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Abstract: Alzheimer’s disease is the most common irreversible neurodegenerative 
disorder. To date, there is no cure for Alzheimer’s disease. While multiple patho-
logical mechanisms have been proposed for the onset and progression of 
Alzheimer’s disease, the hypothesis that attracted much attention is the amyloid 
hypothesis. The senile plaques that accumulate in the brain of Alzheimer’s disease 
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patients are predominantly composed of beta amyloid (Aβ). Aβ deposition in the 
brain is thought to occur years before the emergence of clinical symptoms. The 
overproduction, aggregation, and fibrillation of Aβ, combined with reduced clear-
ance, eventually lead to amyloid plaque formation and subsequent neurotoxicity. 
Hence, inhibition of Aβ aggregation and the promotion of Aβ clearance have been 
actively explored as therapeutic strategies for Alzheimer’s disease. This chapter 
provides an overview of the current knowledge on one such strategy, Aβ-targeted 
inhibitory peptides.

Keywords: Aβ aggregation in Alzheimer’s disease; biopanning; inhibitory peptides 
for Alzheimer’s disease; peptide–nanostructure conjugates; peptidomimetics

INTRODUCTION

Alzheimer’s disease is an age-dependent disorder that is the fifth leading cause of 
death in people aged 65 years and older. It is estimated that over 50 million peo-
ple worldwide suffer from Alzheimer’s disease, and this figure is set to increase to 
152 million by 2050 with a financial burden of 1.1 trillion US dollars by 2050 
(1–3). Several hypotheses, including the amyloid, cholinergic (4), and Tau protein 
hypotheses have been proposed to explain the pathophysiology and etiology of 
Alzheimer’s disease (5). Because of the presence of Aβ in the brain tissue, cerebro-
spinal fluid, and plasma, the amyloid cascade hypothesis is the most widely 
accepted. The amyloid cascade hypothesis states that neurodegeneration in 
Alzheimer’s disease is the result of amyloid plaque and neurofibrillary tangle for-
mations (6, 7). The overproduction, clearance failure, aggregation, and fibrillation 
of Aβ eventually leads to amyloid plaque formation. These factors also contribute 
to neuroinflammation and cell death. Aβ deposition in the brain is likely to be the 
first pathological incident that occurs years before the emergence of clinical symp-
toms. Aβ is produced through the proteolytic cleavage of the amyloid precursor 
protein (APP), a transmembrane glycoprotein, which is made up of a cytoplasmic 
domain with 55 amino acids and a long extracellular domain with 590–680 amino 
acids (8). APP cleavage by the proteases β- and γ-secretases produce Aβ fragments 
of varying size depending on the cleavage site (9), of which Aβ40 (about 90%) and 
Aβ42 (about 5–10%) are the most prevalent (Figure 1). Aβ42 is more toxic than 
Aβ40. After production, the Aβ peptides aggregate to form amyloid deposits. There 
are different aggregation forms such as low molecular weight oligomers, protofi-
brils, as well as mature fibrils that eventually come together to form amyloid 
deposits in the brain parenchyma and cerebrovascular spaces (10, 11).

Therefore, inhibition of Aβ aggregation and the promotion of Aβ clearance 
have been investigated as therapeutic strategies for Alzheimer’s disease. Some of 
these strategies include the use of metal chelators (12), peptides (13), organic 
molecules (14), and biomolecules (15, 16). Peptides are considered a better 
option than small molecule-based compounds because of their high affinity for 
Aβ and low toxicity (17). Although natural amino acid-based peptides are effec-
tive inhibitors of Aβ aggregation, they are prone to faster enzymatic degradation 
and show a tendency for self-assembly into fibrils during administration (15). 
To overcome these problems, modified peptides have been generated (18) with 
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D-amino acids, retro-inverso cyclization, fluorination, as well as N-methylation of 
the ester bond (19). With this knowledge, peptides could be potential candidates 
for inhibiting Aβ conformational transitions, self-assembly, and toxicity against 
neurons, and promotion of the pathways of the nontoxic fibrillation and early 
diagnosis of Alzheimer’s disease (20). This chapter provides an overview of the 
therapeutic potential peptides as Aβ aggregation inhibitors.

PEPTIDIC INHIBITORS

Luhrs and co-workers first experimentally described the structure of the Aβ42 
fibril (Figure 2, right) (21). At least four specific structural sites for interaction 
have been identified on the Aβ fibril (22): (i), hydrophobic regions of Ala30–
Val36, and Leu17–Ala21 residues from the C and N-terminal β-sheets respec-
tively; (ii), hydrophilic part using electrostatic interactions between Asp23 and 
Lys28 residues; (iii), central cleft in the interior of the U-shaped turn; and (iv), 
Glu22 ladder between the side chains of the Glu22 residues of the adjacent 
β-strands (Figure 2, bottom right). The formation of the salt-bridge between 
Asp23 and Lys28 is an essential β-sheet conformation stabilizer. Moreover, it 
might stimulate the oligomerization of Aβ via stabilizing the Val24–Asn27 turn 
(23). The hydrophobic residue of Met35 in the C-terminus domain could support 

Figure 1. Amyloid-β fibrillation and neuronal damage. First, amyloid precursor protein is 
cleaved by β and γ secretases, respectively. A peptide fragment of 39-42 amino acid is formed 
depending on the site of cleavage. After cleavage, Aβ monomers start to self-assemble to 
form soluble toxic aggregates, and finally into insoluble fibrils, which subsequently cause 
synaptic dysfunction and neuronal death.
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Figure 2. The structure of Aβ. Right, schematic of the Aβ42 amyloid fibril. Left, binding sites of 
inhibitory peptides of LPFFD and KVLFF on Aβ40 fibril.

fibril stability by hydrophobic interactions. The Met35 binding site can poten-
tially inhibit protein-protein interactions and prevent amyloid fibril formation 
(24). These sites are probably critical regions in the initiation of Aβ nucleation, 
conformational transition promotion, and fibril formation. The residues 
16KLVFFA21 (Figure 2) of the central hydrophobic core (CHC) region is a critical 
nucleation site, or self-recognition sequence. The Ile41 and Ala42 residues can 
modulate Aβ42 oligomer formation (25) by interacting with the N and C-terminus 
of Aβ42 (26). Figure 2, left, shows the binding sites of the most common inhibi-
tory peptides, such as LPFFD and KVLFF, on the Aβ40 fibril structure.

Peptide inhibitors are generally divided into Aβ-based peptide inhibitors and 
non-Aβ-based peptide inhibitors. A list of select Aβ inhibitory peptides are pre-
sented in Table 1.

Aβ-based peptide inhibitors

These are based on the structure of the C-terminal fragments (CTFs) and the CHC 
sequences of the Aβ peptide. They bind to the Aβ peptide at specific sites and 
prevent its assembly into amyloid fibrils. Peptides consisting of D-enantiomeric 
amino acids exhibit greater stability against proteases and show a higher binding 
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affinity for Aβ compared with their L-enantiomeric counterparts. Moreover, 
D-peptides inhibit Aβ aggregation in animal models (28). Retro-inverso peptides 
are a special class of modified peptides that contain D-amino acids and reversed 
NH and CO groups in the peptide bonds. These peptides could keep the same 
spatial position in the side chain of the residues and preserve the desirable 3D 
structure compared to unchanged L-peptides (47). They also displayed advan-
tages in terms of Aβ aggregation inhibition, higher proteolytic stability, lower self-
assembly, and better blood-brain-barrier (BBB) permeability when compared with 
L-peptides in an animal model (48, 49). Fluorinated hydrophobic valine or phe-
nylalanine in the LVFFA-based peptides can considerably delay the formation of 
Aβ aggregation. Fluorinated amino acids can also inhibit Aβ aggregation (50). 
Modification of amide functional groups with a methyl group is another strategy 
in the development of new inhibitors. N-methylated amide groups could enhance 
the peptide’s solubility in aqueous solutions and decrease Aβ-induced toxicity. 
Cyclic peptides have a higher inhibitory activity than acyclic derivatives (51). 
Because of their high enzymatic resistance, they are degraded slowly. Residues of 
lysine and glutamic acid have been known to be effective stabilizing and enhanc-
ing agents of Aβ fibrillation due to their ability to improve surface tension. In 
contrast, arginine residues have been reported as aggregation inhibitors or desta-
bilizers (chaotropes) (52).

The 16KLVFF20-based peptides play a crucial role in disrupting Aβ aggregation 
by binding to full-length Aβ peptides and preventing fibril formation (53, 54). 
Ac-LVFFARK-NH2 (LK7), designed by adding arginine and lysine to KLVFF, 
induced a dose-dependent inhibition on Aβ42 fibrillation; however, it was cyto-
toxic due to high self-assembling properties (55). When conjugated with poly 
(lactic-co-glycolic acid) nanoparticles (NPs), the LK7-PLGA-NPs complex resulted 
in the elimination of the LK7 self-assembly feature while inhibiting Aβ42 fibrillation 
(55). Binding β-cyclodextrin to LK7 (56) improved LK7 peptide solubility, inhib-
ited its tendency to self-aggregate, improved its binding to Aβ, and inhibited Aβ 
aggregation. Head-to-tail cyclization of LK7 peptide also resulted in a decrease in 
self-assembly of the LK7, an increase in binding affinity to the Aβ40 peptide, and 
proteolytic stability in serum. This derivative also can stabilize the Aβ40 secondary 
structure and inhibit Aβ40 –mediated cytotoxicity. Another derivative of LK7 pep-
tide is Ac-LVFFARKHH-NH2 (LK7-HH), in which LK7 has been conjugated to the 
HH ligand as a chelator for reducing reactive oxygen species (ROS) production 
and capturing free and complexed ions of Cu2+ (57). This chelator also improved 
the anti-aggregate effects of LK7 on Aβ peptide and reduced its self-aggregation 
properties.

Proline and aspartic acid were exchanged for valine and alanine, respectively, 
in KVLFFA (58, 59). The derived peptide, referred to as 5-mer iAβ5 with sequence 
LPFFD, inhibited Aβ aggregation, neurotoxicity, and reduced plaque load (58). 
Due to the lack of a proton on the secondary substituted nitrogen in the peptide 
bond of proline residue, it could inhibit the formation of the intramolecular 
hydrogen bonds into fibrils. Since these small peptides are prone to faster enzy-
matic degradation and have reduced BBB permeability in vivo, iAβ5p was modi-
fied by N-methylation between Pro and Phe residues to improve its stability (60). 
The results from in vitro and in vivo studies showed that it has the same inhibitory 
activity as the parental iAβ5 peptide against amyloid fibril formation and neuro-
toxicity but with improved protease resistance. Also, molecular dynamics 
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simulations show that this peptide has more durable binding and enhanced activ-
ity against Aβ40 aggregation in comparison to the iAβ5 peptide. In a similar study, 
the RIVFF sequence was produced by residue mutations of lysine16 (K) to argi-
nine (R) and leucine17 (L) to isoleucine (I) on the KLVFF segment (61). The 
results indicated that this peptide could self-aggregate into β-sheet structures by 
reducing the surface tension of water and at higher concentrations (>250 μM) 
enhanced the Aβ-induced cytotoxicity.

The peptide D-GRKKRRQRRR-GGGG-DVEFRH (Aβ1−6 A2V-TAT) was investi-
gated in vivo (62, 63). It was generated by modifying the N-terminal fragment of 
1DAEFRH6 through mutation of alanine in position 2 to valine and conjugating 
with the HIV protein transduction domain GRKKRRQRRR (TAT). The resulting 
peptide showed strong anti-amyloidogenic effects in vitro and Aβ aggregation 
inhibition in mouse models of Alzheimer’s disease (64). The KLVFWAK motif was 
designed based on the 16KLVFFAE22 sequence with mutations introduced at phe-
nylalanine and glutamic acid residues to tryptophan and lysine respectively to 
enhance solubility and disrupt self-assembly via electrostatic repulsion. Results 
showed that the designed motif could only target the C-terminal region of Aβ 
oligomers. The designed motif exhibited a lower self-aggregation tendency in 
comparison to other KLVFF-related sequences. Moreover, it demonstrated a 
higher binding affinity to Aβ aggregates and fibrils than monomers (65).

RGKLVFFGR (OR1) and RGKLVFFGR-NH (OR2) are retro-inverso peptides 
(66), designed by the addition of arginine (R) and glycine (G) to the KLVFF 
sequence. They exhibit high solubility and stability against enzymes. However, 
only the OR2 peptide showed inhibitory effects on Aβ oligomer formation and 
cytotoxicity. OR2 was modified to HN-rGklvffGr-Ac (RI-OR2) by acetylation of 
the C-terminal residue (49). The result illustrated that the peptide has a high 
resistance to proteolysis, while maintaining the same inhibitory activity in vivo. In 
a follow-up study, the RI-OR2 peptide was attached to the TAT peptide to improve 
its permeability into cells and the BBB (48). The results showed the peptide was 
able to decrease Aβ aggregation, plaque levels, and oxidative damages as well as 
increase the number of young neurons in the brain.

31IIGLMVGGVVIA42 and 39VVIA42 sequences were designed based on the 
C-terminal domain of Aβ42 (67). The 39VVIA42 sequences could interact with Aβ42 
monomers and smaller oligomers at several sites, specifically at the N-terminal 
domain. At micromolar concentrations, the VVIA-NH2 peptide inhibited Aβ42 
aggregation, exhibited less toxicity, and protected synaptic activity. However, 
these effects were not observed for the acetylated Ac-VVIA sequence (68). The 
non-acetylated VVIA-NH2 sequence particularly interacts with the C-terminal 
domain while the Ac-VVIA peptide has a dispersed binding distribution (68). The 
Ac-32IGLMVG37-NH2 sequence, a hexapeptide from the C-terminal fragment, has 
been shown to have a moderate efficacy with less toxicity (69).

O-acyl isopeptide and NMe-b-Ala26 (70) were derived from the full-length Aβ 
sequence with modification of an ester bond at the Gly25-Ser26 moiety and an 
N-methyl amide-β-Ala26, respectively. O-acyl isopeptide inhibited Aβ42 fibrillation 
at equimolar concentrations through an inhibitory mechanism distinct from any 
other peptidic inhibitors reported previously. Also, this derivative was more solu-
ble than Aβ42 peptides and rapidly decomposed to Aβ42 monomers under physi-
ological conditions through an O-to-N acyl rearrangement reaction whereas 
NMe-b-Ala26 showed higher chemical stability at physiological conditions.
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Non-Aβ-based peptide inhibitors

Carnosine, a natural imidazole-containing dipeptide is a metal ion chelator (71). 
It inhibits the fibrillation and toxicity of amyloidogenic species such as glycated 
α-Crystallin, Aβ peptide, and prions. This peptide also inhibits the intramolecular 
salt bridge formation, which is vital to the stability and elongation of fibrils (71). 
Peptide D1, QSHYRHISPAQV (72), is another non-Aβ peptide that reduces Aβ 
aggregation and Aβ-associated cytotoxicity at high concentrations. N-methylated 
proprietary peptides such as D-NH2 (SEN304) and SEN1576 can inhibit 
Aβ-associated toxicity in vivo (73). Furthermore, SEN304 is a more potent inhibi-
tor than customized versions of the KLVFF peptide. These peptides could inter-
fere with the nucleation of Aβ, convert them into non-toxic forms, and eliminate 
toxic oligomers.

PEPTIDE LIBRARY SCREENING

There are many screening approaches to identify target-specific ligands (74, 75). 
Phage display is one such efficient high-throughput screening method that allows 
the screening of a wide variety of peptide libraries to identify specific peptide 
sequences against the desired target (76, 77). Wang et al. synthesized a linear 
peptide with sequence PYRWQLWWHNWS selected based on the screening of a 
randomized 12-mer peptide library against the target Aβ1–10 sequence (78). After 
screening, specific phages were selected and their binding affinity to Aβ1–10 was 
evaluated by real-time biomolecular interaction analysis. This peptide could spe-
cifically bind to Aβ1–10, inhibit the aggregation of Aβ into plaques, and reduce 
Aβ1–42 induced-apoptosis. Furthermore, it illustrated a protective effect against 
Aβ1–42-induced memory and learning impairments in animal models (59).

Larbanoix et al. utilized the phage display method to discover a linear hexa-
peptide against Aβ1–42 aggregation (79). Two of the selected clones, Pep1: LIAIMA 
and Pep2: IFALMG, corresponding to fragment 31IIGLMV36 from Aβ1–42 peptide, 
demonstrated the highest binding affinities to Aβ1–42 with Kd values in the micro-
molar range. Their specific interactions with Aβ1–42 plaques were identified by 
immunohistochemistry on harvested brain tissue from an animal model of 
Alzheimer’s disease. The peptides did not induce any toxicity in neurons in vitro. 
Moreover, the thioflavin T aggregation assay indicated that the designed peptides 
could suppress the amyloid fibril formation.

In 2010, a random heptapeptide library (XX–P–XXXX) on T7 phage was 
reported by Kawasaki et al. (80). The library was designed based on the LPFFD 
sequence XX-P-XXXX, where P is proline, and X is any amino acid. After the fifth-
round of biopanning against Aβ1–42 soluble oligomers, eight new peptides con-
taining arginine residues were obtained. The peptide with the strongest affinity to 
Aβ (RGPRGRV) suppressed the formation of 37–48 kDa oligomers and main-
tained the monomeric form of Aβ1–42 for up to 24 h. In follow-up studies, to 
assess the effect of the peptide length on the inhibition of soluble oligomers for-
mation, random libraries containing 3-residue and 4-residue peptides were pre-
pared by phage display and evaluated. The results demonstrated that the 3-residue 
peptides could not significantly inhibit oligomers formation because of their 
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smaller size. In contrast, the 4-residue peptide with the RFRK sequence inhibited 
the soluble oligomer formation like the heptapeptide (RGPRGRV). It also showed 
a slight decrease on Aβ fibrillation (81), similar to the inhibitory activity of the 
N-Methylated Peptide (SEN304), against Aβ42 aggregation (25, 82, 83). Tsuji-
Ueno et al. utilized the all-steps-all-combinations (ASAC) method to explore 
Aβ42-binding peptide aptamers. The identified peptides from the primary and 
secondary libraries showed a weak binding affinity to Aβ42 (Kd values in the μ m 
range) (84). To further improve the peptide aptamers, Gautam et al. applied the 
mRNA display technique and paired-peptide library method. The library was 
assembled by a random shuffling method on selected peptide blocks taken from 
the formed primary and secondary peptide libraries by Tsuji-Ueno et al. (84). 
They reported two peptides with high binding affinity to Aβ42 (Kd in the nM 
range) which significantly inhibited the Aβ42 aggregation (85). The improved 
peptide aptamers, P84 (CGILDPIPWGGSGGSCGILDPIPW) and P131 
(GCPCIGIIGGSGGSDCSSDLTPS), where GGSGGS is the linker sequence, dem-
onstrated a higher binding affinity for the Aβ42 peptide (Kd values in the nanomo-
lar range) compared to the primary and secondary Aβ42-binding peptides (86). 
The results showed that both peptides could inhibit the Aβ42 aggregation and 
result in the reduction of the cytotoxic effects of Aβ42 fibrils and Aβ42 oligomers in 
PC12 cells; P84 showed better efficacy than P131 on the cell line.

Groen and co-workers employed mirror-image phage display to identify selec-
tive and high-affinity D-peptide ligands for Aβ1–42. The D-enantiomer Aβ1–42 was 
used as a target for selection from a randomized 12- amino acid peptide library 
with more than 1 billion different peptides. After six rounds of biopanning, they 
identified a specific D-enantiomeric peptide, RPRTRLHTHRNR, called D3 (73). 
The D3 ligand inhibited Aβ aggregation, and dissolved pre-formed Aβ fibrils. 
Additionally, D3 ligand could disaggregate pre-existing amyloid plaques in the 
brain and result in an increase in the amount of Aβ monomeric form, which has 
high clearance from the brain (87). FITC fluorescence data demonstrated that 
Aβ–D3 clearance might have been associated with pericytes, which have a major 
role in the clearance of different Aβ40/42 species (88, 89). Glial fibrillary acidic 
protein (GFAP) staining of astrocytes and CD11b staining of microglia in brain 
sections revealed that the D3 significantly decreased the amount of plaque-related 
inflammation markers (active astrocytes and microglia) around the Aβ plaques in 
comparison to the untreated animals. In addition to the anti-inflammatory prop-
erties, this peptide ligand could drastically reduce the Aβ plaque load in brain 
tissue of transgenic APP-PSD mice after a 30-day treatment with administration of 
9 mg D3 per day per mouse. Computational simulation studies demonstrated 
strong electrostatic interactions between the arginine-rich D3 and negatively 
charged groups of Aβ nonamer; D3 binding to Aβ nonamer could change the 
topology of the Aβ oligomers by inducing a twist in them and consequently pro-
mote the formation of Aβ nonfibrillar aggregations (73, 90, 91).

Luo et al. applied peptoid chemistry, N-substituted glycine oligomers as a class 
of peptidomimetics, to develop and improve selective high-affinity ligands for 
Aβ42 (92). They constructed an on-bead peptoid library of 38,416 unique pep-
toids. After screening for Aβ42-selective peptoid ligands, the IAM1 ligand and its 
dimeric form were selected and further evaluated. IAM1 peptide showed about 
10-fold more affinity for Aβ42-binding than for Aβ40, and inhibited Aβ42 aggrega-
tion in vitro. The dimeric derivative (IAM1)2 demonstrated a 7.4-fold higher 
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affinity for Aβ42 (60 nM) than the monomeric form. Moreover, (IAM1)2 demon-
strated neuroprotective effects on primary hippocampal neurons against Aβ42-
induced toxicity.

Due to the considerable similarities between the self-assembly of cyclic d,l-α-
peptides and amyloid structures, it is possible such peptides can bind to Aβ non-
toxic forms and stabilize them (29). Richman et al. described the cyclic peptide 
CP-2, cyclo-[l–J–w– H–s–K]s (J denotes l-norleucine), by screening a 6-residue 
library of head-to-tail cyclic d,l-α-peptides consisting of residues Lys, Glu, Ser, 
Leu, Trp, and His using a one-bead-one-peptide combinatorial approach (29, 93). 
The selected peptide strongly interacted with Aβ40/Aβ42 and prevented their 
assembly, entirely disassembled Aβ40 fibrils, and protected PC12 cells against 
Aβ40/Aβ42-induced toxicity, without having any toxic effects of its own. NMR 
spectroscopy revealed that the CP-2 peptide, in a self-assembled form, interacted 
with monomeric and low-oligomeric structures of Aβ40 and induced weak α-helix 
structures during the initial stage of Aβ40 aggregation and subsequently promoted 
the conformational transition shift from a more toxic antiparallel β-sheet confor-
mation to the less toxic parallel β-sheet.

In another study, Acerra et al. utilized an intracellular protein-fragment com-
plementation assay (PCA) methodology for the screening of selective high-affinity 
peptides to Aβ (94). The Aβ25–35 sequence, known to self-assemble into toxic 
fibrils (95), was inserted into one half of the murine dihydrofolate reductase 
enzyme as a target, and the Aβ29–35 sequence-based peptide was inserted on the 
other half of the enzyme (96). After the screening of primary and secondary librar-
ies, two new targeting peptides L2P1, FSKATSN, and L2P2, PVKATTA were 
selected. These peptides shared no homology with the starting template Aβ29–35. 
The results showed that all selected peptides could bind Aβ42, inhibit fibril forma-
tion, and disaggregate pre-formed fibrils. To further improve the metabolic stabil-
ity of selected peptides from primary and secondary libraries, their retro-inverso 
(RI) analogs were evaluated (86). All RI peptide ligands, such as KAR-R1, 
L2P1a-RI, L2P1b-RI, L2P2a-RI, and L2P2b-RI, inhibited Aβ fibrillation and disag-
gregated pre-formed fibrils, and reduced Aβ42-induced toxicity in PC-12 cells.

THE CURRENT STATE AND FUTURE DIRECTIONS OF Aβ 
INHIBITORY PEPTIDES IN ALZHEIMER’S DISEASE

A wide range of peptide-based inhibitors has been evaluated in cellular and ani-
mal models as new therapeutic compounds for inhibition of Aβ aggregation. 
While experimental studies generated promising results, only a few of these 
 inhibitory peptides have been successful enough to enter clinical trials. NAP or 
Davunetide peptide with NAPVSIPQ sequence, derived from the activity- 
dependent neuroprotective protein (ADNP), was reported in 2003 by Gozes et al. 
(97). NAP was able to inhibit Aβ aggregation, disassemble pre-formed fibrils, and 
protect the neuronal cells from Aβ induced toxicity. Though NAP demonstrated 
benefits in phase II clinical trials for mild cognitive impairment, it failed in a phase 
III trial (98–100). PPI-1019 peptide (APAN), with a sequence of D-(H-[(Me-L)-
VFFL]NH2), is an N-methylated peptide which is derived from the D-enantiomeric 
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Cholyl-LVFFA-NH2 that could inhibit Aβ aggregation and the induce toxicity in 
experimental studies (101). The phases I and II clinical trials of APAN was com-
pleted in patients with mild-moderate Alzheimer’s disease in 2005 (NCT00100282, 
NCT00100334), but the outcome of this study is still unknown (https://clinical-
trials.gov/, last assessed 28 October 2020). Other reported inhibitory peptides 
including, D3 (102), D-Trp-Aib−OH (44), D-4F (36), TAT-R1-OR2 (48), NL-RI-
OR2-TAT90 (103), and R1-OR2 (49) have shown considerable efficacy in pre-
clinical trials, but they have not yet entered clinical trials.

The reality is that, to date, there is no cure for Alzheimer’s disease. Only opti-
mism remains. Therefore, it is necessary to discover potential peptides for testing 
in clinical trials. The current inhibitory peptides have certain limitations such as 
poor BBB permeability and high cytotoxicity. To overcome these problems and 
further improve the inhibitory activity, a number of studies have focused on 
 peptide–nanostructure conjugates (PNCs) approach that provides an opportunity 
to increase the capabilities of both these classes of materials (55, 104, 105). 
Nanostructures could be considered as a potential vehicle to overcome poor BBB 
permeability and bring hope for neurodegenerative diseases therapy due to their 
size and various surface modifications (106). As an example, multivalent inhibi-
tors can be developed against Aβ aggregation by decorating gold nanoparticles 
with VVIA and LPFFD (107). The PNCs approach gives a fascinating insight into 
the fields of diagnosis and treatment, and provides new opportunities for the 
design of high-performance peptides (108, 109).

CONCLUSION

Despite a better understanding of the pathogenic mechanisms of Alzheimer’s dis-
ease, finding efficient therapeutic compounds to prevent or halt the progression of 
Alzheimer’s disease continues to be a challenge. Aβ aggregation inhibition-based 
approaches are being developed with the aim to stop disease progression. While the 
reported inhibitory peptides have considerable advantages over other compounds, 
and experimental evidence has been encouraging, bench-to-bedside has not yet 
become a reality. Therefore, adequate knowledge of binding interactions of these 
peptides with their biological targets, the ligand-target complex, is required to 
design more accurate therapeutic biomolecules. Peptide inhibitors have unique 
properties, particularly, high selectivity, low accumulation in tissues, low side-effects 
and toxicity, and different chemical and biological synthesis routes when compared 
with other compounds. As researchers continue to focus on rational design, charac-
terization, optimization, and interaction between the inhibitor and the Aβ peptide 
complex, more peptide inhibitors are expected to succeed in clinical trials.
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