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Abstract: Single-cell and single-nuclei sequencing experiments reveal previ-
ously unseen molecular details. The number of sequencing procedures and com-
putational data analysis approaches have been increasing rapidly in recent years. 
This chapter provides an overview of the current developments in single-cell 
analysis. An introduction and practical guidance for choosing the most suitable 
sequencing procedure to match individual experimental demands in the course 
of investigating biological hypotheses are presented. Basic data analysis 
approaches are highlighted, followed by a discussion on advanced downstream 
approaches to enrich the information obtained from single-cell experiments; for 
example, trajectory analysis, pseudotime assumptions, and network inference. 
Currently unsolved challenges are discussed to allow the reader to avoid the 
most common pitfalls. 
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INTRODUCTION

A typical single-cell sequencing workflow involves initial tissue and cell prepara-
tion, cell capturing and library preparation, sequencing and raw data processing, 
as well as visualization and downstream analyses. A plethora of protocols are 
available for the preparation of single-cell suspensions because the optimal proce-
dure differs for each tissue and cell type to be isolated (1–3). Hence, this chapter 
focusses on the steps of data generation and data analysis, with emphasis on vari-
ous capture and sequencing techniques, which are foundations for the subse-
quent computational data analyses.

THE CAPTURE TECHNIQUE SIGNIFICANTLY DETERMINES 
THE QUANTITY OF MEASURABLE CELLS 

Several protocols for single cell RNA-sequencing (scRNA-seq) have been 
 published over the last few years, and it remains a rapidly evolving field (4). The 
capture technique determines throughput, sorting options, and the type of 
 additional information that can be obtained. The most widely used options are 
microwell- and droplet-based. These techniques differ in their strategies for tag-
ging transcripts based on cell origin, and in the ways libraries are generated for 
sequencing. Table 1 summarizes the most common techniques to date and pro-
vides an overview of their main characteristics.

TABLE 1 Single-cell sequencing techniques 

Technique Method Detected cells Sensitivity Costs/cell Time

CEL-seq2
Hashimshony et al. (5)

Microwell-based < 400 Very high ~ 3 25h

Drop-seq 
Macosko et al. (6)

Droplet-based 5,000 – 10,000 Moderate < 0.1€ 10h

ICELL8 
Goldstein et al. (7)

Microwell-based 1,000 – 1,800 NA NA NA

InDrop-seq 
Klein et al. (8)

Droplet-based 5,000 – 10,000 Moderate < 0.1€ 10h

MARS-seq 
Jaitin et al. (9)

Microwell-based 100 – 1,000 Low ~ 0.50€ NA

Seq-well 
Gierahn et al. (10)

Microwell-based > 10,000 Moderate < 0.1€ 10h

SmartSeq2 
Picelli et al. (11)

Microwell-based < 400 Very high ~ 10€ 25h

10x Genomics Chromium
Zheng et al. (12)

Droplet-based 1,000 – 10,000 High ~ 0.25€ 9h

The most common single cell sequencing techniques listed together with protocol-dependent key data, such as the range 
of detectable cell numbers, sensitivity in terms of gene detection rates, and economic factors (average costs, amount of 
time to complete the procedure). NA, not available.
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Microwell-based techniques allow for visual inspection

For well-based platforms, cells are usually transferred into micro- or nano-well 
plates using pipette or laser capture methods, such as fluorescent activated cell 
sorting (FACS) based on surface markers. This option renders well-based plat-
forms particularly useful when isolation of a specific subset of cells is required, for 
example to explore rare cell types. Another advantage is the ability to visually 
inspect captured cells, allowing for identification of wells containing damaged or 
no cells and/or providing additional morphological information. The main draw-
back of well-based platforms is that they are often low-throughput and require a 
considerable amount of hands-on work per cell in contrast to other methods. 
These drawbacks are overcome to some extent by utilization of microfluidic plat-
forms, such as Fluidigm C1 (13), which can be integrated in the workflow of 
some microwell-based platforms, providing a higher throughput. However, only 
around 10% of cells are typically captured in a microfluidic platform, rendering it 
inappropriate for the detection of rare-cell types. The C1 system also allows for 
visual inspection under the microscope, thereby enabling the user to exclude 
empty wells and wells containing damaged cells or doublets prior to downstream 
library preparation. The high cost of the microfluidic cartridges can limit the 
 sample size used in each project, but expenses can be reduced on reagents since 
reactions can be carried out in a smaller volume.

Droplet-based techniques allow for high throughput

Droplet-based methods use microfluidics to encapsulate each individual cell 
together with a bead inside a nanoliter droplet that includes specific enzymes 
required to construct the library. The bead carries primers with a unique barcode, 
which bind the cell’s mRNA and thus will be attached to all reads originating from 
that cell. All droplets can be pooled to produce a sequencing library. After sequenc-
ing, the reads can be assigned to the cell of origin based on the barcodes. Since the 
library preparation costs are comparably low, and the downstream processes are 
less elaborate due to the pooling step, droplet platforms typically have the highest 
throughput. Usually, the costs for the subsequent sequencing become the limiting 
factor, so that in typical experiments the coverage is rather low with only a few 
thousand different transcripts detected per cell. One major drawback is that these 
protocols offer little control over the cell input and thus are susceptible to selec-
tion bias, leading to inaccurate reflection of the biology of the studied system.

THE SEQUENCING TECHNIQUE DETERMINES THE OPTIONS 
FOR DATA ANALYSES

Once single-cell resolution is achieved via one of the approaches mentioned 
above, the individual transcriptomes must be sequenced. There are two main 
forms of sequencing techniques: full-length and tag-based protocols. Full-length 
based protocols aim to achieve a uniform read coverage of each transcript, whereas 
tag-based protocols only capture either the 5’- or 3’-end of each RNA molecule. 
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The choice of capture and quantification method has important implications on 
the types of analyses the data can be used for.

Tag-based protocols can be combined with unique molecular identifiers 
(UMIs), which permit multiplexing and improve quantification. However, the 
restriction to one end of the transcript may hamper the alignment and renders 
these protocols unsuitable for studies on allele-specific expression or isoform 
usage (14). To diminish these limitations, paired-end sequencing can be con-
ducted, which involves sequencing both ends of cDNA fragments in a library and 
aligning the forward and reverse reads as read pairs. This procedure facilitates the 
detection of genomic rearrangements, such as insertions, deletions, and inver-
sions, allowing for the discovery of gene fusions, novel transcripts, and novel 
splice isoforms. Moreover, tag-based methods have been established that are able 
to detect the co-occurrence of a specific transcription start site and a polyadenyl-
ation site (15). However, the generation of full-length cDNAs from very long tran-
scripts still poses a technical limitation for any 5′-3′-sequencing method. 

In contrast, full-length protocols provide an even coverage of transcripts and 
are suitable for the discovery of alternative-splicing events and allele-specific 
expression using single-nucleotide polymorphisms. A disadvantage of these 
 protocols is that it is not possible to incorporate UMIs and barcodes for exact gene 
level quantification or multiplexing, leading to increased complexity of 
 downstream processing.

For the sequencing step, the Illumina platform is widely used (e.g., 
HiSeq4000, NextSeq500, and NovaSeq™6000), being responsible for more 
than 90% of the world’s sequencing data (16). All Illumina platforms use a 
sequencing by synthesis approach, yielding reliable base calls for highly repeti-
tive sequences.

HOW TO CHOOSE THE RIGHT APPROACH?

The choice of method depends primarily on the individual scientific question and 
is further influenced by the compromise between cell numbers, information 
depth, and overall cost. For example, a droplet-based method will be most suit-
able for the characterization of the composition of a tissue, since it allows for large 
numbers of cells to be captured. In contrast, for in-depth analysis of rare cell 
types, it is probably best to enrich them using FACS, if there is a known surface 
marker, and then sequencing a smaller number of cells. Full-length transcript 
quantification will be more appropriate for studying different isoforms, since 
tagged protocols are much more limited. By contrast, UMIs can facilitate gene-
level quantification, but they can only be used with tagged protocols. The low 
cost and high throughput of tag-based approaches has led to their widespread 
 application in studies of gene expression levels, cell-type discovery, and tissue 
composition. However, it is recommended to consider the different techniques 
critically before starting the experiment. Svensson et al. compared the accuracy 
and sensitivity of different protocols and reported substantial differences between 
them (17). Figure 1 is based on current benchmarking studies (18-20) and should 
serve as a rough orientation for decision-making between the different  experimental 
techniques based on individual experimental demands. 
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COMPUTATIONAL ANALYSIS

In the following, state-of-the-art computational components of scRNA-seq data 
analysis are presented, and underlying methods are discussed to contribute an 
update to previous single-cell analysis reviews (21, 22). We highlight well- 
executed benchmarking studies for additional in-depth reading and seek to guide 
new users through the landscape of scRNA-seq analysis tools with regards to data 
processing, downstream, and network analyses.

An introduction to the broad variety of data analysis platforms

A large number of data analysis platforms (web-based, stand-alone workflows, or 
integrated into computational frameworks like R or Python) are available to ana-
lyze scRNA-seq data. A comprehensive list is continuously updated in the scrna-
Tools database (https://www.scrna-tools.org/ [accessed on 13 January 2021]). 
There are commercially available analysis software packages, some of which are 
developed by single-cell sequencing companies and service providers, such as 
Cell Ranger and Loupe Cell Browser (10X Genomics) (23), as well as SeqGeq (BD 
Biosystems) (24). Others are designed by companies specializing in software solu-
tions, such as Partek Flow (Partek) (25). While commercially available packages 
are user-friendly, open-source analysis packages are usually more powerful, trans-
parent, reproducible, and flexible. Bioconductor, an open-development software 

Figure 1. Flow chart guide to the most suitable scRNA-seq technique depending on the scientific 
problem and the boundary conditions.

https://www.scrna-tools.org/�
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project for the analysis of high-throughput genomics data, provides powerful 
analysis tools, such as Scanpy (26) or Scater (27). Currently, the R package 
“Seurat” (28) is one of the most popular toolboxes for general single cell sequenc-
ing analysis, consistently performing well in benchmarking studies. However, the 
need for computational basic skills in either R or Python poses a hurdle for many 
scientists. Galaxy (https://usegalaxy.eu [accessed on 13 January 2021]) serves the 
same purpose as Bioconductor, but the developers aimed for an enhanced acces-
sibility of the tools and easy usability for scientists with little or no bioinformatics 
background. An extensive Galaxy online training module (https://galaxyproject.
github.io/training-material/ [accessed on 13 January 2021]) is offered, and it is 
possible to use the most common workflows without having to master any com-
mand line-based tools (29).

Foundations of processing raw scRNA-seq data

Standard data processing can be classified into six stages: (i) raw data alignment; 
(ii) quality control and data normalization; (iii) data integration and correction; 
(iv) expression recovery; (v) feature-selection of data; and (vi) dimensionality 
reduction and visualization. The subsequently performed downstream analyses 
may use different levels of processed data as input (Figure 2). Depending on the 
experimental setup or data used, it is also possible to skip certain levels or to have 
slight alterations in their order, for example, data integration and correction might 
not be needed for single-batch datasets.

Figure 2. Flow chart summarizing current scRNA-seq data analysis principles.

https://usegalaxy.eu�
https://galaxyproject.github.io/training-material/�
https://galaxyproject.github.io/training-material/�
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Alignment of scRNA-Seq raw data

Alignment is the first and one of the most critical steps of the scRNA-seq analyses. 
In general, the aim of the alignment step is to find the original transcriptomic 
location of the experimentally obtained sequencing reads. Thus, the choice of the 
alignment tool and its parametrization directly affects the count matrix, all subse-
quent downstream analysis steps, and, finally, the biological findings. The two 
most popular tools for alignment are the splice-aware aligner STAR (30) and the 
pseudoalignment approach Kallisto (31). Recent benchmark studies evaluated the 
performance of these two methods using real datasets obtained from different 
platforms (DropSeq, Fluidigm, and 10xChromium) (32, 33). They conclude that 
Kallisto’s use of computing resources is much less demanding than STAR when 
only cDNA sequences are used as the reference; however, such efficiency gain is at 
the cost of loss of information.

Quality control to determine cell viability and sequencing outcome

An important aspect of scRNA-seq protocols is that captured cells, irrespective of 
the method used, are often stressed, damaged, or broken. In addition, some cap-
ture sites can be empty, and some may contain multiple cells. All these events refer 
to “low quality” cells, which may lead to misinterpretation of the data and, there-
fore, need to be corrected (34). In general, cell quality control (QC) is commonly 
performed based on three QC covariates: (i) the number of counts per barcode 
(count depth); (ii) the number of genes per barcode; and (iii), the fraction of 
counts from mitochondrial genes per barcode (35). Cells that show an aberrant 
behavior for these characteristics are typically removed from further analysis, 
although care must be taken when studying a heterogeneous population of cells 
as total mRNA content and other features can vary substantially. On the one hand, 
barcodes with only low count depths, few detected genes, and a high fraction of 
mitochondrial counts may indicate cells whose cytoplasmic mRNA leaked out 
through a broken membrane, and thus, only mRNA located in the mitochondria 
is still conserved (22). On the other hand, cells with very high counts and a large 
amount of transcripts may represent doublets, which is why these have to be fil-
tered with specific tools like Scrublet (36) or Solo (37).

Generation and normalization of the count matrix to ensure 
comparability

Counts in a count matrix represent the successful quantification of a sequencing 
read to a specific genomic location. There are multiple tools that generate a count 
matrix, e.g., Cell Ranger (38), indrops (39), SEQC (40), or bustools (41). Due to 
the technical variability inherent in the count matrix generation, the count depths 
for the same cell can differ. Thus, differences in gene expression between cells 
based on count data may have been introduced during sampling (42). 
Normalization addresses these differences to obtain correct relative gene expres-
sion abundances between cells, for example, via scaling of count data. The most 
common normalization approach is count depth scaling, referred to as “counts 
per million” (CPM). This approach was adapted from bulk RNA-seq analysis to 
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normalize count data towards a size factor proportional to the count depth per 
cell. Weinreb et al. introduced an extension of CPM that excludes genes account-
ing for less than 5% of the total counts in any cell, which allows for molecular 
count variability in only a few highly expressed genes (43). More cellular hetero-
geneity is taken into consideration by a pooling-based size factor estimation 
method that can be applied for more heterogeneous samples in order to increase 
the validity of the biological conclusions (44). To acquire a well-suited normaliza-
tion, one may use Scone, which is a tool that provides graphical summaries and 
quantitative reports, as well as trade-offs and ranks of normalization methods by 
panel performance (45).

Batch-effect correction and external data integration may enhance 
the biological outcome

Single-cell data is often acquired based on multiple experiments with varying 
capturing times, consumables, and technology platforms. These differences can 
lead to large variations or so-called “batch-effects” in the data and may confound 
biological variations of interest. Tran et al. compared 14 methods in terms of com-
putational runtime, the ability to handle large datasets, and batch-effect correction 
efficacy, while preserving cell type purity (46). Based on their results, Harmony 
(47), Liger (48), and Seurat 3 are the recommended methods for batch integra-
tion. Due to its significantly shorter runtime, Harmony is recommended as the 
first method to try, with the other methods as viable alternatives. Luecken et al. 
found in their data representing >1.2 million cells that highly variable gene 
 selection improves the performance of data integration methods, whereas scaling 
pushes methods to prioritize batch removal over conservation of biological 
v ariation (49).

Data correction accounting for unusual droplets

For droplet-based methods only a fraction of droplets will contain an intact cell. 
Since biological experiments are never flawless, some RNA will leak out of dead 
or damaged cells, thereby producing ambient RNA. Droplets without an intact 
cell can still contain this ambient RNA, which in turn will contribute to the 
sequencing library and final reads. Variations in droplet size, amplification effi-
ciency, and sequencing cause a wide range of library sizes for both “RNA back-
ground” and real cells. Most methods try to distinguish between them by 
utilizing the total molecules/reads per barcode to find an “inflection point” 
between larger libraries representing cells and smaller libraries assumed to be 
only background. Using knee plots one can visualize this inflection point where 
the total number of molecules per barcode suddenly drops. The R package 
DropletsUtils uses the complete count matrix of all droplets to assess the profile 
of ambient RNA from those droplets with extremely low counts. Gene-expression 
profiles deviating from this background are considered as originating from intact 
cells. Since background RNA often looks similar to the expression profile of the 
largest cell population, this is combined with an inflection point method. By this 
means, EmptyDrops can verify barcodes for very small cells in highly diverse 
samples.
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Expression recovery corrects for zero or low read counts

An additional challenge during the analysis of scRNA-seq data derives from the low 
transcript capture and sequencing efficiency of current methods. This leads to a 
large proportion of genes (often more than 90%) with zero or low read counts (50). 
Although many of the observed zero counts reflect a true absence of expression, a 
considerable fraction is due to technical factors that can vary between less than 1% 
and more than 60% across cells (17). Early expression recovery approaches pooled 
data for each gene across similar cells, but this may lead to over-smoothing and can 
disturb the natural cell-to-cell stochasticity in gene expression. For this reason, 
more advanced approaches such as single-cell analysis via expression recovery 
(Saver) (50), were introduced. Saver assumes that the count of each gene in each cell 
follows a negative binomial model, which is used to estimate the recovered expres-
sion module. In contrast to approaches that impute dropout events by borrowing 
information across only genes or cells, scTSSR simultaneously leverages information 
from both similar genes and similar cells using a two-side sparse self-representation 
model and shows superior use in specific cases (51). Another approach showing an 
actual benefit over existing ones is Viper, which is based on nonnegative sparse 
regression models (52). Viper can progressively infer a sparse set of local neighbor-
hood cells instead of only using similarly expressed genes and cells. 

Feature selection filters the most important genes

Feature selection is the process of choosing genes that contain useful information 
about the underlying biology of the sample, while removing genes that contain no 
useful information or random noise. This reduces the data size to facilitate the 
computationally time-consuming steps, while aiming to preserve the relevant bio-
logical structure between cells. A simple approach for feature selection is to pick 
the most variable genes based on their expression between the identified or clus-
tered cell populations. This assumes that actual biological differences occur as 
increased variation of highly regulated genes, in contrast to genes that are not 
changed at baseline level or are only slightly regulated via technical noise. There 
are built in standard approaches for feature selection in Seurat 3, but also further 
advanced ones available based on a multinomial model (53) or ensemble feature 
selection and similarity measurements (54). After the technical process of choos-
ing appropriate features per cellular group, manual curation and cross-validation 
with existing enrichment databases, for example, Enrichr (55), or gprofiler (56), 
may help to evaluate the in silico findings. For a first description of novel cell 
populations or subpopulations, experimental validation of highly expressed genes 
is still considered the gold standard.

Dimensionality reduction highly facilitates data interpretability

Dimensionality reduction is an essential tool required to tame the highly complex 
information content in scRNA-Seq data analysis. A proper reduction of the dimen-
sions allows for effective noise removal and is pivotal for many downstream analy-
ses that include cell clustering or lineage reconstruction. Principal component 
analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and uniform 
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manifold approximation and projection (UMAP), as well as many extensions of 
these three, are commonly used algorithms in scRNA-seq. Sun et al. compared 18 
different dimensionality reduction methods on 30 publicly available scRNA-seq 
datasets (57). They suggest that applying sophisticated gene filtering approaches 
prior to running dimensionality reduction will help to improve their performance. 
In addition, they see a benefit in even more stringent gene filtering approaches 
because these result in a smaller subset of genes and, therefore, facilitate the 
 application of some of the slow dimensionality reduction methods to larger data 
sets. A major problem during dimensionality reduction is to preserve the global 
structure of the data because removing dimensions might likewise suppress some 
information. Some algorithms, such as the scvis algorithm, try to overcome this 
limitation by computing low-dimensional embeddings of scRNA-seq data while 
preserving global structure of the high-dimensional measurements (58). Recently, 
Heiser et al. presented an unbiased framework that defines metrics of global and 
local structure preservation in dimensionality reduction transformations (59).

Important visualizations to share results

Common visualizations in single cell related publications include 2D and 3D clus-
tering, heatmaps of highly expressed genes, violin plots, and dotplots (60, 61). 
A recent comparison of interactive single cell visualization tools (for example cel-
lxgene, Loom-viewer, iSEE, single-cell explorer) was made by Cakir et al. who 
regard this specific type of visualization as beneficial to the whole research com-
munity, facilitating scientific progress (62). One can also consider using R-Shiny 
approaches to turn one’s own research results into interactively explorable plots 
(63). To enrich one’s own research results with additional data, one can utilize 
scAVI (http://amp.pharm.mssm.edu/scavi/ [accessed on 13 January 2021]), which 
is a web-based platform developed to enable users to analyze and visualize pub-
lished and unpublished scRNA-seq datasets with state-of-the-art algorithms and 
visualization methods. The scAVI platform supports the analysis and visualization 
of 463 publicly available scRNA-seq studies from GEO covering 194,653 single 
cells. Once there is a very high number of cells within an analysis, algorithms like 
“TooManyCells”, a suite of graph-based algorithms, can be used to efficiently 
identify and visualize cell populations (64).

DOWNSTREAM ANALYSES

After utilizing the main processing steps and visualizing the scRNA-seq data, 
more in-depth analyses should be carried out at a cellular level and at the gene 
level to fully decipher the identified single-cell profiles. Here, we present further 
advanced approaches that will help to exploit the information content of a sample 
of interest.

Cluster analysis and cell cluster annotation 

A major use case of scRNA-seq is to identify, quantify, and characterize cell 
 populations in heterogeneous samples or tissues. From a biological perspective, 

http://amp.pharm.mssm.edu/scavi/�
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such cell populations include different cell types, or may refer to different states of 
identical cell types, for example, stimulated and unstimulated cells, or cells in a 
different maturation state. A de novo identification of cells, mathematically speak-
ing, is an unsupervised clustering problem, which has been widely studied with 
machine learning algorithms, and there are several well-established strategies that 
have been adapted for scRNASeq data (65). However, the annotation of the newly 
identified clusters is still a bottleneck in terms of time consumption and expertise 
needed because one has to manually curate the clusters using so-called cell atlases, 
such as “Cellatlas” (https://data.humancellatlas.org/ [accessed on 13 January 
2021]) or the “Single Cell Expression Atlas” (https://www.ebi.ac.uk/gxa/sc/home 
[accessed on 13 January 2021]). To overcome these limitations, promising auto-
mated annotation tools, such as SCSA (66) or further ML-based oversampling 
techniques of Bej et al. (67) have already shown significant potential.

Trajectory analysis and inference to investigate cellular origins

The newly acquired resolution of scRNA-seq allows researchers to distinguish 
between closely related cell populations, potentially revealing functionally dis-
tinct groups with complex relationships (68). For many cellular investigations, 
there are no distinct borders between cellular states, but instead a smooth transi-
tion, where individual cells represent points along a continuum or lineage, in 
which cells change states by undergoing gradual transcriptional changes, repre-
senting a temporal variable or pseudotime (69). The inference of lineage struc-
tures is considered as pseudotemporal reconstruction of a sample of interest that 
finally infers changing cell states and cell fate decisions (70). In addition, many 
cell populations contain several lineages that share a common initial group 
branching into different further subgroups, which requires additional analyses to 
distinguish between cells that fall along those different lineages (71). The two 
most popular approaches for pseudotemporal reconstruction are Monocle (70) 
and Slingshot (69), which have been recently compared and benchmarked 
(54, 69). These benchmarks showed that dimensionality reduction results based 
on Monocle3 are in line with recommendations by the Monocle3 software itself, 
which uses UMAP as the default dimensionality reduction method (72). Moreover, 
the set of the best dimensionality reduction methods for Monocle3 are consistent 
with those for Slingshot, with only one method difference between the two 
(GLMPCA [generalized principal component analysis] in place of common PCA).

Gene expression dynamics and pseudotime can reveal cell fate 
decisions

A central challenge in trajectory inference is the destructive nature of scRNA-seq, 
which reveals only static snapshots of cellular states; additional information is 
required to constrain possible dynamics that could make a reasonable prediction 
towards the same trajectory (73). The concept of RNA velocity enabled the inves-
tigation of such dynamic information by assuming that newly transcribed 
(unspliced pre-mRNAs containing introns) and mature (spliced mRNAs) can be 
distinguished in common scRNA-seq protocols (74). However, errors in velocity 
estimates may arise if the central assumptions of a common splicing rate and the 

https://data.humancellatlas.org/�
https://www.ebi.ac.uk/gxa/sc/home�
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observation of the full splicing dynamics with steady-state mRNA levels are vio-
lated (75). Thus, Bergen et al. (75) developed “scVelo”, as a further extension of 
“RNAvelocity” and solving its limitations, by utilizing the full transcriptional 
dynamics of splicing kinetics using a likelihood-based dynamical model. This 
model generalizes RNA velocity computations with transient cell states, which are 
common in the development of and the response to perturbations. Another inter-
esting approach to simulate time-series trajectories is proposed by Yeo et al. (76), 
who are using a generative model framework that is able to predict trajectories for 
cells, which are not found in the model’s training set (including cells in which 
genes or sets of genes have been perturbed).

Differential expression testing as a major hurdle in data analysis

In general, scRNA-seq and bulk RNA-seq data have different characteristics that 
require a new differential expression (DE) analysis definition beyond the common 
nonzero difference in average expression, which is not adequately addressed yet. 
Due to the small amount and low capture efficiency of RNA molecules in single 
cells, many transcripts tend to be missed during reverse transcription. As a result, 
one observes that some transcripts are highly expressed in one cell but are not 
expressed in another cell of the same population, which is defined as a “drop-out” 
event (77). In addition, multimodality, heterogeneity, and sparsity (many zero 
counts) are the major hurdles for an effective DE calling. A comprehensive, com-
parative study of differential gene expression analysis tools for single-cell RNA 
sequencing data was recently made by Wang et al. (78). They observed that the 
agreement of tools calling DE genes is not high (~10%) and concluded that there 
is a trade-off between true-positive rates and the precision of calling DE genes. 
Methods with higher true positive rates tend to show low precision due to intro-
ducing false positives, whereas methods with high precision show low true posi-
tive rates due to identifying few DE genes. One solution could be to use different 
DE testing models, such as methods that can capture multimodality (for example, 
scDD (79)) and model-based approaches (for example, Monocle) designed for 
handling zero counts.

Gene regulatory networks and disease maps

Gene expression is highly regulated by transcription factors, co-factors, and 
 signaling molecules that span cross-related networks. An improved understand-
ing of these networks is a major goal in biology and medicine because it deter-
mines essential factors that are responsible for healthy and disease related 
phenotypes. So far, molecular networks have been solely based on microarray and 
bulk RNA-seq data, but are now being refined with single-cell resolution. A recent 
systematic evaluation of state-of-the-art algorithms for inferring gene regulatory 
networks from single-cell transcriptional data contributes to the use of single-cell 
data to parametrize novel networks and improves already existing ones (80). 
In addition, further algorithms are used to infer global, large-scale regulatory net-
works on organ scale and perturbed systems, such as diabetes and Alzheimer’s 
disease (81), or reconstruct networks by using scRNA-seq data of barcoded geno-
types (82). Novel disease oriented network applications, like the inflammation 
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resolution disease map, are able to integrate various kinds of omics data, such as 
scRNA-Seq, to simulate all relevant molecular processes and serve as a compre-
hensive knowledge base on single-cell level (83). 

CONCLUSION

Taken together, scRNA-seq already offers huge potential for many biological and 
biomedical areas and will be further applied to decipher currently undiscovered 
molecular processes. Nevertheless, one must be aware of current sequencing tech-
nologies and must determine if scRNA-seq is necessary or can be circumvented 
with bulk RNA-seq of purified or individual cell types. From a computational 
perspective, a lot of data analysis steps have potential for optimization and require 
an even higher awareness of complexity than bulk RNA-seq analysis. The pre-
sented procedures and technologies are a current snapshot in the lively field of 
scRNA-seq, which may rapidly develop in the near future.
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