that ALLPATHS-LG would work best for 
the reads with under 10X read coverage. For repetitive genomes, BLESS and 
Quake are recommended.

There was no apparent winner among PacBio tools that could generate both 
accurate and long reads. While trimming improved error-correction significantly, 
it reduced the NG50 length and read coverage appreciably. Proovread may be 
recommended in cases where the accuracy of corrected reads is more important 
than their length. If a large read set must be corrected in a short time, LoRDEC 
might be a good choice (34). Tools evaluated for ONT reads provided outputs 
with good percentage similarity and had comparable gain and sensitivity with 
respect to the PacBio tools. NanoCorr had longer NG50 length for one of the 
datasets.

In most cases, we tuned error-correction tool parameters independently and 
chose the best results. However, in a real situation where the locations of errors 
are not known in advance, it would not be possible to find the best parameters 
this way. While in many cases, there are parameter recommendations or defaults, 
these are encouraged to be made universal.

We believe that SPECTACLE will also be compatible with new sequencing 
technologies and some of its potential is evident from the fact that it can work 
with NGS and TGS reads with varied characteristics, providing a 

https://github.com/gowthami19m/SPECTACLE
https://github.com/gowthami19m/SPECTACLE
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Figure 4. ONT evaluation results A. Percentage Similarity. B. Error correction NG50. 
C-D. Sensitivity and Gain.
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comprehensive set of evaluation metrics. The fundamental strength of the tool 
is that the underlying evaluation algorithms are not tied to specific read lengths 
or error models.
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