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Abstract: Alzheimer’s Disease (AD) affects at least 5.7 million Americans, and it is 
the sixth leading cause of death in the United States. At the onset, patients experi-
ence minor memory problems. Next, impairments in speech and motor function 
manifest as a limitation to well-being and independence. Slowing this pandemic 
rise is critical, since AD also bears a huge socioeconomical burden. Unfortunately, 
there is limited prevention and no effective cure has been found, as all clinical tri-
als for promising AD drugs have failed thus far. The pathological hallmarks of AD 
include amyloid-β plaques (Aβ), neurofibrillary tangles (NFT), and neuroinflam-
mation. Other factors include APOE4 and environmental stressors, such as metal 
dyshomeostasis, which contribute to AD pathogenesis. Herein, we review major 
contributing factors involved in AD pathophysiology. Deeper understanding of 
associated molecular mechanisms underlying AD pathogenesis is critical for 
developing novel AD theranostics.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is the 
most represented form of dementia. It is the 3rd most common disease affecting 
the population, inflicting at least 5.7 million Americans as the trend continues to 
rise at a pandemic rate. It is the leading cause of age-dependent disability on a 
global scale (1). AD reduces the quality of a patient’s life, as irreversible cognitive 
decline becomes apparent due to pathological and morphological changes such as 
cortical atrophy, neuroinflammation, loss of synaptic connections, and cellular 
death (2) leaving the individual dependent on significant care, as their memories 
and motor function deteriorate.

Fortunately, technological advances have afforded researchers the ability to 
characterize neuronal loss in the hippocampus and cortices (3). Additional work 
has acknowledged perspectives on multifaceted complexities that have linked risk-
associated genes and environmental factors to these differences (4). For example, 
increased exposure to air pollution, chemicals, and ionizing radiation is harmful 
(5, 6) and potentially contributes to dementia-related diseases. Unfortunately, AD 
has no efficacious treatments, and thus, the disease is a critical health concern and 
has incurred a colossal socioeconomic burden. Recently, the Alzheimer’s Association 
reported the cost as $236 billion and is projected to rise to $1.1 trillion in 2050 (1). 
Therefore, identifying an accurate diagnosis and effective treatment is urgent.

The hallmarks of AD are evident, with neuroinflammation and aggregated 
Aβ  plaques followed by neurofibrillary tangles (NFT). In fact, recent studies 
observed plaque deposits within cognitively normal individuals up to 20 years 
before the onset of cognitive decline (7). Why Aβ fibrils aggregate into plaques has 
yet to be elucidated; however, there is evidence that its exacerbated presence is 
toxic to neuronal cells. For example, Aβ inhibits respiratory function, reduces 
ATP levels (8), and leads to mitochondrial dysfunction (9). In vitro studies of 
PC12 cells observed depolarization of the mitochondrial membrane potential 
and  decreased activity of mitochondrial electron transport chain complexes. 
As Aβ aggregates, it leads to signaling impairments causing the cells to undergo 
apoptosis. Anti-Aβ drugs tested in human clinical trial have failed to produce 
promising results. As  such, the credibility of the amyloid hypothesis has been 
questioned, and the true role of Aβ is currently being investigated.

AMYLOID PRECURSOR PROTEIN

Amyloid plaques, or the insoluble Aβ peptides, in the brain form through the 
cleavage of amyloid precursor protein (APP) by the b-site of APP cleaving 
enzyme 1 (BACE1 or β-secretase) and γ-secretase (10, 11). APP is located on 
chromosome 21, and it is a type I transmembrane protein involved in secretory 
and endocytic processes (12). It contains a metal-binding domain, heparin, col-
lagen, laminin, and a protease inhibitor domain (13). Although the function of 
APP is unclear, there is evidence to suggest that the ectodomain of APP may be 
involved in cell adhesion, trophic support, cell growth, and differentiation of 
neuronal stem cells (14). Conversely, the intracellular domain may modulate 
mitochondrial function (15).
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APP can be processed through two pathways: the amyloidogenic pathway and 
the non-amyloidogenic pathway. In the amyloidogenic pathway, β-secretase 
cleaves APP at amino acid 671 releasing APP β (sAPPβ). Next, the CTF99 
embedded in the plasma membrane is cleaved by γ-secretase, made up of 
4 subunits (16, 17), including the catalytic domains Presenilin1 gene (PS1) and 
Presenilin2 (PS2) (18). BACE1 is a rate-limiting step for Aβ production, and 
knockout studies result in complete inhibition of Aβ generation (19). In the non-
amyloidogenic pathway, APP is cleaved by α-secretase at amino acid 687, releas-
ing soluble APPα (sAPPα). The remaining protein, CTF83 is cleaved by γ-secretase 
releasing a soluble p3 fragment. α-secretase belongs to a family of single-pass 
transmembrane and secretes zinc-containing endopeptidases that are dominant in 
neurons (20). Aggregated Aβ function in normal physiology remains to be eluci-
dated (19); however, Aβ disrupts postsynaptic trafficking in glutamate receptors 
such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recep-
tors (21) and N-Methyl-D-Aspartate (NMDA) receptors (22). Their actions may 
be important for learning and memory, and synaptic plasticity (23–25). Aβ has 
also been shown to modulate the inhibitory neurotransmitter gamma-aminobutyric 
acid (GABA) through interaction with KCC2 (26). A study by Senechal et al. 
investigated APP knockout mice and discovered dysregulated long-term potentia-
tion (LTP) and learning deficits (27, 28). Moreover, theta–gamma oscillation 
phase–amplitude coupling was also diminished in regions of the parietal cortex 
and hippocampus compared to the wild type (27). As such, the function of APP 
is complex, and data so far have linked the role of the protein in neurite growth 
(29–31), axon guidance (32), and neuronal cell adhesion (33).

β-SITE OF APP CLEAVING ENZYME 1

β-site of APP cleaving enzyme 1 (BACE1) is a major drug target for therapy (34) 
because its expression correlates not only with the onset of AD but also with glu-
cose intolerance. Importantly, this downstream effect is a risk factor for diabetes. 
Studies on mouse models which inhibit BACE1 expression resulted in improve-
ments in glucose homeostasis, lowered leptin levels, and decreased hypothalamic 
inflammation (35, 36). However, depletion of BACE1 leads to other harmful 
effects as evidence suggests it important in regulating adult hippocampal 
neurons  responsible for memory (37, 38) and other important neuronal 
processes.  For example, mice models that possess faulty BACE1 expression 
result  in deficits in synaptic transmission and plasticity in the hippocampal 
region (39). Furthermore, the cell adhesion molecule Neuregulin-1 (Nrg1), which 
must be cleaved by BACE1, mediates radial migration of glutamatergic and 
GABAergic neurons. It is also responsible for myelination and synaptic plasticity 
(40) and is required for the formation of new synapses while strengthening exist-
ing ones. Interestingly, BACE1 null mice result in a reduction of Nrg1 cleavage, 
resulting in characteristics of schizophrenia (41). Similarly, Sez6 is a protein that 
is concentrated in areas associated with morphological plasticity. This includes 
areas within the hippocampus and cerebellum in postnatal brains. Sez6 is also 
cleaved by BACE1 and mediates dendritic arborization of cortical neurons (42) 
which is critical for neuronal transfer of information. Thus, defective BACE1 leads 
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to poor motor coordination, weak balance, and cognitive deficits. Lastly, BACE1 
deficiency also affects Jagged-1 (Jag1) that regulates astrogenesis/neurogenesis 
through Notch signaling pathway (43, 44) and contributes to memory formation. 
Therefore, suppression of this enzyme is a double-edged sword and more research 
is needed to help in AD patients.

GENETIC RISK FACTORS OF ALZHEIMER 
DISEASE PATHOLOGY

There are two forms of AD: sporadic and familial. The majority of the cases 
(approximately 95%) are classified as sporadic late-onset AD (LOAD), while 
about 5% are classified as familial early-onset l AD (EOAD) with an autosomal 
dominant inheritance pattern. Sporadic AD is influenced by complex genetic 
variants combined with environmental factors (45). However, there is little evi-
dence to define how this occurs. Early onset is caused by rare mutations in three 
genes located on chromosome 21 (46, 47) and chromosome 14 (48). The sum-
mary of genetic mutations implicated in LOAD is shown in Table 1 and EOAD 
is given in Table 2 (45).

TABLE 1	 A summary of genetic mutations implicated in LOAD

Gene Protein Chromosome Risk change %
Proposed molecular 
phenotype

APOE Apolipoprotein E 19q13 ~400–1500% Clearance of Aβ
Lipid metabolism

ABCA7 ATP-binding cassette
subfamily A member 7

19p13.3 ~20% Lipid metabolism
Cellular signaling

BINI Bridgin integrator 1 2q14 ~15% Production of Aβ
Clearance of Aβ
Cellular signaling

CR1 Complement component
(3b/4b) receptor 1

1q32 ~15% Clearance of Aβ
Innate immunity

PICALM Phosphadylinositol-binding 
clathrin assembly 
molecule

11q14 ~15% Production of Aβ
Clearance of Aβ
Cellular signaling

CD2AP CD2-associated protein 6p12.3 ~10% Cellular Signaling

CD33 CD33 (Siglec 3) 19q13.3 ~10% Innate immunity
Degradation of 

CLU Clusterin 8p21.1 ~10% Clearance of Aβ
Innate immunity

EPHA1 EPH receptor A1 7q34 ~10% Cellular signaling
Innate immunity

ATXN1 Ataxin 1 6p22.3 NA Production of Aβ
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Mutations in APP, Presenilin1 (PS1), and Presenilin2 (PS2) genes have been inte-
gral in the development of AD as they cause a disruption in the ratio of Aβ42 pro-
duction (49). In normal physiology, presenilins, needed for the production of Aβ 
peptides via both β- and γ-secretases-mediated cleavage (50, 51), are responsible for 
autosomal transmission and the promotion of amyloid plaque. PS1 regulates cal-
cium homeostasis and mediates neurotransmission (52, 53). The largest amount of 
mutations occurs for PS1 at an estimate of 200 mutants, whereas APP and PS2 have 
10–25 mutants on the AD and frontotemporal dementia mutation database.

Meta-analysis revealed at least 15 potential loci where variations may predispose 
one to developing AD (46). However, a particular gene appears to be the most bur-
densome, the ApoE gene. It has four different isoforms: ApoEe1, ApoEe2, ApoEe3, 
and ApoEe4. Apolipoprotein E (ApoE) regulates synaptic function, promotes plas-
ticity, increases the number of dendritic spines, and regulates protein trafficking 
across neurons (54). It is responsible for the regulation of triglyceride and choles-
terol metabolism. Binding of lipidated ApoE facilitates Aβ uptake in an isoform-
dependent manner, and inhibited clearance contributes to Aβ accumulation. One 
variant of ApoE gene has been identified as the largest risk factor for late-onset AD 
through computational analysis (55–57). It is important to note that possessing 
ApoEe4 over the e3 (common) or e2 (other variant) alleles is not enough to cause 
AD but it acts as a determinant which increases overtime as the patients ages (45). 
Analyses reveal that a heterozygous pair increases AD by threefold, whereas a homo-
zygous pair increases the risk by 15-fold (58). It is thought to be the least effective 
in binding to, and facilitating the uptake of, Aβ. Additionally, its strong ties to neu-
rovascular dysfunction further confirm its contribution in AD manifestation (56). 
The allele can be investigated for potential biomarkers and to unearth new targets 
for AD drug discovery due to significant clinical and neurobiological correlations. 
Among them, ApoE e4 allele and low CSF level of Aβ42 have been reported (59). 
Patients with the e4 allele tend to present with early-onset memory impairment, 
decrease in global cognitive function, and weak episodic memory (60). Interestingly, 
the ApoE e2 variant seems to reduce the risk of dementia compared to the common 
e3 allele, despite its association with an increased amyloid burden (56). Overall, 
monitoring ApoE gene can play an important role in understanding the AD patho-
physiology and be used as an assessment tool for at-risk patients.

Other genes that have a strong association with late-onset AD include SORL1, 
which mediates protein trafficking (61), and ACE, which regulates blood pressure 
(62). Furthermore, testing a single nucleotide for any association with disease 

TABLE 2	 A summary of genetic mutations implicated 
in EAOD

Gene Protein Chromosome Molecular phenotype

APP Amyloid b protein precursor 21q21 Increased Ab42/Ab40 ratio
Increased Ab production
Increased Ab aggregation

PSEN1 Presenilin 1 14q24 Increased Ab42/Ab40 ratio

PSEN2 Presenilin 2 1q31 Increased Ab42/Ab40 ratio
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pathology can be accomplished through GWAS technology. One avenue leads to 
the discovery of GRB2, which mediates tau phosphorylation and has a high affin-
ity for APP and the presinilins (63, 64). Other findings identified ATXN1, which 
affects Aβ levels by modulating β-secretase levels and cleavage of APP (65), and 
BIN1 (66), which is highly expressed in the central nervous system and plays a 
role in receptor-mediated endocytosis (67). Furthermore, ADAM10 mutations 
have impaired enzyme activity and lead to the onset of AD in the elderly (67). 
Lastly, CD33 has been an interesting discovery because it helps strengthen that Aβ 
acts as an AMP (11, 68–70).

THE NEUROIMMUNE SYSTEM

There are many challenges in understanding the complexity of inflammation in 
relation to AD in order to develop appropriate therapeutics. Clinical analysis of 
AD patients exhibited chronic neuroinflammation, insufficient energy metabo-
lism, and redox stress in postmortem brains (71). These observations have been 
replicated in both animal and cell culture models. Increased inflammatory cas-
cade by microglia has been observed in areas of Aβ deposits and activation of 
NF-κB (72, 73).

Due to their high affinity for Aβ deposits, understanding the role of microglia 
may help identify therapeutic targets. In brief, microglia are recognized as the 
brain macrophage and play an integral role in housekeeping. Upon signal detec-
tion, they act to remove debris, toxins, pathogens, and apoptotic neurons (74, 75) 
by releasing a cascade of inflammatory factors. As such, they release reactive oxy-
gen species and Th1 cytokines including interleukin 1-beta (IL-1β), IL-6, tumor 
necrosis factor alpha (TNF-α), and interferon-gamma (76) to ramp up the immune 
system. Furthermore, they are integral in upregulating MCHII complexes, leading 
to an inflammatory cascade in innate immune response in many disorders such as 
Parkinson’s disease, HIV, and multiple sclerosis (77–80). In AD brain, microglia 
are constantly aggregated around Aβ plaques (81) to form a barrier between 
healthy tissue and areas of injured or infected tissue. Since there is no evidence to 
suggest microglia can degrade Aβ, they undergo a state of compromised phagocy-
tosis, in which the semi-degraded Aβ are ultimately expelled from the microglial 
cell (82) causing a dysregulation of homeostasis. Extended exposure to Aβ leads 
to disrupted calcium homeostasis within astrocytic cells, which also leads to 
degeneration of neurons (83).

NF-κB regulates the expression of more than 400 genes (72) and can be 
induced by ROS, interleukinIL-1β, TNF-α, bacterial lipopolysaccharides (LPS), 
isoproterenol, and ionizing radiation (73, 84). Its activation is dependent on 
growth factors and the neurotransmitter, glutamate (85). Thus, NF-κB plays an 
important role in DNA transcription and cellular survival. In general, high levels 
of NF-κB expression are associated with normal aging and upregulate microglial 
activity (85–87). This overexpression increases the susceptibility for AD through 
upregulating BACE1 and APP genes (88).

Furthermore, rodent models have demonstrated the outcomes of unregulated 
NF-κB, resulting in a destructive feedback loop (89, 90). For example, mice that 
overexpressed NF-κB had clinical signs of increased apoptosis in the hippocampal 
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region through triggering TNF-α and iNOS when exposed to neurotoxins (91, 92). 
Moreover, drosophila studies that overexpressed NF-κB in the hypothalamus-like 
pars intercerebralis resulted in deficits in learning, inadequate memory consolida-
tion, and increase in mortality rates compared to the controls (93). Upon clinical 
analysis, imaging studies resulted in severe neurodegeneration (94).

Studies regarding the relationship between AD and lifestyle choices concluded 
that an increased risk of AD was associated with diabetes, high blood pressure, 
and smoking (95–97). Type 2 diabetes mellitus (T2DM) increases a patient’s risk 
of developing AD by over 50% (45), and it affects the increase of Aβ pathology by 
its ability to upregulate NF-κB and the expression of BACE1 (98, 99). As research-
ers continue their efforts in drug therapeutic development, alternative approaches 
have been sought, including cognitive exercises that have improved the produc-
tion of dopamine and vitamin C (100, 101). Rats that were subjected to pro-
inflammatory diets, and adhered to aerobic exercise, resulted in attenuated NF-κB 
expression in the liver and muscles. Similarly, regular exercise resulted in an 
increase of endurance, cognition, and performance (102–104). Unfortunately, 
standard models are not adequate in analyzing the effect of nutrition on the onset 
of AD, and no study to date can definitively state the relationship (101).

BLOOD–BRAIN BARRIER

The blood–brain barrier (BBB) plays a vital role in the longevity of an individual’s 
health, and it is responsible for the clearance of Aβ; thus, any insult that compro-
mises the integrity of BBB can cause neuronal cells damage (105–107). New stud-
ies have observed the progression of AD along with compromised BBB (108). This 
negative effect is alarming as any damage to the neurovascular unit (NVU) results 
in toxic substance leaking into the CNS circulating in the blood. In fact, the mech-
anism of transporting Aβ out of brain is impaired in AD patients, which contrib-
utes substantially to its accumulation (107). One example is the dysfunction of 
P-glycoprotein (Pgp) (109) resulting in increased deposits and age-associated cog-
nitive impairments. Furthermore, mediating glucose transport for neuronal func-
tionality is integral for astrocytes and neurons, and expression of GLUTs is 
downregulated in patients. This decreases brain energy supply as confirmed by 
brain imaging studies (110). Other risks associated with an impaired BBB lead to 
insufficient nutrient supply and toxin removal, and altered protein expression, all 
impacting and upregulating the role of neurodegeneration (111, 112). Although 
it is not elucidated how the mechanism works, therapeutic interventions in alle-
viating the disease progression are necessary. Recent findings conclude that AD 
risk factors can be modulated with lifestyle changes in regard to increase in edu-
cational levels, exercise, and healthy dietary choices (113–115).

METALS

Strong evidence suggests that biometals in the brains of AD patients are 
insufficiently maintained, thereby promoting cognitive loss. Due to their structure 
and function, the proteins that play a role in AD pathophysiology have capabilities 
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of interacting with metals, especially zinc and copper. Other transitional metals 
include lead, aluminum, and iron, which may negatively impact human health if 
the homeostasis is not maintained (116, 117). Neuronal damage can occur due to 
dysregulation of integral metals needed to maintain brain function. The accumu-
lation of Cu ions has been identified around plaques in postmortem AD brains 
(118), suggesting the impact of Cu on AD progression. As such, excessive dietary 
Cu on high-cholesterol diet in rabbits and AD mouse model induces hallmark 
pathologies. Research has found that chronic exposure to Cu contributes to an 
increased risk of AD by facilitating Aβ accumulation (118).

Additionally, zinc regulates many proteins such as SNAP25, PSD95, AMPA 
receptors, and NMDA receptors. ZnT3, a zinc transporter, allows for the release of 
zinc from neurons into synapses and is involved in cognition and memory. The 
disruption in mechanism results in cognitive decline (120). Likewise, AD mouse 
brains have irregular protein levels of CamKII, spinophilin, NMDA receptors, and 
BDNF (119, 121). Interestingly, AD transgenic mice studies indicated Aβ amyloid 
aggregated in areas of high Fe, Cu, and Zn levels, indicating accumulation of met-
als within the brain promotes the aggregation of the Aβ peptides (122, 123). 
Recent studies have found that APP can regulate iron levels in the brain by remov-
ing it from cells, similar to ceruloplasmin. In AD, this activity is decreased by 70% 
in cortical tissue (122, 123). Tau knockout mice lacked the ability to clear out iron 
and developed age-dependent neurodegeneration. Rescue studies provided clues 
that quinoline activity may be a possible therapeutic for AD (124).

PBT2, currently in clinical trials, is a disease modifying drug that does not 
act  like a chelator but as an ionophore (119, 121). Administration of PBT2 for 
12  weeks improved mild forms of AD cases through executive function and 
composite cognitive z-scores and reduced the levels of Aβ in cerebrospinal fluid 
(125, 126). Other studies also showed increased neurite outgrowth in vitro and 
decreased tau phosphorylation (121, 127).

Iron is critical for maintaining neuronal tissue and is involved in the syn-
thesis of myelin and neurotransmitters. Conversely, excessive accumulation 
can enhance Aβ production and tau dysfunction leading to neuronal cell 
death. Parallel to how iron increases expression of ferritin and ferroportin, 
iron also increases the processing of APP (128, 129). This causes formation of 
senile plaques and leads to oxidative stress, resulting in oligomerization and 
more Aβ generation (130). Iron dysregulation increases NFT (131) creating an 
iron-rich population within oxidatively stressed environments (132). 
Quantitative mapping that displays an increase in iron loading shows a strong 
predictor for cognitive decline. The disruption of iron levels affects neuronal 
populations within the hippocampus through Fenton and Haber–Weiss reac-
tions (133), producing oxidative lipids that further increase the neurotoxicity 
and AD pathogenesis (134). As stated, NFT is the integral for trafficking APP 
to neuronal membrane to facilitate iron efflux from neurons (122, 135), and 
thus, the loss of tau expression increases the risk for cognitive loss and cortical 
atrophy in mice (124).

The effects of aluminum on neurodegeneration have attracted attention since it 
can cause mitochondrial dysfunction and ATP depletion at the cellular level, and 
decline in memory and cognitive performance on a psychiatric level (136, 137). It 
can also cause apoptosis in neurons (138). Biopsy studies have confirmed elevated 
levels of aluminum in LOAD brains, possible source being drinking water (139).
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CONCLUSION

AD significantly reduces patients’ quality of life. Therefore, there is an urgent need 
to develop early detection diagnostics and preventive measures to slow the prog-
ress of the onset until the discovery of a cure. Serial failures of clinical trials for AD 
experimental drugs have led us to reevaluate the pathology of this devastating 
disease and to embark on further understanding of the underlying AD patho-
physiology and associated contributing factors. Agents against targets such as 
BACE1 and APP amyloidosis have proved to be ineffective against AD progression 
so far. Therefore, further studies in AD pathogenic mechanisms and future utility 
of artificial intelligence (AI)-based drug discovery tools may aid in developing 
novel theranostic agents for AD (140, 141).
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