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Abstract: Cryo-electron tomography (Cryo-ET) has made possible the observation 
of cellular organelles and macromolecular complexes at nanometer resolution in 
native conformations. Without disrupting the cell, Cryo-ET directly visualizes both 
known and unknown structures in situ and reveals their spatial and organizational 
relationships. Consequently, structural pattern mining (a.k.a. visual proteomics) 
needs to be performed to detect, identify and recover different sub-cellular compo-
nents and their spatial organization in a systematic fashion for further biomedical 
analysis and interpretation. This chapter presents three major Cryo-ET structural 
pattern mining approaches to give an overview of traditional methods and recent 
advances in Cryo-ET data analysis. Template-based, supervised deep learning-based 
and template-free approaches are introduced in detail. Examples of recent biological 
and medical applications and future perspectives are provided.
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INTRODUCTION

Cryo-electron tomography (Cryo-ET) is a powerful diagnostic and research 
tool that combines specimen cryo-fixation and multi-angle electron micros-
copy  imaging (1), which enables structural biologists to produce three-
dimensional (3D) volume reconstructions of near-native state cells and 
determine the structure of sub-cellular structures with molecular-scale reso-
lution (2). Those images contain information about the 3D cell structure pro-
jected into a single plane. In order to recover the actual 3D arrangement of 
components in the specimen, the  information in 2D projection images should 
be integrated computationally. Cryo-EM has experienced a dramatic increase 
in the attainable resolution of 3D reconstructions. Complexes with high 
intrinsic contrast, such as ribosomes, have been successfully analyzed. The 
discrete conformation of membrane receptors can be recognized, which pro-
vides a theoretical basis for exploring the structural basis of signals in the 
whole cell.

In recent years, the amount of information about molecular roles involved in 
cellular processes has increased dramatically, and it has become possible to detect 
or obtain cellular tomograms with information about macromolecular complexes, 
their structures and spatial positions in the cell. Proteomics, based on genomics 
and mass spectrometry, has carried out a comprehensive analysis of the cell 
 proteome. Nevertheless, it is still very challenging to discover the structure of 
unknown complexes in tomograms. Due to various shapes, sizes, cellular 
 abundance of unlabeled complexes, high crowding levels, limitations of template 
libraries, low signal-to-noise ratio (SNR) and the limited range of tilt angles 
(3), the structural discovery can be detected by structure pattern mining methods. 
The methods for molecular separation and purification for structural and func-
tional studies have been a great success. This chapter focuses on three major 
Cryo-ET structural pattern mining approaches, giving an overview of traditional 
methods and recent advances in Cryo-ET data analysis. Template-based, super-
vised deep learning-based and template-free approaches are included. Examples 
of recent applications in biology and medical field along with future perspectives 
are discussed.

TEMPLATE-BASED STRUCTURAL PATTERN MINING

Template search/match has been the most popular template-based method for 
detecting spatial location and orientation of a known structure of interest. The 
visual proteomics method is capable of identifying individual protein complexes 
in intact cells (4). A guide on how to implement the visual proteomics method 
was proposed by Förster and colleagues (5). There are three main processing steps 
included in this method. First, a library containing the reference structure of the 
target protein complexes resampled to the relevant electron optical conditions is 
assembled. Second, for all possible positions and directions, the local cross-corre-
lation coefficient between each reference structure and tomogram is calculated 
and stored in the cross-correlation volume. Finally, the distribution of 
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cross-correlation values in these volumes is translated into a list of locations by 
peak extraction and statistical methods. For data acquisition, an experimental 
setup is required. It is desirable to obtain the highest quality frozen electron 
tomography in terms of SNR, and the dosage spent on the specimen during the 
acquisition should be well controlled. Recommendations on choosing acquisition 
parameters after analyzing the different factors on signal content in Cryo-ET can 
be found in this work (5).

The template-matching process includes four parts: handling MolMatch, 
creating motif lists, scoring and visualization of molecular atlases. The scoring 
function (SF) for visual proteomics (6) relies on three different knowledge-
based, empirical readouts. Besides, they also discuss other technical improve-
ments. To detect low-abundance protein complexes with confidence, data 
acquisition and post-processing should be paid enough attention. The signal 
in visual proteomics is due to the contrast given by the surrounding solvent, 
so a better dosage control during the data acquisition is unavoidable. Also, 
phase plates may help to obtain a better performance. The electron dose that 
can be applied to the specimen limits the resolution that can be achieved by 
Cryo-ET, which leads to the limitation of the Cryo-ET application in visual 
proteomics.

It is important to assess whether the subtomogram, which is a small 3D 
cubic subvolume containing one macromolecular complex, or the recovered 
structure can be matched to a particular known structure. A template-match 
calculates the structural correlation between a subtomogram or a recovered 
structure with a known structural template. However, a simple correlation 
score cannot fully conclude the template matching. Rigorous statistical tests 
need to be carried out. Wang et al. (7) proposed a Monte Carlo sampling 
hypothesis testing framework based on generative adversarial network model-
ing for assessing template matching results. First, a generative adversarial net-
work is constructed by using known structures to generate the structural 
distribution of macromolecular complexes. The structural generator is trained 
to the extent that the discriminator cannot distinguish between a known 
structure and a pseudo one. Second, a large number of pseudo macromolecu-
lar complexes are generated from the learned structural distribution in a 
Monte Carlo sampling fashion. Third, the subtomogram or recovered struc-
ture of interest is compared to the known structure and pseudo structure to 
assess the statistical confidence of template matching. This method computes 
not only a correlation score of template matching but also the P-value of 
whether the structure is significantly close to the template. Such a statistical 
assessment provides rigorous evidence of template matching and reduces its 
false-positive rate.

SUPERVISED SUBTOMOGRAM CLASSIFICATION AND 
SEGMENTATION

Since 2017, supervised deep learning approaches, including classification and 
semantic segmentation, have been applied to Cryo-ET.



Wu X et al.178

Semantic segmentation using convolutional neural networks

The first deep learning-based semantic segmentation framework proposed for 
Cryo-ET data (8) classifies tomogram 2D slices in a voxel-wise binary fashion. 
With training data voxel-labeled manually, it predicts the segmentation mask of 
ribosomes, mitochondrial membrane, microtubules, and vesicles. To facilitate the 
prediction of membrane structures in different orientations, data augmentation 
was integrated into the training process with a moderately increased computa-
tional cost.

3D ConvNet (9) is a 3D semantic segmentation model for Cryo-ET data based 
on the U-Net architecture. 3D ConvNet predicts the segmentation mask of ribo-
somes, membrane and membrane-bound ribosomes in a multi-class fashion. As a 
result, the computational time does not increase linearly with the increase of class 
numbers (8).

Two 3D semantic segmentation convolutional neural networks (SSN3D) and 
their variants segmenting the main structural region from subtomograms have 
been proposed (10). This is a very useful step in subtomogram analysis because 
masking out neighboring structures can significantly reduce the structural bias for 
further analysis such as averaging and classification. Inspired by encoder-decoder 
type segmentation networks and fully connected networks, the networks are 
designed to be an encoder connected to a decoder inputting both high-level fea-
tures and low-level features. The encoder is designed with alternation of convolu-
tion layers and max-pooling layers. The decoder is designed with alternation and 
convolution layers and upsampling layers. By combining different types of layers 
and combining both high-level and low-level feature information, the two 
 segmentation networks can achieve high accuracy in 3D subtomogram semantic 
segmentation tasks.

Subtomogram classification

Similarly, a deep learning-based particle subdivision approach (11) proposes 
two convolutional neural networks, namely Inception3D network and DSRF3D 
network, for subdividing heterogeneous subtomograms into some homoge-
neous subsets. After extracting features from subtomograms using the 
Inception3D or DSRF3D network, unsupervised clustering can be applied. 
Furthermore, it was demonstrated that the generalization ability of models of 
novel structures that do not exist in the training data can still be discovered and 
clustered. Based on this work, Che et al. (12) proposed three convolutional 
neural networks with promising classification performance for datasets of 
extremely low SNR (0.01): (i) DSRF3Dv2, an extended version of DSRF3D 
(Deep Small Receptive Field 3D); (ii) RB3D, a 3D residual block-based neural 
network; and (iii) CB3D, a convolutional 3D (C3D)-based model, with improved 
classification accuracy. Among these, the CB3D achieves the best performances 
and yields accuracy close to 0.9 for normal datasets.

Model compression

Guo et al. (13) proposed a model compression approach for Cryo-ET data. 
Based on the deep neural network employed for the classification of 
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subtomograms, knowledge distillation to compress such networks was used. 
In previous works related to model compression on 2D images (14, 15), a 
model compression approach through knowledge distillation was proposed in 
order to speed up the separation of macromolecules at the prediction stage. 
The DSRF3D-v2 (Deep Small Receptive Field) model was chosen for compres-
sion considering the processing time and performance among the pre-existing 
models (12). Three student networks have been proposed to reduce the num-
ber of layers and parameters. The student network is a simplification of the 
teacher network. The compression includes compressing convolutional lay-
ers, pooling layers and eliminating one of the two fully connected layers. 
Reduction of the number of filters leads to simpler convolutional layers. 
DSRF3D-v2-s1 achieved the best performance by increasing the pooling size 
and stride from 2×2×2 to 3×3×3 and dismissing the dropout layers and one 
fully connected layer. Usually, a higher compression rate will lead to a greater 
loss of accuracy. Distilled models proposed in this study reduce the number of 
parameters, time and cost, and improve accuracy.

Domain adaptation

For Cryo-ET, it is usually time-consuming and computationally intensive to cre-
ate valid training data due to a massive demand for labeled training data. 
Obtaining training data from a separate data source where the annotations are 
readily available or can be executed in a high-throughput manner would be 
beneficial. The challenge is that the cross-data source prediction is often biased 
due to the different image-intensity distributions (a.k.a. domain shift). Domain 
adaptation has been shown to be beneficial for addressing this challenge. Lin et 
al. (16) adopted an adversarial domain adaptation framework called 3D-ADA 
for the structural classification of macromolecules captured by Cryo-ET. In 
order to obtain a robust model for a cross-data source macromolecular struc-
tural classification, this framework utilizes 3D convolutional neural networks 
and adversarial learning, mapping subtomograms into a latent space shareable 
between separate domains. Also, the training-feature extractions on multiple 
source domains can extend 3D-ADA to utilize multiple training data sources of 
Cryo-ET. Covariate shift is a typical case of domain shift (17). Compared to the 
original adversarial domain adaptation method (18), they have several modifi-
cations: (i) 2D CNNs to 3D with new 3D network architectures for Cryo-ET; 
(ii) two independent feature extractors to extract features from both source and 
target domains, making target domain features more robust; (iii) independent 
feature extractor for target data to enable the target domain feature to be more 
flexible and robust; and (iv) gradient forwarding of adversarial loss function. To 
avoid a local minimum for the model, the adversarial loss uses the proper 
domain supervision information for both the adversarial discriminator and the 
feature extractor training that avoids gradient vanishing in back-propagation.

Simultaneous classification and segmentation by multi-task learning

Built on the above semantic segmentation and classification model, a multi-
task learning neural network model was proposed (19) to perform semantic 
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segmentation, classification and coarse structural recovery (regression) 
 simultaneously. The feature extraction layers are shared, which later split into 
three networks to perform each individual task independently; the loss of 
each task is linearly combined. This network design allows the training of the 
three tasks to mutually reinforce each other for better feature extraction 
and  therefore higher accuracy. The accuracy of this model for classification 
and semantic segmentation outperformed single-task models (10, 11).

TEMPLATE-FREE STRUCTURAL PATTERN MINING

Template-based methods have their own shortcomings due to the possibility that 
the template structure can misfit its targets. If the template structures come from 
different organisms, there will be different conformations in the template 
 structures. Also, the conformational changes or additional bound components to 
the structure in vivo can be challenging to template-based methods. Under such 
circumstances, several template-free structural pattern mining methods have been 
proposed recently.

De novo structural pattern mining via multi-pattern pursuit

A framework called multi-pattern pursuit (MPP) was designed for discovering 
frequently occurred structural patterns in Cryo-ET (3). It formulates the template-
free visual proteomics analysis as a de novo pattern mining problem. The aim of 
MPP is to cluster, detect and estimate the abundance of large-scale complexes 
inside single cells automatically.

In this framework, first, after subtomograms are detected using template-
free particle picking methods (20, 21), feature patterns are initialized. Second, 
initialized feature patterns are assessed for adding to the pattern library. Third, 
patterns are selected and aligned into common frames. Fourth, subtomograms 
are aligned with the candidate patterns and redundant patterns are discarded. 
The steps are iterated until high-quality patterns are distinguished and further 
refined individually. Therefore, representative and abundant patterns in a 
tomogram can be discovered without templates of known structures. Moreover, 
after patterns are successfully discovered, they can be embedded in the tomo-
gram to visually present or statistically analyze their spatial distributions and 
interactions.

After the above subtomogram data processing steps, one of the most crucial 
steps is to average and cluster the subtomograms. To recover the structure of 
macromolecular complexes inside subtomograms which are heavily distorted 
by the noise and missing wedge effects, the use of a large number of subtomo-
grams (usually more than a thousand) containing the same structure and aver-
aging is recommended. The averaging process includes rotating and translating 
each subtomogram in a reference-free fashion because guidance from the known 
structures may bias the structural recovery. Only if the macromolecular 
 complexes in the subtomograms are rotated and translated to a homogeneous 
orientation, and centered, the underlying true structure can be fully recovered 
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from averaging. The task becomes more challenging when there are multiple 
classes of subtomograms, meaning that different subtomograms may contain 
different macromolecular complexes. Averaging as well as clustering need to be 
refined during each iteration (22–24).

Autoencoder for mining abundant and representative features

A convolutional autoencoder-based unsupervised approach has been pro-
posed (25) for coarse selection of subtomograms of interest from a large num-
ber of subtomograms (scale ranging from thousands to millions). After 
subtomograms are extracted from the tomogram using particle picking meth-
ods, an optional pose normalization approach is provided to adjust the parti-
cle orientation and center for better clustering of the same structures of 
different orientations, which simplifies the process of structural mining. 
It  also  assists the image-features characterization in a less orientation- 
dependent way. A convolutional neural network is designed for encoding 
each  subtomogram into a feature vector and decoding the feature vector to 
reconstruct the tomogram. K-means clustering algorithms and autoencoder 
networks are combined together to cluster Cryo-ET small-subvolumes into 
sets with homogeneous image features. Subtomogram-cluster centers are 
decoded and plotted for visual guidance for selection. Therefore, selecting 
among a large number of subtomograms becomes selecting among a few 
( usually less than a hundred) clusters. Interesting clusters, such as clusters of 
membrane features or globule features can be selected for further analysis. In 
addition, we designed a weakly supervised semantic segmentation convolu-
tional neural network to which results from the convolutional autoencoder 
can be applied.

As illustrated in Figure 1, the autoencoder and MPP can be integrated into an 
unsupervised pipeline for template-free recovery of representative structures. 
Although the current template-free structural pattern mining approach is still 
more of proof-of-concept, when more and more unsupervised methods are devel-
oped in the future, we expect a powerful system of template-free methods to 
accurately and efficiently detect and recover both the known and unknown rep-
resentative structures in a systematic fashion (26).

CRYO-ET BIOLOGICAL AND MEDICAL APPLICATIONS

Due to the ability of Cryo-ET that can reveal the native structure and arrange-
ment of macromolecular complexes inside intact cells, a lot of investigations 
have used this method to better understand the structural information of cells. 
Recently, there has been growing interest in establishing Cryo-ET as a diag-
nostic approach to complement conventional methods. Some recent examples 
of structural discovery and medical application using Cryo-ET are discussed 
in the following section. The increasing number of Cryo-ET medical applica-
tions demonstrates the potential of establishing Cryo-ET as a powerful diag-
nostic tool.
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Figure 1 Unsupervised structural pattern mining pipeline integrating the autoencoder and 
multi-pattern pursuit approach.
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Bacterial cell biology

Cryo-ET is capable of discovering detailed structure of bacterial cells in their 
native environment. Bacteria are viewed as structurally complex assemblies of 
macromolecular machines rather than undifferentiated bags of enzymes. This 
organization includes highly ordered arrays of chemosensory components 
(27, 28). Cryo-ET further enables the characterization of microcompartments for 
optimizing metabolism and storing nutrients (29–33). A visual inspection of more 
than 15,000 tomograms of intact frozen-hydrated cells belonging to 88 different 
bacterial species and several uncharacterized features in these tomograms has 
been reported (34). This has greatly improved our understanding of the complex-
ity of bacterial cells. The advent of cryogenic focused ion beam (FIB) milling has 
extended the domain of Cryo-ET to include regions even deep within thick 
eukaryotic cells.

Medical diagnosis

Since 2014, there has been a growing interest in the research community to 
establish Cryo-ET as a medical diagnostic tool to help resolve molecular differ-
ences between healthy and diseased states. Cryo-ET was applied to human clin-
ical samples to elucidate human ciliary structural defects in patients with 
primary ciliary dyskinesia, where the conventional diagnosing tool EM failed 
30% of the time (35). Later, Wang et al. (36) demonstrated the effectiveness of 
using Cryo-ET as a non-invasive tool to identify ovarian cancer patients by 
imaging their platelets. They built a simple model using the number of mito-
chondria and length of microtubules in Cryo-ET images and correctly predicted 
20 out of 23 cases. Other studies have identified cellular structural changes in 
disease states such as Leigh syndrome (37), Huntington’s disease (38), and virus 
infection (39).

CONCLUSION

Cryo-ET led to a revolution in in-situ structural biology. However, due to the low 
SNR and structural complexity, it also poses challenges to the subsequent compu-
tational analysis. Template-based methods have enabled the systematic detection 
of known structures. To reduce the computational cost, a supervised deep learn-
ing-based approach was proposed to classify and segment cellular components. 
However, the success of such a supervised approach depends heavily on the avail-
ability of a large amount of properly labeled training data. The template-free 
approach has made it possible to automatically recover representative structures 
and the discovery of even unknown structures. Although the template-free 
approach has opened up promising new possibilities, the current accuracy and 
efficiency still has a large room for improvement. With an increasing amount of 
data being collected and an increasing amount of robust computational methods 
being developed, Cryo-ET has a large potential to advance structural biology and 
medical diagnosis progressively.
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