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Abstract: A major challenge in bioinformatics is discovering functional regions in 
biosequences. These regions may correspond to folded structures, physicochemi-
cal functionality, or mutation hotspots. The identification of functional regions in 
biosequences is essential to better understand biological mechanisms, design new 
drugs, and uncover novel knowledge concerning sporadic and genetic diseases. 
Pattern analysis and WeMine aligned pattern clustering (APC) systems enable the 
discovery of conserved regions with adaptive width and mutations, including 
frameshift, without relying on prior knowledge or exhaustive search. They align 
and rank patterns in local and distant correlated regions with statistical support 
within, and between, sequences. This chapter provides an overview of the WeMine 
APC and its utility in identifying functional regions such as protein binding sites, 
predicting pairwise interactions between protein-DNA and protein-protein net-
work, and finding correlations among patterns and residues with class labels. 
Pattern analysis and WeMine APC could play an important role in personalized 
medicine, gene therapy, biomarker identification and drug discovery. 
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INTRODUCTION 

One of the major challenges in proteomics is to understand the functional regions 
in protein sequences. Such knowledge, if translated into explicit interpretable and 
succinct forms, could reveal the biological functionality crucial for a wide variety 
of applications. It not only will enable the understanding of the biological mecha-
nisms, but also will support drug and vaccine discovery for curing genetic and 
epidemic diseases. While an explosive amount of proteomic data is streaming in 
ubiquitously from research laboratories, the challenge remains to create effective 
scalable data-driven algorithmic methods for deciphering the data. 

Protein families may consist of many members, and the similarity and dissimi-
larity of the functional regions between their sequences becomes less clear with 
greater evolutionary distance. Evolutionarily conserved amino acids within pro-
teins characterize functional or structural regions. Conversely, less conserved 
amino acids within these regions are generally areas of evolutionary divergence. 
Existing unsupervised sequence analysis methods such as multiple expectation 
maximizations for motif elicitation (MEME) (1) and gapped local alignment of 
motifs (GLAM2) (2) can neither handle frameshift mutations effectively, nor find 
rare mutations occurring in a single or a few sequences. These short comings are: 
(i) when mutations such as substitution, insertion, deletion, and frameshifts 
occur in these functional regions, they are difficult to be handled with fixed 
motifs without proper alignment; (ii) though patterns are conserved within a 
family of sequences, their locations vary, and homologous sites need to be aligned; 
(iii) certain new/rare mutations are often detected only in a few sequences in an 
available ensemble, hence, they are not easily seen/noticed by MEME; and (iv) if 
the sample sequences pertain to a close family, their similarity is high with only a 
few break points due to strong homology over a large domain, hence, it is difficult 
to segment them to reveal the local conserved functional domains.

Due to the reason (iv) stated above, we need to identify spots to delimit local 
regions to highlight their local conserved functional homology. Hence, we need 
to get additional sequences from a broader family (via blasting) with variations 
of less dominating functionality or different related sequence families with 
common significant/dominating functionality. These are hard to find from 
BLAST (3, 4) or other existing sequence analysis methods. Hence, it is a sur-
mountable challenge to discover local conserved regions effectively from 
sequence data alone. 

Due to these and other shortcomings, we developed the WeMine System for 
pattern analysis based on intricate pattern-data duality via a novel pattern-data 
representation called aligned pattern cluster (APC), which utilizes the corre-
spondence of data and patterns to drive the algorithm using effective data struc-
tures and statistical measures. The definition and concept of pattern-data space 
duality and the WeMine System are explained in greater details in the next 
section. The WeMine System produces a pattern representation that is more 
accurate due to precision obtained from the patterns with variable length, allow-
ing gaps between sub-patterns and more diverse types of local mutations. It is 
faster due to compression of pattern supported by statistical data measures, and 
interpretable due to disentanglement minimizing bias and subtle entangled fac-
tors. The WeMine System has been applied to discover functional regions in 
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protein families (cytochrome c and class A scavenger receptors) as well as tran-
scription factor binding sites (TFBS). Furthermore, the algorithm of discovering 
co-occurring patterns has been applied to discover binding cores between tran-
scription factor proteins and their complementary DNA sequences, intra-pro-
tein interacting sites of various protein families, and protein-protein interaction 
(PPI) prediction.

The pattern analysis method demonstrates faster runtime than its contempo-
raries, such as CISP (Contiguous Item Sequential Pattern Mining) (5), Gap BIDE 
(Gap BI-Directionall-Extension –based frequent closed sequence mining) (6, 7), 
MEME (665x) (1) and GLAM2 (10x) (2) with an average reduction (70%) in 
number of homologous patterns. It is more accurate in identifying protein bind-
ing sites, up to 50% when compared with MEME and GLAM2 (2). In terms of 
biological application in co-occurrence and classification, our method displays 
the following features: (i) discovers binding cores (protein-DNA) at a higher con-
sistency (~20%) and a faster computation time speed-up (1600X); (ii) outper-
forms PPI prediction compared to PIPE2 (Protein Interaction Prediction Engine 2) 
(8, 9) and achieves 1280x feature dimension reduction compared to Support 
Vector Machine (SVM) method; and (iii) ranks residue mutations correlated with 
class in unsupervised manner faster than Hidden Markov Model (HMM) (100x) 
and SVM (14x). Due to the accessibility of protein sequences on the internet, to 
achieve the significant task of identifying functional regions on proteins for pro-
teomic research and drug discovery, it is more economical and effective to first 
look for conserved segments from the data of a set of functionally similar protein 
sequences than to perform laborious and time-consuming experiments and com-
putationally intensive modeling. Thus, our WeMine system has great implica-
tions in drug discovery and protein analysis. 

THE WEMINE SYSTEM

At the core of the sequence analysis system, we introduce the concept of pattern-
data space duality (10). To put simply, the pattern space consists of patterns that 
are statistically significant, highlighted from the sea of data, and the data space is 
the instantiations (occurrences) of these patterns in the data. They are used to 
compute statistical scores and measures. After pattern discovery, all patterns in 
the family, from low to higher order, are discovered with their addresses (sequence 
ID and location) registered in an Address Table (AT). We then acquire, align and 
grow an APC by extending each pattern therein if found in the AT. If not found, 
a mutation may occur at the end (referred to as a pattern breakpoint) of the pat-
tern. From its pattern location in the AT, we look for possible mutation (substitu-
tion, insertion or deletion) at the breakpoint in the data space. If found, we jump 
over the breakpoint to see if it is a pattern in the AT. From its frequency of occur-
rences obtained and the statistical testing, we will include the mutated pattern in 
the growing APC. If not, we will place it to a rare mutant pool. The functional 
hypothesis is that each summarized APC has its corresponding data occurrences 
for instantiating patterns in the functional region, thus allowing verification of 
the biological function at pattern, data and knowledge level. Each step in the 
WeMine System makes use of the pattern-data space duality in a certain manner. 
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It organizes the discovered patterns in the pattern space and makes computations 
in the data space to reveal the hidden patterns and their statistics within the data. 
The pattern-data space duality is further elaborated in Table 1. 

Figure 1 gives an overview of the WeMine System. It consists of three major 
modules: pattern discovery, pattern summary (called Aligned Pattern Clustering 
shortened as APC), and pattern refinement (representation of APCs and co-occur-
rence APCs). Figure 1A gives a schematic description. It takes a family of biose-
quences, discovers the statistically significant sequence patterns, aligns and 
clusters them into APCs, and refines their patterns. Figure 1B gives more details. 
The fundamental data structure of sequence pattern discovery is the suffix tree 
with suffix links representing both the patterns (paths) and the data space (the 
leaves in the suffix tree data structure stores the pattern IDs and addresses). APC 
aligns and clusters patterns into APCs and refine the aligned patterns including 
gaps, mutations and their addresses in the data. The extended pattern and data 
spaces allow in-depth analysis of subgroup characteristics in the functional 
domains. Figure 1C presents the biological applications of the WeMine System as 
three types of outcomes: (i) patterns co-occurrence through co-occurring APCs, 
obtained within proteins (APCs sharing co-occurring patterns on same sequences 
to reveal intra-protein three-dimensional interaction proximity); (ii) between bio-
sequences (discovering protein-DNA binding cores): and (iii) protein-protein 
interaction prediction. Table 1 further elaborates each step of the WeMine System 
as well as the biological applications with two examples of co-occurrence APC 
and one example of class partitioning APC. WeMine System takes a set of multiple 
sequences of a protein family as input and discovers patterns, aggregates similar 
patterns, aligns and refines patterns, and uncovers associations.

Pattern Discovery

The pattern discovery takes advantage of a fast-linear run time and space-efficient 
algorithm we developed (12). It ingeniously uses a generalized suffix tree to 
efficiently identify the proper superpatterns and subpatterns and obtains a com-
pressed or pruned statically ranked list of patterns with corresponding data space 
that are statistically significant and nonredundant. The suffix tree with suffix links 
(Figure 1B) stores patterns with statistical weights and addresses on the leaves of 
the suffix tree while removing pattern redundancy by avoiding multiple listing of 
patterns in the sub-patterns. Its early success was demonstrated in finding TFBS 
using DNA sequences from the promoter regions of the yeast, Saccharomyces 
cerevisiae. It generated a relatively small set of binding sites and achieved best 
overall results when compared with other motif discovery methods (12). It can 
retain patterns associated with conserved functional units in the promoter regions 
and drastically reduce the pattern set. This biological problem of transcription 
factor binding is revisited later for finding co-occurring APC pairs between pro-
tein-DNA pairs, specifically for finding complementing binding regions between 
the transcription factor protein and its companion TFBS DNA.

Pattern summarization

Since similar patterns reflect homologous functionality, a pattern summarization 
process is used to align and cluster homologous patterns in an array referred to as 
APC to represent a local functional region. The pattern summarization algorithm 
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Figure 1.  An Overview of the WeMine System. A. Schematic view with input, throughput and 
application outcomes. B. a brief description of pattern discovery, pattern summarization and 
pattern refinement. C. Biological applications of the WeMine system as three types of 
outcomes. D. The growing of APC via finding seed patterns, extending aligned patterns and 
identify and locate the breakpoints, the types of mutation. APC, aligned pattern cluster; 
P2C, protein to class; P2P, protein-to-protein; R2C, residue to class; R2R, residue to residue.

aligns and clusters the discovered patterns into APCs (Figure 1B and Figure 2 
A-E). It groups the patterns of different lengths obtained into arrays of homolo-
gous aligned patterns to maintain the same length by inserting gaps and muta-
tions/wildcards. The amino acids within the patterns are aligned at the same 
location, reflecting its regional functionality of the pattern and its mutation within 
the sequence. The key rationale behind summarizing the patterns (by aligning 
and clustering them) is that once an APC with its relative position is obtained, it 
will reflect the statistically significant residue association with each other in the 



Annie Lee E et al.140

patterns (with variations) and also the amino acid distribution of each of its 
aligned sites (columns) to reveal the functionality of the protein family within the 
regions spanned by the patterns in the APCs with statistical ranking and support. 
APCs represent functionally homologous regions of protein patterns, specifically 
binding segments, wherever they are in the input sequences of the protein family. 
Algorithmically, this step takes a reduced list of patterns (obtained from step 1 of 
pattern discovery) as input and clusters/groups them using a single-linkage hier-
archical clustering algorithm that iteratively aligns them, using dynamic program-
ming, into one or more APCs. The algorithm iteratively merges two APCs in a 
pairwise-manner based on their similarity scores until one of the termination con-
ditions is reached. The three key parameters of the algorithm are the Merge 

Figure 2.  Pattern Summarization and Refinement. Aligned pattern clustering, motif discovery, 
aligned pattern clusters and the 3D structures they represent. A. Patterns with mutation 
embedded in the sequences of the cytochrome c family. B. Probabilistic Weighted Matrix 
PWM and its Logo. C. APC obtained from WeMine. D. Pattern space of aligned patterns and 
rare mutant patterns. E. Data space of the pattern directed aligned pattern clustering result. 
F. An aligned pattern cluster obtained from the sequences of a cytochrome c family. 
G. 3D structure and its representation of a binding site discovered by WeMine APCn, 
showing the binding of the bio- molecule to the complex of the heme and its iron atom 
at the center. 
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Algorithm, the Similarity Score, and the Termination Condition. APCs are ranked 
according to their statistical significance computed from their corresponding 
data space.

Proteomic application 

We applied WeMine to the cytochrome c protein family and obtained the APCs 
that correspond to the functional binding segments and its binding residues. The 
cytochrome c protein covalently binds the heme (13) attached to two cysteine 
residues. The heme’s iron ion is chemically bonded to two binding residues from 
the opposite sides of the protein, each of them is surrounded by a sequence pat-
tern with variations, within the discovered APC, referred to as the binding 
segment. The APCs discovered in each cover significant binding sites. WeMine 
APC runs faster than other motif finding algorithms while not restricted by 
parameters such as motif width and number of variations. Figure 2A shows part 
of the protein sequences containing the pattern “CAQHGCCA” and their muta-
tions; 2b is the visual display of Position Weighted Matrix (PWM) obtained by 
MEME showing the amino acid probability distribution-independent sites; and 
2c shows our Phase 1 Pattern Directed APC (PD-APC) results. Figure 2D gives the 
full result; 2E displays the APC data space, with an adapted width of 35 amino 
acids, consisting of 25 aligned segments where the 7 discovered patterns listed in 
2c are embedded. Figure 2F gives the Pfam representation of a long cytochrome 
c segment, and the hierarchical structures of two APCs discovered by APC cor-
responding to the proximal and distal binding segments of cytochrome c to the 
heme. The larger APC contains C17 and H18 that binds, respectively, to the heme 
(a molecular complex) and the iron atom at the center of the heme (Figure 1G). 
M62 in the distal APC binds to the iron molecule in the heme. The results of APC 
on ubiquitin have been described previously (14, 15). Figure 2G displays their 
3D binding configurations.

Pattern refinement for revealing pattern gaps and mutations

To overcome certain problems encountered in WeMine, we developed a third 
algorithm for pattern refinement called pattern directed align pattern clustering 
(PD-APC) (Figures 1B and 1D, and Figure 2A, C-E). It uses seed patterns discov-
ered, extends gaps by pattern breaking points, and uncovers rare mutation pat-
terns. It contains two steps: (i) the use of suffix trees to discover seed patterns 
(Figure 1B); and (ii) the growing of patterns (Figures 1D and Figures 2 C-E). 
Herein we provide a brief description of the algorithm. Given a set of sequences, 
PD-APC step 1 discovers small seed patterns leveraging the pattern discovery 
algorithm (12). Using the suffix tree, seed patterns are discovered and located 
which are then extended to super-patterns by “jumping over” the breakpoint 
mutations (substitution, insertion, and deletions). From the top ranked seed pat-
terns, it extends them using step 2 (14, 15), and grows these extended patterns 
from the induced data space to the APC and rare mutants to a separate pool. This 
step uses the seed patterns (with high frequency of occurrences) discovered 
(Figure 1D) to initiate an APC. To grow the APC, it extends each pattern therein 
from its location in the data space using information directly from the 
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Address Table (AT). If the extended pattern is not found, consider the gap as a 
breakpoint. It then jumps over the gap to find a pattern. If found, it then deter-
mines the type of mutation (Figure 1D) taken place and identifies the mutated 
pattern candidate. If the candidate passes the pattern hypothesis testing, it will be 
included in the APC. Otherwise, place it to the rare mutant pool. This process is 
iterated until termination when no more extended pattern could be found.

This algorithm is based on two important concepts. The first is the use of the 
breakpoint since some mutated patterns, when fragmented, could not be discov-
ered by the pattern discovery due to the low frequency of occurrences of the 
entire mutational pattern. Hence, if we have the address location of the low fre-
quency sub-patterns, we consider the mutation spot between them as a break-
point. By jumping over it, the mutated variants and the rare mutant patterns can 
be discovered from the data space. The second concept is the seed pattern exten-
sion introduced to increase the coverage of the growing APC. We observed that 
the width of seed patterns is inherent in data, unaffected by the algorithmic pro-
cess and/or the width parameters. We apply the same procedure of “jumping 
over” a breakpoint to obtain full coverage. When the seed width is changed, the 
same full coverage remains, indicating pattern width adaptation without exhaus-
tive search. 

Application

The pattern extension method uses a systematic process to determine the repre-
sentation model width adaptively from data without exhaustive search, and dis-
covers rare mutational patterns with substitution, frameshift, insertion and 
deletion. We evaluated our method against MEME (1) and GLAM2 (2) via three 
synthetic datasets, where the conserved region positions are a priori known and 
considered as the ground-truth. The discovered conserved regions output could 
then be compared with the ground-truth quantitatively. Dataset 1 is composed of 
500 protein sequences containing a mutated protein segment with 30 amino acids 
but no noise. A larger noise-free Dataset 2 consists of 1000 protein sequences with 
a mutated segment with 30 amino acids. Dataset 3 consists of 2000 protein 
sequences where 1000 sequences contain a mutated segment with 30 amino acids 
where the remaining were noise sequences. The results showed that our method 
is faster than MEME (665x) and GLAM2 (10x) and has a higher F-measure than 
MEME and GLAM2 (Table 2).

APPLICATIONS OF PATTERNS WITH VARYING ASSOCIATION 
RELATIONSHIPS

This section explores the biological application of patterns to various associated 
relationships, such as binding, three-dimensional closeness, interaction, and class 
partitioning. The folding of protein sequences renders tertiary structures and 
physicochemical conditions for site (amino acid residues represented as aligned 
column) and segment (domain represented as patterns), interaction within 
(Figure 2F) and between proteins, or between proteins and other biomolecules, 
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TABLE 2	 A comparison of WeMine with MEME and 
GLAM2. The WeMine system is faster than 
MEME (665x) and GLAM2 (10x) and has higher 
F-measure than MEME and GLAM2

Performance evaluation of PD-APC on Dataset 1 (500 sequences)

Precision Recall F-measure

GLAM2 (nMotifs=1) (2) 0.37840 1.00000 0.54904

GLAM2 (nMotifs=2) (2) 0.34745 1.00000 0.51572

GLAM2 (nMotifs=3) (2) 0.33325 1.00000 0.49991

MEME (nMotifs=1) (1) 0.99839 0.49630 0.66301

MEME (nMotifs=2) (1) 0.99261 0.77936 0.87315

MEME (nMotifs=3) (1) 0.99269 0.78816 0.87868

PD-APC (ωseed = 3, gapbreak = 2) 0.96348 0.89905 0.93015

PD-APC (ωseed = 3, gapbreak = 3) 0.96335 0.91655 0.93942

Performance evaluation of PD-APC on Dataset 2 (1000 sequences)

Precision Recall F-measure

GLAM2 (nMotifs=1) (2) 0.46781 1.00000 0.63742

GLAM2 (nMotifs=2) (2) 0.41305 1.00000 0.58462

GLAM2 (nMotifs=3) (2) 0.35262 1.00000 0.52139

MEME (nMotifs=1) (1) 0.97967 0.39232 0.56028

MEME (nMotifs=2) (1) 0.97922 0.84919 0.90958

MEME (nMotifs=3) (1) 0.97930 0.85249 0.91151

PD-APC (ωseed = 3, gapbreak = 2) 0.96541 0.89065 0.92092

PD-APC (ωseed = 3, gapbreak = 3) 0.96462 0.91266 0.93792

Performance evaluation of PD-APC on Dataset 3 (2000 sequences)

Precision Recall F-measure

GLAM2 (nMotifs=1) (2) 0.61117 1.00000 0.75867

GLAM2 (nMotifs=2) (2) 0.59827 1.00000 0.74865

GLAM2 (nMotifs=3) (2) 0.54501 1.00000 0.7055

MEME (nMotifs=1) (1) 0.99898 0.48957 0.65711

MEME (nMotifs=2) (1) 0.99261 0.77936 0.87315

MEME (nMotifs=3) (1) 0.93682 0.83278 0.88426

PD-APC (ωseed = 3, gapbreak = 2) 0.92997 0.89605 0.91269

PD-APC (ωseed = 3, gapbreak = 3) 0.93039 0.91266 0.92149

Runtime Comparison of PD-APC on Dataset 1, 2 and 3

GLAM2 (nMotifs=3) (2) 202.074s 334.273s 228.779s

MEME (nMotifs=1) (1) 368.401s 2315.512s 15721.029s

Table continued on following page
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such as DNA and RNA (Figure 3 Part I). Those interacting segments/sites corre-
spond to sequence patterns co-occurring in their primary structures or within 
their interacting environment. As APCs reflect functional regions, distant APCs 
with patterns co-occurring on the same sequence or within an interacting envi-
ronment between biosequences, can be identified through the co-occurring pat-
terns discovered among distant APCs. We refer to such configurations as 
co-occurrence APCs (cAPCs). These enable to explore interacting sites within or 
between interacting biosequences.

Co-occurring pattern association (protein-DNA interaction) for 
TFBS protein-DNA interaction

For this application, we return to the biological problem of TFBS first introduced 
in the pattern discovery step, but instead of only studying the TFBS in DNA 
sequences we consider the protein-DNA sequences for the binding interaction. 
For protein-DNA binding, the regions between a transcription factor (TF) and a 
TFBS in close contact, <3.5Å (16, 17), are referred to as protein-DNA binding 
cores (18, 19) (Figure 3 Part I). Sequence- specific binding is the ability of a TF 
protein to distinguish different DNA sequences where the TF protein’s binding 
domain can recognize a collection of similar TFBS DNAs.

Figure 3 shows how APC (19) is able to obtain cAPCs related to binding/inter-
action sites/regions within, and between bio-sequences. Part I of Figure 3 depicts 
a 3D configuration of a protein-DNA binding core between a TF and a TFBS DNA. 
It describes the algorithmic process we developed to identify and locate the bind-
ing core (19). In step 1, we obtained a public file, Transfac, listing TF proteins that 
bind to strands of DNA but not the binding sites which are difficult to find since 
an ordinary TF protein may consist of over 150 residues and the DNA TFBS may 
have 5 to 12 bases. The APCs in TF proteins and the DNA strands were discovered 
and ranked, generating a set of cAPCs consisting of matching pairs of protein-APC 

TABLE 2	 A comparison of WeMine with MEME and 
GLAM2. The WeMine system is faster than 
MEME (665x) and GLAM2 (10x) and has higher 
F-measure than MEME and GLAM2 (Continued)

MEME (nMotifs=2) (1) 471.633s 2749.722s 17437.620s

MEME (nMotifs=3) (1) 570.683s 3155.81s 18786.427s

PD-APC (ωseed = 3, gapbreak = 2) 4.759s 12.531s 28.104s

PD-APC (ωseed = 4, gapbreak = 2) 5.143s 13.466s 30.309s

PD-APC (ωseed = 5, gapbreak = 2) 5.213s 13.997s 33.232s

PD-APC (ωseed = 3, gapbreak = 3) 4.843s 12.999s 28.232s

PD-APC (ωseed = 4, gapbreak = 3) 5.193s 13.653s 30.454s

PD-APC (ωseed = 5, gapbreak = 3) 5.726s 14.070s 33.696s
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Figure 3.  Discovering protein-DNA binding cores and protein interaction regions via cAPCs. 
Part I. A 3D configuration of a protein-DNA binding core between a TF and a TFBS DNA. 
Part II. The three-step process of how cAPC network is constructed from a set of protein 
family sequences and the protein’s 3D configuration with the resulting cAPC highlighted in 
color. Part III. The Pfam representation of a cytochrome c segments with two cAPC. TF, 
transcription factors; TFBS, Transcription factors binding sites.
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and DNA-APC. For each cAPC we find a set of patterns in the TF proteins that 
co-occur with patterns in the DNA in the Transfac file. Of these co-occurring 
APCs, some might have already been reported in Protein Data Bank (PDB). If 
there is, the binding core will be confirmed. If they are not found, we could use a 
technique known as homology modelling to transform the closet known pairs 
into the candidate pairs. If the physicochemical homologous transformation suc-
ceeded, we would include that pair as a new binding core.

Part II of Figure 3 shows how a cAPC network is constructed from a set of 
protein family sequences and their corresponding 3D configuration. The cAPC 
co-occurrence scores are used as similarity measure to obtain the graphical theo-
retic clusters of APCs, the model (network) that makes up the cAPC. Part III of 
Figure 3 shows the Pfam representation of a cytochrome c segments with two 
cAPC, one consisting of three APCs and the other made up of five APCs. The edge 
weights of these graphical representations are the co-occurrence scores between a 
pair of APCs 

Predicting the likelihood of protein-protein interaction

Protein-protein interaction prediction refers to predicting if one protein will inter-
act with another. It enhances our understanding of the molecular mechanisms 
inside the cell (20) and is particularly useful for discovering unknown functions 
of a protein (21), particularly for prediction based only on sequence data. Our 
protein-protein interaction prediction method, the WeMine-Protein2Protein 
(P2P), is based on a biologically interpretable features in conserved functional 
regions, and a biologically realistic algorithm in finding binding segments with 
variable width and mutations. WeMine-P2P is not only able to yield superior or 
comparable predictive results but can also discover knowledge for PPIs through 
analyzing the interpretable discriminative features with significant feature dimen-
sion reduction. The knowledge discovered in the interpretable feature space is 
useful for building better predictive models. Through the results of 40 indepen-
dent experiments, it has been shown that: (i) WeMine-P2P outperforms the well-
known algorithm, PIPE2, which also utilizes co-occurring amino acid sequence 
segments but does not allow variable lengths and pattern variations; (ii) WeMine-
P2P achieves satisfactory PPI prediction performance, comparable to the SVM-
based methods particularly among unseen protein sequences with a potential 
reduction of feature dimension of 1280x; and (iii) unlike SVM-based methods, 
WeMine-P2P renders interpretable biological features from which co-occurring 
sequence patterns from the compositional bias regions are more discriminative. 
Since no prior information on PPI is incorporated, WeMine-P2P is extendable to 
other biosequence applications in the future.

Class association

To explore how the summarized coded patterns, reflect biological functionality, 
we used unsupervised algorithm to partition the sequence patterns and their resi-
dues in APCs and cAPCs without prior knowledge to observe what the partitions 
reveal. From a set of input sequences, class labels were removed, and unsuper-
vised algorithm was used to examine sub-sequence segments with strong 
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statistical association with distinct subgroups. The quality of these discovered pat-
terns was ranked and grouped based on their inherent characteristics using our 
information measures which account for amino acid conservation of a site and 
their correlation with those on other sites and/or class within the APCs (22). We 
tried to find out whether our algorithm could identify the discovered patterns and 
the partitioned mutated subgroups that match the pre-existing groups as reflected 
by the class labels. Experiments were conducted on known and putative sequences 
of two proteins belonging to a relatively uncharacterized protein family. We could 
group taxonomy-related sequences and identify conserved regions with strong 
homologous association patterns within individual proteins and across the mem-
bers of these families. Our results revealed that the data information measures are 
unbiased, and our class information measures can accurately rank the quality of 
the taxonomic relevant groupings. Furthermore, by combining our data and class 
measures, we were able to interpret the results by inferring regions of biological 
importance within the binding domain of these proteins. Compared to popular 
supervised methods, our algorithm has a superior runtime and comparable accu-
racy (22).

Figure 4 shows APCs obtained by our unsupervised methods using data and 
class information measures. In Figure 4, Part I shows the steps that take the pro-
tein family sequences with embedded class patterns, mammal (red), plant (green) 
or fungi (blue) and output APCs (step 2) which produce clusters in the APC 
dataspace in an unsupervised manner. It validates the class partition results after 
the putting back the class labels to the samples data in the APC dataspace. Step 3a 
shows how the sites with conserved or mutated residues can be identified using a 
data information measure R1 that reveals the degree of residue conservation of the 
site. For the first, fourth and fifth columns of 3a, R1=1 indicates invariant sites. 
For columns 2 and 3 with residue variation, R1 between 1 (invariant) and 0 (uni-
form distribution). R1 measures the conservation of a site. We also use another 
data measure known as sum of mutual information (SR2) to account for 
the strength of interdependence of a site with all other sites in the APC, indicating 
the functional significance of the sites. In step 3b, we use a class information mea-
sure to account for the correlation of a site with the class labels, like E in column 
3 are associated with plants and Q with mammals. 

Figure 4 Part II shows that the top-ranking APC contains cysteine from the 
scavenger receptor cysteine rich (SRCR) binding domain. It also indicates that 
macrophage receptor with collagenous domain (MARCO), and scavenger receptor 
class A I (SRAI) have unique expressed functions sharing highly conserved 
domains with variations. Top APCs discovered correspond to two binding 
domains of SRCR having relatively high SR2 and Immunoglobulin (IG) (yellow 
ellipses) which separated the APCs into the MARCO and SRAI classes. The sites 
with C-C disulfide bonds are highlighted in the yellow columns (Figure 4 Part II). 
Note that the second APC SDATVFCR[MS]LGYS consists of numbered rows asso-
ciated with a statistically significant pattern and columns representing either con-
served or mutated sites. The instance counts of the patterns for MARCO and SRAI 
are listed on the right-hand columns labelled with MARCO (in pink) and SRAI (in 
green). The class entropy of each pattern is displayed in the last column with the 
heading H and each amino acid is displayed below the patterns, where the SR2 
and IG are summarized at the bottom. 
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CONCLUSION

We describe our novel sequence pattern analysis system called WeMine System 
for discovering, summarizing, and refining patterns representations. Our method 
can reveal biological function of DNA sequences, protein domains in protein fam-
ilies (cytochrome c and class A scavenger receptor), protein-DNA binding cores, 
and protein-protein interactions. By utilizing insights from the pattern-data space 
duality, our results are rendering a more precise prediction due to flexible repre-
sentations, a faster runtime due to compressed statistical results, and unbiased 

Figure 4.  Partitioning and Analyzing APCs obtained by our unsupervised methods using data and 
class information measures. Part I. The steps in the APC process that takes as input the protein 
family sequences with embedded class patterns and outputs the final APCs with their 
associated classes. Part II. Examples of the top-ranking APCs contain cysteine from the SRCR 
binding domain. A. The top 2nd and 6th APCs in MARCO and SRAI. B. Top 2nd APC. 
C. Top 6th APC. SRCR, scavenger receptor cysteine-rich. 
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disentangled interpretations of the results due to robust associations. We thus 
believe that PD-APC would be important for the discovery of new functional 
regions from protein family sequences, as well as rare mutants that will be signifi-
cant to drug discovery and personalized medicine in the future.
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