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Abstract: Pattern discovery detects statistically significant associations among 
attribute values known as patterns. Traditional pattern discovery algorithms 
usually produce overwhelming numbers of overlapping/redundant patterns, 
weakening their interpretation and decision. Pattern Discovery and 
Disentanglement (PDD) is a new method that can decompose the entangled 
associations into groups related to specific factors to overcome this problem. 
Hence, the patterns discovered are much less in number, yet comprehensive and 
succinct for machine learning tasks and “explainability”. PDD has a potential for 
proteomic research, drug discovery, and personalized genetic medicine by 
revealing subtle genetic/clinical patterns. This chapter provides an overview of the 
methodology of PDD and its two applications: association discovery on aligned 
pattern clusters (APCs) and residue-to-residue interactions (R2R-I) prediction. 
Discovery of patterns from APCs of cytochrome c and class A scavenger receptors 
are presented as example. Distinct subgroup characteristics of their functional 
domains and discovery of R2R-I patterns to enhance prediction of residue 
interactions between binding proteins are discussed. 
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INTRODUCTION 

Proteins and their interactions govern the biological processes of a living organ-
ism. Proteins in the same family have similar functions, which can be revealed by 
the aligned sites and patterns of the biosequences in homologous functional 
regions. Machine learning and frequent pattern mining are common data analysis 
approaches for protein analysis. However, in protein analysis, the input (residue) 
and output (protein function/binding) relations are not often obvious, particularly 
when the correlation of residues in the sequence is governed by multiple factors. 
Pattern Discovery and Disentanglement (PDD) algorithm may help overcome the 
problem. In this chapter, we present two applications of PDD in protein analysis: 
association discovery on aligned pattern clusters (APCs) and residue-to-residue 
interactions (R2R-I) prediction.

As for the first application, discovering conserved sequence patterns (or 
associations) from a protein family is crucial for revealing region functionality. To 
identify subgroup characteristics in functional domains are of fundamental 
importance. Hence, we identify APCs (1, 2) from biosequences of protein families 
to locate and reveal conserved functional regions with variable width (Figure 1A), 
for example, rare substitution and frameshift mutations. The significance of APCs 
in biosequence analysis is due to their dual space representation—the pattern 
space (Figure 1B) and the data space (Figure 1C). The former displays the 
statistical patterns of the residue association. The latter allows the tracking of the 
discovered patterns in the sequence data, through the pattern addresses obtained 
in the pattern discovery phase. With this location-preserving information, it is 
easy to see how the aligned residues and their associations are entangled 
(Figure  1D) among different taxonomic classes (C1, C2, and C3 in Figure 1C) 
within the conserved domain (Figure 1B). Pattern discovery (PD) (3), such as 
frequent pattern mining (4, 5), is the typical approach which provides succinct 
statistical support in predictive analytics (6). It has been used to discover patterns 
(for example, motifs) in biosequence data to reveal associations for interpretation 
and classification (7). Through the discovered patterns, knowledge can be revealed 
from data (8). However, traditional PD approaches usually produce an 
overwhelming number of overlapping/redundant patterns (9). These patterns/
associations are hard to be clustered or summarized (9-11) to reveal precise 
“knowledge” inherent in the functioning environment that produced the 
associations, making interpretation difficult. Furthermore, due to the difficulties 
encountered in handling large volume of patterns effectively, along with too many 
redundant patterns, the accuracy of these methods also suffers. Hence the 
interpretability of these methods on relational data is still a challenge (12).

As for the second application, predicting protein-protein interaction (PPI) and 
R2R-I are also important in proteomics. The current view is that the closer two 
residues are to each other, the stronger the physicochemical binding/interaction 
between them. However, this view is being challenged, as there might be other 
physicochemical factors that bring them close to each other (8). Three types of 
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computational R2R-I prediction methods have been developed. The first is 
computational docking (13), which simulates the interacting process based on 
physicochemical properties (14) of protein sequences such as shape 
complementarity, electrostatics, and biochemical information. This type of 
approach requires unbound structures of the target proteins that take special 
efforts to obtain. The second type (15, 16) is based on co-evolution conjecture 
which creates a Multiple Sequence Alignment (MSA) separately for both proteins 
and predicts statistically associated columns in spatial proximity. The prediction 
performance of this type requires homologous sequences of the given protein 
sequences to conduct MSA. It is easy to see that these applications are still limited 
since they often require additional data beyond the sequences given. Very few 
current methods can discover R2R-I sites using only information obtained directly 
from the sequence data. The third type uses machine learning. The methods first 
take a dataset of PPI complexes as input for both interacting pairs and non-
interacting pairs, then derive a variety of features from the protein structures or 
MSA, and finally predict R2R-I using the same feature vectors for two input 
proteins. The structure-based methods require structures from the two input 
proteins (17, 18), while the sequence-based methods only require sequences from 
the two input proteins (18). The key drawback of the latter is that a large amount 
of time is needed to extract appropriate features and select optimum combinations 
of them. 

To overcome these problems, we apply our recently developed PDD method. 
Realizing that the fundamental notions of these problems is related to the subtle 
associations of the items/events of the subject matter, we developed PDD to reveal 
more specific associations/functionality hidden in the acquired data. 

PATTERN DISCOVERY AND DISENTANGLEMENT

PDD is a computational algorithmic process to discover a succinct set of statistically 
significant patterns from a relational dataset. Figure 2 provides an overview of 
PDD. It first obtains data and constructs a frequency matrix (FM). For the analysis 
of protein functional domain, the FM is constructed from the co-occurrence 
between pairs of residues in the APCs. For R2R-I prediction, the FM is constructed 
from the frequency counts of contact between residues obtained from the R2R-C 
data. The FM is then converted to a statistical residual vector space (SRV), 
accounting for the statistical significance. Next, the SRV is decomposed into 
principal components (PCs) and reprojected onto a new SRV, referred to as the 
reprojected SRV (RSRV), which reveals the association captured in the PC. We call 
a PC and its corresponding RSRV a disentangled space (DS). 

The input data can be of various types, such as a relational table (for example, 
APCs) or sequence data (for example, a collection of sequences for predictor 
training and testing or two protein sequences for R2R-I prediction). An APC can 
be represented as a relational table described by an N × M matrix for N amino acid 
sites and M protein sequences. For R2R-I prediction, the R2R-C in PPI 3D 
configurations are acquired from protein data bank (PDB) (19) (Table 1). The 
notations, definitions and terminologies are tabulated in Table 1.

Since we attempt to apply PDD to APC and R2R-I at the same time, we use 
the superscript ^ and * to reference them, respectively, in the description below. 
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Figure 2.  Overview of the methodology of PDD. This overview describes the methodology 
walkthrough for two applications (a) discovering the association patterns in a protein aligned 
pattern cluster and (b) building a predictor to predict the interacting residue and the sites 
between two interacting proteins.

TABLE 1	 Terminologies used in this chapter and their 
definitions

Terminology Definition

R2R pair A pair of residues residing on two different protein sequences in PPI complexes 
were obtained from PDB. 

Residue-Residue 
Contact (R2R-C)

An event where two residues are considered to be in close contact in the 3D 
coordinate space when the closet Euclidean distance between their C-Beta 
atoms is less than 6Å (17) (18). A R2R-C pair is referred to as a pair of 
residues (ri, rj) in close contact in the 3D coordinate space.

Aligned Residue 
Association (ARA)

An APC is denoted as A = {A1, A2,… AN} (N is the number of amino acid sites), and 
for each site of amino acid, the values are denoted as { | 1,2,... }A A j In n

j
n= =  

(In represent the total number of values on the nth site). Then the ARA refers to 
a pair of aligned residues, denoted as ( )A An

i
n
j↔ ′  

APC, aligned pattern cluster; PDB, protein data bank; PPI, protein-protein interaction; R2R-C, residue-residue close-contact

In step 1, the frequency counts of aligned residue associations (ARA)^ and R2R-C* 
are obtained to construct an FM. The item of ARAFM^ is denoted as ( )FM A An

i
n
j↔ ′ . 

Similarly, the item of R2RCFM* is denoted as FM(ri, rj). The dimension of FM is 
T × T, where, in the APC case, T represents the sum of the number aligned residue 
pairs for all amino acid sites in the APC, while on the R2R-I case, it represents the 
number of different residues in R2R-C*. 



Zhou P et al.176

Then, in step 2, the FM is transformed into an SRV to summarize the 
significance of respective associations. Those ARAs^ or R2R-C* with SR ≥1.96 or 
≤ −1.96 corresponding to the confidence level = 95%, are considered as positive 
and negative significant associations, respectively. In step 3, PC decomposition 
(20) is applied to the SRV to create RSRV. RSRVs can disentangle and filter the 
entangled associations to reveal the distinct functional associations often masked 
in the SRV. When setting the same threshold, 1.96 corresponding to the 
confidence level as 95%, strong residue associations or interactions are revealed 
in the RSRVs.

In each RSRV, groups of associations are generated automatically if they share 
strong residue associations (21). For R2R-I, both positive and negative R2R-Is of 
a candidate pair and its six neighboring pairs are used to construct a 126-dimension 
feature vector (8) for training the predictor as well as for prediction. 

CASE STUDIES

PDD can discover more succinct patterns from the conserved region of proteins 
(for example, APC) and enable more efficient interpretability that is absent in 
existing sequence alignment methods in revealing the domain functionality of 
proteins. In addition, in the case of R2R-I prediction, the feature vectors 
construction using disentangled R2R-I patterns can dramatically improve the 
binding residue and sites prediction.

Application I: Association discovery on class A scavenger 
receptors APC 

The dataset APC (1, 22) used in the first application was class A scavenger receptors 
(SR-A) (23) with 95 sequences (24). They are crucial for binding modified 
lipoproteins. Then an APC containing 12 aligned residue patterns from the 
following five subclasses were obtained: Marco (macrophage receptor with 
collagenous domain), Sra ( scavenger receptor class A ), Scara3 ( scavenger receptor 
class A, member 3 ), Scara4, Scara5. All five subclasses have the following domains: 
cytoplasmic, collagenous, transmembrane, α-helical and coiled-coil motifs. The 
classes Marco, Sra, and Scara5 contain the collagenous domain. Only Sra contains 
the Scavenger Receptor Cysteine-Rich (SRCR) domain. So, the dimension of the 
APC dataset is 13(12 residues and 1 class label) × 95 (protein sequences).

PDD, unlike traditional association mining methods, is able to discover distinct 
patterns or associations related to different classes and domains from the original 
data. Figure 3 shows the statistical residual (SR) of the ARAs obtained in SRV 
(Figure 3A) and in the three RSRVs (Figures 3B, C) respectively. The yellow and 
green shaded cells in the figures denote the associations with positively and 
negatively significant SR, according to the 1.96 confidence level. In Figure 3A, we 
observed that before the disentanglement, the ARAs in the SRV correlated with 
classes were entangled. For example, both residues C and R in the position of 234 
and 235 (234 = C and 235 = R) in Figure 3A are associated with the three classes 
Marco, Scara5 and Sra when only SRs are used to measure ARAs. So, in the SRV 
result, ARA associated with Marco is entangled with those discovered in Scara5 
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and Sra (Figure 3A). While, after disentangling, in RSRV1 (Figure 3B), the pattern 
of Marco is disentangled with that of Scara5 and Sra among the amino acids 
residing on the aligned sites 234, 235 and 236. In Figures 3C and D, the patterns 
in Scara3 and Marco respectively are disentangled from each other, and the 
entangled patterns are manifested as distinct groups from other classes. 

Figure 3E gives a succinct view of how the statistical association strength of 
residues of different classes are disentangled and displayed in the PC. The color 
dots represent different classes. Their spatial closeness in the PC signifies the 
characteristic closeness of the classes. Hence, in different PCs, different classes 
and their closeness in correlation are revealed. To be more specific, the difference 
and similarity of the disentangled patterns pertaining to different classes are 
exemplified in Figure 3F. For example, the alighted residue groups (referred as AR 
groups) for Scara5 and Sra are very similar to each other with only a single 
difference in their significant ARs (236 = M in Scara5 and 236 = S in Sra) 
(Figure 3F). Their similar ARAs are also revealed in RSRV2 among the negative 
class-AR associations (Figure 3C). This can also be seen by the closeness of the 
orange (Scara5) and the blue (Sra) dots in PC2 and both deviate significantly from 
Scara3 (Figure 3E). 

Compared to the traditional pattern discovery approaches, the advantage of 
PDD is that the tabulated results of PDD (Figure 3F) provide important scientific 
support to the significance of ARA disentanglement in proteomic research. The 
result reveals the crucial information of the “what” and “where” of the ARs in the 
primary structure of a protein family. In addition, it reveals the AR groups 
discovered in the APC pattern space and explicitly displays them in the APC data 
space. The residues with statistically significant ARAs with other ARs are plotted 
in bold colored fonts in Figure 3F. The first and the last columns tabulate the 
sequence IDs and the range of the positions in the protein sequences, respectively. 
We also note that the AR pattern for Scara5 is CRM****G***V which is similar to 
CR***Y*G***V in Sara. However, they are mapped on two distant domains. It is 
difficult to distinguish and locate them using traditional approaches based only 
on statistical measurements, since these class patterns are entangled and scattered 
in the sequences of the scavenger receptor family. 

Application II: Binding site (R2R-I) prediction

When two proteins A and B are given, binding site prediction aims to find out 
which residues and sites in protein A interact with which residues and sites in 
protein B, assuming proteins A and B can interact (17, 18). In this case, the 
proposed PDD is applied to the protein-protein docking benchmark dataset 
version 4.0 (abbreviated as DBD 4.0 (25)) containing 176 non-redundant PPI 
complexes. To evaluate the performance of PDD, we compared the PDD 
prediction results with those of PPiPP (Protein-Protein Interacting Pair 
Prediction) (17), an existing sequence-based R2R-I prediction software using 
feature engineering over external knowledge of protein sequences. The dataset 
is divided into a training dataset consisting of 124 non-redundant PPI complexes 
equivalent to protein-protein docking benchmark dataset version 3.0 (DBD3.0) 
(26), and a testing dataset consisting of the remaining 52 non-redundant PPI 
complexes in DBD 4.0 (25).
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Figure 4.  An overview of a feature vector (FV) creation for R2R-I predictor construction and prediction. 
A FV is created for an R2R-I site with a R2R-I pairs between two protein sequences. A. An example  
to show how the FV is created for an R2R pair (A-V) in red with its six neighboring pairs.  
B. A 126-dimensional FV created for the A-V pairs given in A based on the statistical strength of the 
central pairs and that of 6 neighboring pairs obtained from the training/test sequence data. The first 
84 (2 x 7 x 6) features are the absolute values of the coordinates of all the 14 residues (from P to I) 
obtained from the 6 top PCs, reflecting their R2R-I statistical strength (their distance from the center 
of the principal component (PC)). The following 42 (7 x 6) features are the average SR of each of the 
7 R2R-I pairs obtained from the top 6 RSRVs. Hence, there are 126 of them in total. C. an illustrative 
example of the R2R-I prediction process. This should be the first example in machine learning to use 
the discovered deep knowledge to train the classifier with data rather than using the statistics 
obtained directly from the data/ground-truth which could be masked/entangled. 

First, as mentioned in the methodology section, to extract R2R-C information 
from the dataset, we marked all R2R-C pairs with contact distance <6Å as positive 
(+ve) R2R-I, and those ≥6Å as negative (−ve) R2R-I. Figure 4A gives an example 
of a R2R pair (A-V) with three neighbors on both sides. After constructing statisti-
cal matrices and the disentanglement process, a 126-dimensions feature vector 
(FV) for each R2R pair is constructed as shown in Figure 4B as directed by the 
knowledge discovered in the DSs. The first 84 features are the statistical interac-
tion, which would be the top 6 PC projections of the 14 residue alphabets (from 
P to I), reflecting their R2R-I statistical strength on the PC (that is their distance 
from the center of the PC). The following 42 (7R2R pairs × 6 top RSRVs) features 
are the average SR of each of the 7 R2R-I pairs obtained from the top 6 RSRVs (8). 
All these features account for the statistical strength of the R2R-I of the center pair 
and their neighbors. Then, the FVs for all training residue pairs are put into an 
extra decision tree classifier (Random Forest) with 1,000 trees, and the testing 
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data are also transformed into FVs but without class labels. An example is given 
in Figures 4A and B. The constructed predictor is used for predicting the R2R-I 
without knowing whether they are binding or not. Figure 4C shows the predic-
tion process.

The AUC (area under curve) is used for evaluating the binary classification, 
which refers to the area under a receiver operating characteristic (ROC) curve 
(27). The higher the AUC value, the better the prediction performance. As shown 
in the comparison result (Table 2), prediction using a PDD approach achieved a 
higher average AUC (0.643 ± 0.042) than that of a random predictor (0.50000 ± 
0.00000), and, also, PPiPP with AUC (0.50112 ± 0.00257) (17). The improvement 
of the predictor is attributed to the use of the rectified ground truth by replacing 
R2RCFM with the top 6 DSs (PCs and RSRVs) and the proper use of the 
discriminative information in the DSs in the construction of the FVs for training 
and prediction. 

CONCLUSION

By applying PDD to datasets acquired from complex source environments affected 
by entangled underlying factors, this study has shown that PDD can discover 
succinct patterns from the disentangled spaces. Both applications (patterns 
discovery in the APC of class A scavenger receptors and R2R-I prediction), show 
that PDD is able to discover deeper knowledge of association patterns masked at 
the data level due to the subtle entangled factors in the source environment. In the 
case of APC data analysis, PDD can discover residue associations correlated to 
different functional subgroups, regions, and domains in the class A scavenger 
receptor family, and succinctly locate and plot them in different statistically 
disentangled spaces. The explicit displayable result shows the efficacy of the 
pattern revealing and interpretability ability of PDD that is absent in existing 
sequence alignment methods. In the case of R2R-I prediction, PDD used more 
succinct and precise statistical measures to analyze R2R-I data. It disentangled the 
statistics from R2R-C data acquired from measurement such as residue closeness 
entangled in the three-dimensional physicochemical interaction environment, 
unveiled and extracted more specific deep knowledge on R2R-I between binding 
proteins, and used it to extract unbiased features to construct feature vectors for 

TABLE 2	 Comparison of Average AUC for PDD, Random 
Predictor and PPiPP on 52 PPI complexes newly 
introduced in DBD4.0

Predictors Average AUC

Random Predictor 0.500 ± 0.000

PPiPP (17) 0.501 ± 0.003

PDD 0.643 ± 0.042

AUC, area under curve; PDD, pattern discovery and disentanglement (the proposed algorithm).
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training and classification, rather than conducting time-consuming feature 
engineering as in current machine learning. In AUC evaluation, the AUC of PDD 
achieved a higher average AUC (0.643 ± 0.042) than its contemporary PPiPP 
(0.501 ± 0.003) (17). This is 22% better with statistical significance (two-tailed 
paired student’s t-test p-value: 1.9E-08 < 0.05). The result strongly indicates that 
the deep knowledge discovered from R2R-C data is effective for R2R-I prediction 
if disentangled by PDD. In summary, PDD not only discovers hidden deep 
knowledge, but also explains that knowledge and using it to predict unknown 
data using to achieve higher accuracy. Hence, PDD represents a pioneering work 
in deep knowledge discovery and explainable AI. 
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